
SLC30A3 (ZnT3) Oligomerization by Dityrosine Bonds
Regulates Its Subcellular Localization and Metal
Transport Capacity
Gloria Salazar1*, Juan M. Falcon-Perez3, Robert Harrison4, Victor Faundez2

1 Divison of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America, 2 Department of Cell Biology, Emory

University School of Medicine, Atlanta, Georgia, United States of America, 3 Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia, Spain, 4 Department of Computer

Science, Georgia State University, Atlanta, Georgia, United States of America

Abstract

Non-covalent and covalent homo-oligomerization of membrane proteins regulates their subcellular localization and
function. Here, we described a novel oligomerization mechanism affecting solute carrier family 30 member 3/zinc
transporter 3 (SLC30A3/ZnT3). Oligomerization was mediated by intermolecular covalent dityrosine bonds. Using
mutagenized ZnT3 expressed in PC12 cells, we identified two critical tyrosine residues necessary for dityrosine-mediated
ZnT3 oligomerization. ZnT3 carrying the Y372F mutation prevented ZnT3 oligomerization, decreased ZnT3 targeting to
synaptic-like microvesicles (SLMVs), and decreased resistance to zinc toxicity. Strikingly, ZnT3 harboring the Y357F mutation
behaved as a ‘‘gain-of-function’’ mutant as it displayed increased ZnT3 oligomerization, targeting to SLMVs, and increased
resistance to zinc toxicity. Single and double tyrosine ZnT3 mutants indicate that the predominant dimeric species is formed
between tyrosine 357 and 372. ZnT3 tyrosine dimerization was detected under normal conditions and it was enhanced by
oxidative stress. Covalent species were also detected in other SLC30A zinc transporters localized in different subcellular
compartments. These results indicate that covalent tyrosine dimerization of a SLC30A family member modulates its
subcellular localization and zinc transport capacity. We propose that dityrosine-dependent membrane protein
oligomerization may regulate the function of diverse membrane protein in normal and disease states.
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Introduction

The quaternary structure of polytopic transmembrane pro-

teins plays a critical role in defining their subcellular localization

and, consequently, their function. For example, homo-dimeriza-

tion regulates function and trafficking along the exocytic

pathway of proteins as diverse as neurotransmitter transporters

[1], cell adhesion molecules [2], G-coupled protein receptors [3]

and membrane proteins in the ER-Golgi intermediate compart-

ment [4]. Similarly, homo-oligomerization regulates the subcel-

lular distribution and signaling capacity of receptors in the

endocytic pathway. These include GABA, leukotriene B(4), and

Toll/interleukin-1 receptors [5–7]. Critical to understand the

effects that membrane protein homo-oligomerization exert on

proteins is the definition of chemical interactions that hold

membrane protein homo-oligomers. Identification of key resi-

dues and interfacial domains offers molecular targets to assess

the functional role of chemical modifications involved in

oligomerization and to predict homo-oligomerization in other

membrane proteins. Here we present a new covalent homo-

oligomerization mechanism in a member of the SLC30A family

of zinc transporters that depends on redox-regulated covalent

tyrosine dimerization.

Homo-oligomerization of membrane proteins occurs through

non-covalent and covalent interactions, primarily within trans-

membrane domains. These interactions rely on glycine, leucine or

cysteine residues. Among the non-covalent interactions, the most

common involve GxxxG and GxxxG-like domains such as those

found in glycophorin A, membrane transporters, and receptors

[8,9]. On the other hand, covalent oligomers are mostly mediated

by disulfide bonds, like those in cell adhesion molecules and

signaling receptors [2,10]. A far less explored covalent oligomer-

ization mechanism is that dependent on dityrosine bond

formation. Dityrosine bonds are present in a limited group of

structural proteins of the bacteria cell wall, invertebrate connective

tissue, and in proteins of the vertebrate extracellular matrix [11–

14]. Dityrosine bonds have been found in only one membrane

protein, the angiotensin II AT2 receptor [15]. Dityrosine bond

formation increases with aging, cellular stress, UV and c
irradiation and disease [16,17]. Increased levels of dityrosine

modified proteins have been found in lesions such as atheromatous

plates [18] and cataracts [16]; in pathological processes such as

acute inflammation and systemic bacterial infection [19]. Recently

dityrosine bonds have been associated with a-synuclein fibrillo-

genesis [20] and Ab amyloid oligomerization [21]. In all these

cases dityrosine bonds are thought to represent the cumulative
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damage of a protein or to regulate protein function by either

decreasing the solubility of secreted proteins or increasing

oligomer resilience to mechanical stress.

In this study we show that dityrosine bonds induced the

oligomerization of the zinc transporter 3 (ZnT3), a member of the

SLC30A family of zinc transporters. SLC30A family members

reduce the cytoplasmatic concentrations of free zinc, either by

mediating zinc efflux from the cell or by metal influx into

intracellular compartments [22]. One of the most studied

members of this family is the zinc transporter 3 (ZnT3). ZnT3 is

expressed in brain where it transports zinc into synaptic vesicles

[23]. Deficiencies in either ZnT3 (ZnT32/2) [24] or in the

machinery that regulates its subcellular localization [25,26]

severely deplete synaptic vesicles zinc content. Despite the

relevance of this transporter to synaptic physiology, mechanisms

regulating SLC30A members zinc transport activity remain poorly

explored. This is due to a lack of structural information, which has

been fundamental in the elucidation of regulatory mechanisms in

other type of transporters, such as chloride channels [27]. The

existence of ZnT oligomers has been suggested for ZnT1 and

ZnT5, 6 and 7 [28–31] and recently for ZnT8 [32]. Moreover, the

crystal structure of the bacterial SLC30A3 homolog, Yiip, revealed

non-covalent dimers [33]. Here we show that in contrast with

YiiP, ZnT3 forms covalent dimers mediated by intermolecular

dityrosine bonds. Dityrosine bond formation occurs both sponta-

neously and induced by oxidative stress. Using site-directed

mutagenesis we identified two critical tyrosines in the carboxy-

terminal of ZnT3, one that prevented and one that increased

dimerization. Our studies indicate that covalent tyrosine dimer-

ization of a SLC30A family member modulates its subcellular

localization and zinc transport capacity.

Materials and Methods

Antibodies
The following antibodies were used for western blots:

monoclonal anti transferrin receptor (H68.4), rabbit polyclonal

anti SUMO2/3 and monoclonal anti SUMO1 were from Zymed

Laboratories/Invitrogen (Carlsbad, CA). Ubiquitin monoclonal

antibody was from Covance (Berkeley, CA). Anti SV2 (10H4) was

from the Developmental Studies Hybridoma Bank (University of

Iowa, Iowa City, IA). Monoclonal anti synatophysin (Sy38) was

from Chemicon International/Millipore, (Billerica, MA). Vamp2

(69.1) antibody was from Synaptic System (Goettingen, Germany).

Polyclonal antibodies anti myc and HA were from Bethyl

Laboratories, Inc (Montgomery, TX). Monoclonal anti-b-actin

(clone AC-15) was from Sigma (St Louis, MO). Polyclonal anti

acetylated lysine was from Cell Signaling Technology, Inc.

(Danvers, MA). Affinity purified polyclonal antibodies against

PI4KIIa were described by Guo et al [34]. The following

antibodies have been described previously: polyclonal anti ZnT3

[26] and mouse anti Vamp7-TI [35].

Cell culture and drug treatments
HEK293T cells were cultured in DMEM medium (Cellgro,

Herndon, VA; 4.5 g/l glucose) containing 10% FBS (Hyclone,

Lolgan, UT), 100 U/ml penicillin and 100 mg/ml streptomycin.

PC12 cells were cultured in the same media, but with 5% FBS and

10% Horse serum. Transfected cells lines were maintained in

media containing 0.2 mg/ml G418 as described previously [36].

Incubations with H2O2 or drugs were performed in RPMI

medium at 37uC. Cells were incubated with H2O2 (Sigma) during

20 min to 1 h or MG-132 (Calbiochem) 10 mM during 12 hrs.

Catalase 500 U/ml or the ROS scavengers N-acetyl cysteine

(NAC, Sigma) 10 mM or EUK-134 50 mM (Cayman Chemical,

Ann Arbor, MI) were added to cells 15 min prior to the addition of

H2O2 10 mM and maintained during the H2O2 incubation. Myc-

tagged zinc transporters ZnT4, ZnT5 and ZnT7 were expressed in

HEK293T cells due to their low expression levels in PC12 cells.

DNA constructs
pcDNA3 vector (Invitrogen) containing the human amino

terminal HA tag SUMO1, SUMO2 and SUMO3 constructs were

obtain from Dr. John Hepler, Emory University. pCR3.1 vectors

(Invitrogen) containing human zinc transporters ZnT1, ZnT3,

ZnT4, ZnT5 and ZnT7-myc tagged in the carboxy-terminal

domain were previously described [37].

Site directed mutagenesis chimeras construction and
DNA transfection

All mutants were created using the QuickChange mutagenesis kit

(Stratagene, La Jolla, CA). Oligonucleotides for tyrosine to

phenylalanine mutagenesis of the human ZnT3 were the following:

Y330F mutant: sense-59-GCCCTTACGCTCACTTTC-

CATGTTGCCTCTGCAC-39 and antisense-59-GTGCAGAGG-

CAACATGGAAAGTGAGCGTAAGGGC-39.

Y357F mutant: sense-59-CTGAAGCCTCATCCCGGCT-

CTTCTCCCG-39 and antisense-59-CGGGAGAAGAGC CG-

GGATGAGGCTTCAG-39.

Y372F mutant: sense-59-GCAGGTCGAGCAGTTTCAGC-

CG GAGATG-39 and antisense-59-CATCTCCGGCTGAAA-

CTGCTCGACCTGC-39.

Oligonucleotides for tyrosine to phenylalanine mutagenesis of

the human ZnT4 were the following:

Y355F mutant: sense-59 ATGAAAATAGAAGATGTATTTT-

CAGTCGAAGATTTAAAT-39 and antisense-59-ATTTAAA-

TCTTCGACTGAAAATACATCTTCTATTTTCAT-39.

Y404F mutant: sense-59-TTGAACACATTTGGCATGTT-

TAGATGTACTATTCAGCTT-39 and antisense-59-AAGCT-

GAATAGTACATCTAAACATGCCAAATGTGTTCAA-39.

Y413F mutant: sense-59-ATTCAGCTTCAGAGTTTCAGG-

CAAGAAGTGGAC-39 and antisense-59-GTCCACTTCTTGC-

CTGAAACTCTGAAGCTGAAT-39.

Human ZnT3-myc chimera (mhZnT3-myc) containing the

amino terminal domain of mouse ZnT3 was constructed by

adding an EcoR1 restriction site using the following oligonucle-

otides:

Mouse N-Terminal (1–252): sense-59-CACCATGGGAGCC-

TTCTCTGGCCACC-39 and antisense-EcoR1 59-GAATTC-

GAAGCACACAGCGCAGGC-39.

Human (259–1167) sense EcoR1 59-CACCGAATTCAT-

GGCTGGGGAGG-39 and antisense myc 59-TCACAGAT-

CTTCTTCAGAAATAAGTTTTTGTTC-39.

The addition of the EcoR1 site create an amino acid change

from V85 to E that was corrected by site directed mutagenesis

using the following oligonucleotides:

Sense-59-GCTGTGTGCTTCGTATTCATGGCTGGGG

and antisense-59-CCCCAGCCATGAATACGAAGCACACA-

GC.

Mouse ZnT3-HA chimera (hmZnT3-HA) containing the amino

terminal domain of human ZnT3 was constructed by adding an

EcoR1 restriction site using the following oligonucleotides:

Human N-terminal (1–252): sense-59-CACCATGGAGCC-

CTCTC-39 and antisense-EcoR1 59-GAATTCAAAGCAAAC-

GGCACA-39.

Mouse (259–1167) sense EcoR1 59-CACCGAATT-

CATGGCCGGGGAG-39 and antisense HA 59-TCAAGCG-

TAGTCTGGGACGTCGTA-39. The amino acid E added by
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the creation of the EcoR1 site was corrected to V by site directed

mutagenesis using the following oligonucleotides:

Sense-59-GTGCCGTTTGCTTTGTATTCATGGCTGGG-

GAG and antisense-59-CTCCCCAGCCATGAATACAAAG-

CAAACGGCAC-39.

Oligonucleotides were from Sigma Genosys. All mutants and

constructions were evaluated by DNA sequence. 1 mg of DNA was

transfected in PC12 or HEK293 cells using 4 ml of Lipofectamin

2000 during 16 hrs. After 48 hrs, transfected cells were selected

with 0.8 mg/ml G418 during one week. Mouse ZnT3-HA has

been previously described [26].

Cross-linking and immunoprecipitation
Cells were washed twice in cold PBS plus CaCl2 and MgCl2

(PBS-CM) and incubated with 1 mM DSP (Pierce, Rockford, IL)

or DMSO alone in PBS-CM for 2 hrs on ice as described [38].

The reaction was stopped by adding 25 mM Tris pH 7.4 for

15 min on ice and washing twice in PBS. Cells were lysed 30 min

on ice in buffer A (150 mM NaCl, 10 mM HEPES, 1 mM EGTA

and 0.1 mM MgCl2, pH 7.4), 0.5% Triton X-100 plus Com-

pleteTM anti-protease mixture (Roche Molecular Biochemical,

Indianapolis, IN). Homogenates were clarified by sedimentation at

16,1006g for 10 minutes and supernatant immunoprecipitated

using Dynal magnetic beads (Invitrogen, Carlsbad, CA) decorated

with monoclonal antibodies against synaptophysin, or polyclonal

antibodies against either myc or HA epitopes. After six washes

with Buffer A 0.1% Triton X-100 for 5 min each, samples were

loaded on 4–20% PAGE-SDS Criterion pre-cast gels (Bio-Rad,

Carlsbad, CA) and analyzed by immunoblot. 1% to 2% of the

initial homogenate was loaded as input.

Sucrose sedimentation
Triton-X100 soluble supernatants from cells either treated with

the crosslinker DSP or DMSO alone were separated in a 5% to

20% sucrose gradient prepared in buffer A plus 0.5% Triton X-

100 during 13 hr at 187,0006g in a SW55 rotor [38]. Samples

were collected from the bottom (250 ml/each) and analyzed by

western blots. Gel filtration molecular weight markers (Sigma,

saint Louis, MI) were used to calibrate the gradients: horse spleen

apoferritin (443 kDa, 16.5 S), bovine serum albumin (66 kDa, 4.6

S), sweet potato b-amylase (200 kDa, 9.4 S) and bovine

erythrocytes carbonic anhydrase (29 kDa, 2.9 S).

Cell fractionation
PC12 cells differential fractionation and glycerol sedimentation

were performed in intracellular buffer (38 mM potassium aspartate,

38 mM potassium glutamate, 38 mM potassium gluconate, 20 mM

MOPS-KOH, pH 7.2, 5 mM reduced glutathione, 5 mM sodium

carbonate, 2.5 mM magnesium sulfate, 2 mM EGTA) [36,39].

Briefly, homogenate were sedimented 5 min at 10006g to obtain a

nuclear pellet (P1) and S1 supernatant that was sedimented at

27,0006g for 35 min to generate an S2 supernatant. S2 was loaded

on the top of a 5% to 25% glycerol gradient. After 75 min at

218,0006g, samples were collected from the bottom. All gradient

fractions were analyzed by immunoblot and immunoreactivity

revealed by ECL. Immunoreactive bands were quantified using

NIH Image 1.62 software as described [36].

Zinquin staining and flow cytometry
PC12 cells treated for 30 min with 25 mM ZnSO4 were washed

and incubated with 25 mM zinquin during 1 hr at 37uC. Cells

were washed twice at 4uC and resuspended in PBS. Fluorescence

was determined using a MoFlo High-performance Cell Sorter

from Dako Cytomation (Fort Collins, CO) as described previously

[36,40] or using a Synergy HT microplate reader (BioTek

Instruments Inc. Vermont) with an excitation:emission filters of

340/30:460/40.

Molecular modeling
An initial molecular model for ZnT3 transporter was generated

by the automated model server panther (http://bmcc3.cs.gsu.edu).

The homologous zinc transporter Yiip [33] (pdb id code 2QFI) was

found by profile-profile alignment. Even though the alignment has

only a 14% identity, the close functional similarity and the significant

profile alignment score strongly suggested that there was a true

homology. Critically, the residues involved with zinc binding are

preserved between the two molecules in this alignment. The initial

model was built using the AMMP program [41,42] with the latest

potential set (atoms.tuna). The ZnT3 protein dimer was built by

applying the non-crystallographic symmetry to the model that

relates to the two monomers of Yiip in the 2QFI crystal structure.

The zinc atoms from the 2QFI structure were used in the modeling,

and the protein dimer model was further energy minimized after

being generated. The tyrosine dimer was implemented using the

preAMMP system and parameterized with the semi-empirical

charge generation in AMMP [43]. The pairs 357,372’ and 357’, 372

where inserted into the coordinates and the model generated via

energy minimization of the non-tyrosine bonded protein dimer

model. As in all AMMP calculations, the amortized fast multipole

method [44] was used to avoid artifacts due to non-bonded and

electrostatic cutoffs. The electrostatic fields were calculated with full

exponential Debye-Huckel expansion of the ionization potential

using the finite element solver in AMMP. Models were made for the

other possible pairs of tyrosine dimers, but these did not alter the zinc

binding sites. Images of the molecular models where generated with

Pymol 0.99 [45].

Cell viability
PC12 cells expressing wt ZnT3 or ZnT3Y357F and

ZnT3Y372F mutants were incubated during 24 hr with 200 mM

to 250 mM ZnSO4. Cell viability was determined by trypan-blue

exclusion using a Neubauer chamber. 100% viability was

determined in the absence of zinc.

Data Presentation
All data are depicted as average6standard error of the mean

Results

Stabilization of the oligomeric states of ZnT3 by cross-
linking

The similarity of sequence between the Escherichia coli zinc

transporter Yiip and mammalian zinc transporters of the SCL30A

family led us to hypothesize that dimer formation could be a

common structural element, shared by SLC30A mammalian zinc

transporters. In this study, we focused on the human zinc

transporter 3 (ZnT3) as a model of transmembrane protein

representative of the SLC30A family. We took advantage of PC12

cells because they express low levels of ZnT3, are easily transfected

with tagged versions of this transporter, and ZnT3 endosome/

synaptic-like microvesicles (SLMVs) subcellular localization is well

characterized in these cells [26].

We examined the formation of ZnT3 oligomeric species by co-

immunoprecipitation of ZnT3 carrying different tags in their

carboxy terminal domains. In order to facilitate detection of low

affinity ZnT3 oligomers (dimers and/or high molecular weight

species) we used dithiobis–succinimidylpropionate (DSP). DSP is a

homobifunctional cell permeable cross-linker. This agent contains

Dityrosine Regulates ZnT3
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a disulfide bond, which allows complete cleavage of cross-linked

products under reducing conditions [38]. PC12 cells co-expressing

ZnT3-HA and ZnT3-myc, treated with and without DSP, were

lysed and detergent soluble supernatants immunoprecipitated with

magnetic beads coated with HA or myc antibodies (Fig. 1A).

Immune complexes were analyzed by immunoblot with antibodies

against myc or HA.

Immunoprecipitation with antibodies against HA isolated myc-

tagged ZnT3 (Fig 1A, left panel). Conversely, immunoprecipitation

with myc antibodies recovered the HA-tagged transporter (Fig. 1A

middle panel). Interaction between the tagged ZnT3s was observed

either in the absence (Fig. 1A, lanes 1 and 4) or presence (Fig. 1A,

lanes 2 and 5) of cross-linker. Moreover, an 80 kDa band as well as

high molecular weight bands containing both ZnT3-HA and ZnT3-

myc were also observed. These bands are resistant to SDS and

reducing agents consistent with covalently modified ZnT3.

Synaptophysin (sphysin), an abundant polytopic synaptic vesicle

protein in PC12 cells, was used as a control. No ZnT3 was observed

in immunoprecipitations performed with synaptophysin antibodies

(Fig 1A, right panel). Furthermore, synaptophysin was absent from

HA and myc immunoprecipitations excluding spurious membrane

protein binding to myc or HA-antibody decorated beads.

We next sought to investigate the molecular weight of ZnT3

oligomeric species by sedimentation on density gradients. Triton-

X100 soluble supernatant of PC12 cells expressing ZnT3-myc,

treated in the absence or presence of DSP, were separated by

sucrose sedimentation [38], followed by reducing SDS-PAGE to

revert cross-linking (Fig. 1B). The majority of the 40 kDa

Figure 1. Identification of ZnT3 oligomeric states. A) Triton soluble extracts of PC12 cells (450 mg) co-expressing ZnT3-HA and ZnT3-myc,
treated with and without cross-linker (DSP), were immunoprecipitated with HA (lanes 1 and 2), myc (lanes 4 and 5) or synaptophysin (Sphysin, lanes 7
and 8) antibodies. Western blots were probed with myc, HA and synaptophysin and ZnT3 antibodies, respectively. Control immunoprecipitation with
synaptophysin antibodies fail to isolate ZnT3. Input 10 mg. B) 1.5 mg of Triton-X100 soluble supernatant of ZnT3-myc expressing cells treated in the
presence of vehicle (DMSO) or DSP (+DSP) were separated by sucrose sedimentation. Fractions were collected from the bottom and analyzed by
immunoblot with myc antibodies. An 80 kDa and high molecular weight forms of ZnT3 were observed, together with the monomeric 40 kDa species.
doi:10.1371/journal.pone.0005896.g001
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monomeric ZnT3 migrated at or above 4.6S, a sedimentation

coefficient that exceeds the migration expected for a ,40 kDa

membrane protein (Fig. 1B) [38]. Moreover, the myc-tagged

ZnT3 species of 80 kDa was also observed migrating at 4.6 S

either in the absence or presence of cross-linker (see asterisk

Figure 1 B, upper panel and lower panel). The 80 kDa band was

resistant to reducing agents and SDS and increased in abundance

in the presence of DSP. Moreover, new species of 160 and

240 kDa appeared sedimenting between 9.4 and 16.5S. These

results show that ZnT3 forms covalent oligomeric structures,

which are at least compatible with ZnT3 dimers and high

molecular weight oligomers. Furthermore, a cell permeant cross-

linking agent stabilizes these oligomeric species.

ZnT3 80 kDa species is increased by oxidative stress
The reduced SDS-PAGE migration of ZnT3 suggested that this

transporter could form dimeric species. Alternatively, increased

ZnT3 molecular weight might also occur by covalent post-

translational modifications, such as sumoylation, multi mono-

ubiquitylation and poly-ubiquitylation. To distinguish between

these two hypotheses, H2O2 and the inhibitor of the proteasome

MG-132, were used to increase general sumoylation [46] and

ubiquitylation [47], respectively (Fig. 2A). Incubation with H2O2

increased the abundance of the human ZnT3 80 kDa form (Fig. 2A,

lane 2), compared with control. In contrast, treatment with MG-132

(Fig. 2A, lane 3) induced the accumulation of high molecular weight

ZnT3-myc complexes (.200 kDa). These complexes are probably

formed in response to oxidative stress induce by MG-132, since they

were not detected with antibodies against ubiquitin (data not

shown). As expected, both treatments increased the abundance of

sumoylated and ubiquitylated proteins, verified by immunoblot with

antibodies against SUMO1, SUMO2/3 and ubiquitin (Fig 2A,

lanes 4–12). Lysine acetylation, another post-translational modifi-

cation, was unaffected in both conditions (Fig 2A, lanes 13–15).

H2O2 or MG-132 treatments showed no effect on other synaptic

vesicle membrane proteins, such as synaptophysin, synaptobrevin 2

(Vamp2), SV2 or phosphatidylinositol-4-kinase type II alpha

(PI4KIIa), the late endosome/lysosome SNARE Vamp7 and

PI4KIIa, or the endosomal marker transferrin receptor (Tfr-R)

(Fig. 2B). These observations indicate that the increase in molecular

weight of ZnT3, is not the result of unspecific aggregation of

membrane proteins where ZnT3 resides.

The ZnT3 80 kDa species is a covalent dimer
SUMO1 antibodies detected a band of 80 kDa in PC12 cells

harboring myc tagged human ZnT3 (Fig 2A, lanes 4–6). Thus, we

hypothesized that the increase in molecular weight induced by

H2O2 was due to ZnT3 sumoylation. To test this hypothesis, we

transfect HA-tag versions of SUMO1, SUMO2 or SUMO3 into

PC12 cells expressing human ZnT3-myc. Protein sumoylation was

induced by incubating cells in the presence of H2O2 or MG132

(Fig. S1). Immunoprecipitation of SUMO 1, 2 or 3 using HA

antibodies isolated a wide range of sumoylated proteins and free

SUMO, from control cells, but failed to isolate ZnT3-myc

immunoreactive bands (Fig. S1A). Moreover, induction of

sumoylation by H2O2 incubations (Fig. S1B), although it increased

the amount of the 80 kDa ZnT3-myc species observed in the

inputs (Fig. S1B, lanes 14–16), did not lead to ZnT3-myc

immunoreactive material in SUMO-HA immunoprecipitations

(Fig. S1B, lanes 4–12). No ZnT3 species were observed in HA

immunoprecipitations of MG-132 treated cells expressing SUMO

constructs (Fig. S1B, compare lanes 6, 9 and 12 with lane 3).

Moreover, immunoprecipitations with myc antibodies and western

blots with ubiquitin antibodies did not identify any ubiquitinated

products (data not shown). These results exclude that the ZnT3

80 kDa or oligomeric species are sumoylated or ubiquitinated

products and support the hypothesis that the 80 kDa species is a

covalent ZnT3 dimer. Moreover, our findings indicate that the

ZnT3 80 kDa covalent species is increased by oxidative stress.

ZnT3 covalent dimer formation depends on tyrosines in
its carboxy terminal domain

One modification that could explain formation of covalent

dimers regulated by oxidative stress is dityrosine bond formation

[48]. Based on the chemistry of dityrosine synthesis, we selected

two criteria to identify dityrosine bonds in the 80 kDa ZnT3

species [48]. First, dityrosine formation is induced by oxidative

stress and second, is abrogated by tyrosine to phenylalanine

mutation of critical residues. We previously showed a ZnT3

80 kDa band increased by oxidative stress, thus meeting the first

requirement. We next tested whether tyrosine to phenylalanine

mutations in ZnT3 tyrosine residues could abrogate the H2O2-

induced dimer formation. Human ZnT3 possesses six tyrosine

residues, two facing extracellular exposed domains, one in an

intracellular loop, and three in the carboxy-terminal domain. We

focused on the role of individual tyrosine residues present in the

carboxy-terminal domain as candidates to mediate dimer

formation (Y330, Y357 and Y372). Tyrosine to phenylalanine

mutations were engineered in human ZnT3-myc and transiently

transfected in PC12 cells, which were incubated with H2O2

(Fig. 3A). Mutation of tyrosine 372 shows a reduced amount of

dimers compared with control (Fig. 3A, compare lanes 2 and 8). In

contrast, Y357F increased dimerization (Fig. 3A, compare lanes 2

and 6). No differences in the response to oxidative stress, detected

with SUMO2/3 antibodies, was observed between cell expressing

Y372F mutant or wt ZnT3 (Fig. 3B). To further evaluate these

differences permanent cells lines carrying wild type and mutant

human ZnT3-myc were incubated with increasing concentrations

of H2O2 (Fig. 3C). ZnT3 80 kDa species were quantified for each

H2O2 concentration and expressed as a ratio of ZnT3 80 kDa

species versus monomer. To determine differences with respect to

wild type ZnT3, ratios obtained from wild type and tyrosine mutants

were subtracted from the wild type human ZnT3 ratio (Fig. 3D,

dimer ratio = 0 for wild type ZnT3). Much like in transiently

transfected cells, two phenotypes were observed in cell lines

expressing human ZnT3 mutant transporters. First, mutation of

Y372F drastically reduced dimerization under control conditions

(Fig. 3C, compare lane 19 with lane 1), as well as in response to

oxidative stress (Fig. 3C lanes 20 to 24) when compared to wild type

ZnT3 (Fig. 3C, lanes 2 to 6). In contrast, Y357F mutation

increased dimerization both in the absence (Fig. 3C, compare lane

13 with lane 1) or presence of H2O2 (Fig. 3C, compare lanes 14 to

18 with lanes 2 to 6). The ZnT3 Y357F mutant increased ZnT3

80 kDa species 2 to 4 fold when compared to wild type after H2O2

incubation. No significant differences were observed in cells

expressing the Y330F mutant irrespective of whether this mutant

was expressed transiently (Fig. 3A, compare lanes 2 and 4) or in a

stable PC12 cell line (Fig 3C, compare lanes 7–12 with 2–6).

Immunoblot with SUMO2/3 antibodies showed that all cell lines

were responsive to H2O2-induced oxidative stress.

To further assess the role of oxidative stress on human ZnT3

tyrosine-dependent dimerization, we asked whether the formation

of the ZnT3 80 kDa species could be prevented by pre-incubation

with anti-oxidants. We compared wild type human ZnT3 and the

Y330F and Y357F mutants. These mutants either do not affect the

formation of the ZnT3 80 kDa species or increased its formation,

respectively. The effects of H2O2 on dimer formation were

completely abolished by catalase (data not shown) and significantly
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reduced by incubations with the free radical scavengers N-acetyl-

cysteine (NAC, Fig. 3E lanes 3, 7 and 11) and EUK138 (Fig. 3E.

lanes 4, 8 and 12) in all three cell lines. All together, these results

demonstrate that the 80 kDa form of ZnT3 is a tyrosine dimer

formed by a covalent bridge mediated mainly by tyrosine 372 in

the carboxy terminal domain.

We further explored whether tyrosine residues in the cytosolic

tail of human ZnT3 exhibited a dimerization hierarchy in

response to oxidative stress. We specifically asked whether human

ZnT3 harboring the Y372F mutation, which reduces the ZnT3

80 kDa species, was dominant over the Y357F mutation, which

increases ZnT3 80 kDa species. Analysis of double mutants

ZnT3Y357-372F showed reduced ZnT3 80 kDa species indicating

that Y372 is critical and dominant in the formation of dityrosine

dimers (Fig 3F, lanes 5–6). Moreover, these results indicate that the

remaining Y330 present in ZnT3Y357-372F were less efficiently

engaged in dimer formation with other Y330 residue. We next

asked whether tyrosine dimers were formed between two Y372

residues. ZnT3 carrying only one tyrosine residue in position 372

by mutation of Y330–357 to F still displayed reduced ZnT3

80 kDa species content (Fig 3F, lanes 7–8). Thus, tyrosine dimers

are not formed between two adjacent Y372 residues. These results

argue for a model where the ZnT3 80 kDa predominant species is

formed in trans between residues 372 and 357.

Formation of ZnT3 tyrosine dimers regulates ZnT3
targeting to synaptic-like microvesicles (SLMV)

Dityrosine formation has been described mainly as a product of

oxidative stress [48] and as a normal extracellular post-

translational modification only in a limited group of secreted

proteins, such as collagen and elastin [11,13]. We used cross-

linking and sucrose sedimentation to evaluate whether dimer

Figure 2. Covalently modified species of SLC30A family members are induced by oxidative stress. PC12 cells incubated without or with
100 mM H2O2 for 20 min or 10 mM MG132 for 12 hours were analyzed by immunoblot with antibodies against A) myc, SUMO1, SUMO2/3, ubiquitin
or acetylated lysine. Human ZnT3 putative dimeric form (80 kDa band) and high molecular weight species were observed in H2O2 and MG-132
incubations, respectively. B) Effect of H2O2 and MG132 treatment in components of different intracellular compartments were analyzed by
immunoblot with transferring receptor (Tfr-R, early/recycling endosomes), Vamp7-TI (late endosomes) and synaptophysin (Sphysin), SV2 and PI4KIIa
(SLMVs) antibodies.
doi:10.1371/journal.pone.0005896.g002
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formation in tyrosine mutants occurs spontaneously in the absence

of H2O2 as we observed previously for wild type ZnT3 (Fig. 1B).

Triton-X100 soluble extracts of PC12 expressing wild type human

ZnT3-myc, ZnT3Y357F and ZnT3Y372F mutants treated with or

without DSP were separated by sucrose sedimentation and

western blots analyzed with myc antibodies (Fig. 4A). As we

observed before, the ZnT3Y357F mutant showed a strong

increase of dimeric forms even in the absence of DSP and the

content of the ZnT3 80 kDa form was further increased by DSP

treatment. On the contrary, Y372F mutant present a reduced

dimerization that was modestly increased by the addition of DSP

(1.3 folds compared with 2.2 folds for wt ZnT3). These results

indicate that dimers are formed spontaneously and that DSP

stabilizes ZnT3 oligomeric transient intermediaries.

We hypothesized that if dimerization occurs spontaneously it

could regulate human ZnT3 function either by affecting its

subcellular localization and/or zinc transport activity. To test this

hypothesis, we took advantage of ZnT3 mutants that either

decrease or enhance the formation of the 80 kDa species. ZnT3

localized mainly in synaptic-like microvesicles (SLMV) and

endosomes in PC12 cells [26,49]. To investigate whether tyrosine

dimerization affects ZnT3 vesicle targeting at steady state, S2

Figure 3. Covalent ZnT3 oligomeric species require tyrosine residues and free radicals for their formation. Transiently transfected (A
and B) or permanent (C) PC12 cell lines expressing human ZnT3-myc wild type or mutants in tyrosine 330, 357 or 372 were incubated without or with
10 mM (A and B) or increasing concentrations (C) of H2O2 during 1 hr in RPMI medium. 20 mg of total extracts were analyzed by immunoblot with the
indicated antibodies. D and M denotes dimer and M monomer, respectively. D) Dimer formation was expressed as a ratio of dimer versus monomer
for each H2O2 concentration as follow: (mutant ratio of dimer/monomer)- (wild type ratio of dimer/monomer). In the case of wild type ZnT3 the
expected value is 0. Increase in ZnT3 dimer content is seen as positive values whereas a decrease corresponds to negative values. E) PC12 cells
expressing ZnT3-myc wild type or tyrosine mutants ZnT3Y357F and ZnT3Y375F were pre-treated during 15 min without or with 10 mM N-acetyl
cysteine (NAC) or 50 mM EUK138 before incubation with 10 mM H2O2 during 1 hr. F) PC12 cells expressing single and double mutants were treated
with or without 10 mM H2O2 lysed and analyzed by western blot with myc antibodies.
doi:10.1371/journal.pone.0005896.g003
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fractions containing SLMVs were resolved by glycerol velocity

sedimentation from cell lines expressing wild type human ZnT3 and

tyrosine mutants (Fig. 4B). SLMVs sediment in glycerol based on

organelle size and they characteristically peak at the middle of

glycerol gradients [50,39] . In these gradients, changes in the

targeting of membrane proteins to SLMVs is frequently seen as

modification in the amount but not sedimentation of a marker

[51–53].

Figure 4. Tyrosine-dependent covalent oligomerization regulates ZnT3 targeting to PC12 SLMVs. A) Triton soluble extracts of PC12 cells
treated with and without cross-linker, were separated in a 5–20% sucrose gradient. 19 fractions were collected from the bottom (fraction 1) and
analyzed by immunoblot with myc antibodies. Either reduced or increased levels of dimerization were observed in ZnT3Y372F and ZnT3Y357F
mutants in the presence DSP, respectively. B) PC12 stable cell lines expressing wild type ZnT3 and ZnT3Y357F and ZnT3Y372F mutants were
fractionated as described in Methods. S2 (600 mg) supernatants were separated in glycerol gradients and ZnT3 distribution analyzed by immunoblot
with myc antibodies. SLMVs peak, in the middle of the gradient. ZnT3 was quantified (C) and adjusted by expression levels in 10 mg of S1 (B, input). D)
Total levels of ZnT3 tyrosine mutants in the gradients were compared with wild type ZnT3 (100%) in three independent experiments. ZnT3Y357F
mutant: 165.3%67.7%. ZnT3Y372F mutant: 65.5614%.
doi:10.1371/journal.pone.0005896.g004
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ZnT3 targeting to SLMVs was determined in vesicles

resolved in glycerol gradients. Results were quantified and

normalized by the expression level in the initial fractionation

input (Fig. 4C and D). Human ZnT3 carrying the Y357F

mutation, which possesses an increased formation of ZnT3

80 kDa species, increased its targeting to SLMVs by 65%67.76

(n = 3). In contrast, human ZnT3 harboring the Y372F

mutation, which reduces the formation of the 80 kDa species,

decreased its targeting by 35%614.3% (n = 3) with respect to

wild type human ZnT3 (Fig. 4D). These results indicate that

tyrosine-mediated dimer formation regulates human ZnT3

targeting to SLMVs.

Tyrosine dimerization regulates zinc transport capacity
ZnT3 increases vesicular zinc content when present in SLMVs

[40]. Thus, we explored whether the changes in ZnT3 SLMV

targeting due to a Y to F mutation correlated with modifications in

zinc uptake. Organelle zinc stores were detected using zinquin, a

zinc specific fluoroprobe [54]. As previously reported [23,36,40],

vesicular zinc level was minimally affected by the over-expression

of the mouse ZnT3 ortholog when compared with non-transfected

cells (5A, mouse ZnT3, 1.160.04). In contrast, expression of the

human ZnT3 increased zinc levels ,2.5 fold (2.4160.51,

p,0.001). A significant increase in vesicular zinc stores was

detected in cells expressing human versions of the intracellular zinc

transporter ZnT4 (1.6960.09, p = ,0.001) and ZnT5 (2.2760.2,

p,0.001), but not ZnT1, a zinc transporter localized in the plasma

membrane, that mediate zinc efflux to the extracellular milieu

(1.1260.26, p = 0.21). Human ZnT7 expression shows a modest

24% increase with respect to non-transfected cells (1.2460.04,

p,0.001).

The differences in zinc uptake by human and mouse ZnT3

orthologues prompted us to evaluate the capacity of mouse ZnT3

to form oligomers. PC12 cells expressing human or mouse ZnT3

were incubated with H2O2 or MG132, and the formation of

oligomeric species compared by western blots under reducing

conditions (Fig. 5B). Notably, a small proportion of the 80 kDa

species was observed with mouse ZnT3-HA in the presence of

H2O2 when compared with the human transporter (Fig. 5B,

compare lane 5 with 2). Moreover, mouse ZnT3 seems to be

insensitive to oligomerization induced by MG132 (Fig. 5B,

compare lane 6 with 3). Based on these observations, we

hypothesized that zinc transport is mediated by ZnT3 oligomeric

species. A prediction that arises from this hypothesis is that the

prevention of dimerization by tyrosine mutation should prevent

zinc transport in the human ZnT3. Non-transfected PC12 cells

(NT) and cells transfected with either wild type human ZnT3-myc

or ZnT3 tyrosine mutants were stained with zinquin (Fig. 5C).

Similar levels of vesicular zinc accumulation were observed in both

wild type human ZnT3 (63.8618.8) and the Y357F mutant capable

of increased oligomer formation (53.763.8). On the contrary, the

Y372F mutant that prevents human ZnT3 oligomer formation

showed basal zinquin staining similar to non-transfected cells

(Fig. 5C). Incubation with increasing concentrations of ZnSO4

further demonstrated the inability of the Y372F mutant to support

zinc accumulation into vesicular compartments (Fig. 5D). These

results are consistent with a model whereby human ZnT3

oligomers stabilized by dityrosine bonds are required for efficient

zinc transport.

We hypothesized that the inability of the Y372F mutant to

support zinc storage in vesicular compartments would affect cell

viability when cells are challenged with toxic extracellular zinc

concentrations. To test this hypothesis, PC12 cells lines expressing

wild type human ZnT3 and tyrosine mutants were cultured in

media containing increasing concentrations of ZnSO4 during 24 h

(Fig. 5E). Cells expressing human ZnT3 carrying the Y372F

mutation, which impairs ZnT3 dimerization, were sensitive to

extracellular zinc. Cell viability was reduced when compared with

cells expressing wild type human ZnT3. In contrast, cells expressing

human ZnT3 carrying the Y357F mutant, which enhances ZnT3

dimerization, showed a modest but significant increase in cell

viability compared with human wild type ZnT3 (Fig. 5E). These

findings indicate that, although modest, a gain-of-function

phenotype in human ZnT3 carrying the Y357F mutation becomes

evident in cell challenged for a prolonged time with toxic zinc

concentrations.

Predicted structural changes induced by ZnT3 dityrosine
bond oligomerization

Dityrosine bonded ZnT3 supports efficient zinc accumulation in

intracellular organelles. This functional change predicts that ZnT3

oligomers containing trans dityrosine bridges between residues 357

and 372 should modify cytoplasmic determinants involved in zinc

binding. We explored the structural changes induced by bridging

tyrosines 357 and 372 in ZnT3 dimers using AMMP molecular

modeling. We modeled human ZnT3 primary sequence (Fig. 6)

using as a backbone the crystal structure coordinates of the bacterial

ZnT3 homologue YiiP bound to zinc atoms [33]. ZnT3 dimers

lacking dityrosine bonds closely resembled the crystal structure of

YiiP (Fig. 6A, ZnT3). Zinc atoms in human ZnT3 bound to the

cytosolic domain were exposed to water. However, ZnT3 dimers

carrying a dityrosine bond between residues 357 and 372 acquired a

closed conformation with zinc atoms bound to the cytosolic domain

completely buried and away from solvent (Fig. 6A, ZnT3 diY357–

372). The major conformational change involved in the 357–372

dityrosine dimer depended on the motion of the two cytoplasmic

loops containing these two tyrosines. Since tyrosine 372 is on the C-

terminus and therefore has few conformational restrictions, it moves

more than tyrosine 357 (Fig. 6A). The modeling method was

unlikely to produce major conformation changes as it used

conjugate gradients, which is a local optimizer. The distribution

of charges, as reflected in the electrostatic field calculated from the

model in the presence of dielectric and counter ions showed few

differences between the undimerized and dimerized tyrosine

residues (Fig. 6C). The arrangement of zinc atoms was further

explored by projecting cytosolic zinc atoms into the dityrosine bonds

(Fig. 6D). Zinc atoms moved closer to the unexposed surface of the

C-terminal domain of ZnT3 in dimers carrying 357–372 dityrosine

bonds (Fig. 6D, compare yellow and green dots). Models made for

other pairs of possible dityrosine states, such as 330–357 or 330–372

did not alter the zinc binding sites. The rearrangement seen with the

357–372 dityrosine bridge appears to alter the zinc binding sites and

open up buried binding sites that are not present in molecules

lacking dityrosine bonds (Fig. 6B). Zinc atoms not associated with

this binding site are buried in both the tyrosine and dityrosine

models. After formation of the dityrosine bond a complete set of

well-formed zinc binding sites is generated. This set of sites spans the

whole length of the molecule suggesting that dityrosine formation

facilitates zinc transport by forming the shielded binding pathway

for the C-terminal part of the transporter. This modeling supports

the notion that ZnT3 domains involved in zinc binding undergo

structural rearrangements in the presence of dityrosine bonds.

Structural determinants defining dityrosine-dependent
dimerization in SLC30A family members

ZnTs 1 to 8 possess C-terminal tyrosines that could mediate

dityrosine bonding, as it is the case of human ZnT3 (Fig. 7A). To

Dityrosine Regulates ZnT3

PLoS ONE | www.plosone.org 9 June 2009 | Volume 4 | Issue 6 | e5896



Figure 5. Vesicular zinc storage is modified by mutants that affect tyrosine-mediated ZnT3 oligomer formation. Vesicular zinc storage
was measured with zinquin in permanent cells lines as described in Methods. A) PC12 cells non transfected (NT) and cells expressing mouse ZnT3HA
or myc-tag human ZnT1, 3, 4, 5 and 7 were stained with zinquin and fluorescence analyzed by flow cytometry, results are express as mean6SD in
three independent experiments for human ZnTs. hZnT1: 112626.5, hZnT3: 241651.3, hZnT4: 16969.7, hZnT5 227620.3, hZnT7: 12464.19. For
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explore whether dityrosine bonds could be a common structural

element in other SLC30A family members, we first examined

whether myc-tagged versions of human ZnTs form covalent

dimers in response to H2O2 (Fig. 7B). Similar to the human ZnT3,

H2O2 induced covalently modified species in myc-tagged versions

of human ZnT1, ZnT4 and ZnT5, but not ZnT7 (Fig. 7B).

Site directed mutagenesis and molecular modeling indicated that

Y357-Y372 is the main bond involved in the dimerization of human

ZnT3. Primary sequence analysis revealed that human ZnT3

residue Y372 is flanked by negatively charge amino acids (Fig. 7A).

We searched whether other ZnT transporters possess Y residues

surrounded by negatively charged residues. Human ZnT4 residues

Y355 and Y413 are adjacent to a glutamic residue in position +3

from the tyrosine [YXXE] (Fig. 7A). In contrast, ZnT6, 7 and 8

contains tyrosines that lack negative residue in position +3.

Interestingly, ZnT7 did not show H2O2-induced dimerization

(Fig. 7B). To test whether at least one of the Y residues participating

in dityrosine bonding needs to conform to the putative consensus

YXXE, we performed site-directed mutagenesis of either the

human ZnT4myc residue Y355 or Y413. Wild type and mutant

ZnT4 constructs were expressed in HEK293 cells. Tyrosine to

phenylalanine mutagenesis of either ZnT4 residues Y355 or Y413

decreased H2O2-induced dimerization compared with wild type

ZnT4 (Fig. 7C). Similarly, mutagenesis of Y404F reduced dimer

formation (Fig. 7C) indicating that ZnT4, like ZnT3, forms tyrosine

dimers in which at least one of the Y residues abides to a putative

YXXE consensus.

Mouse and human ZnT3 dimer formation differs dramatically

despite the fact that both ZnT3 orthologs are 86% identical. This

led us to hypothesize that additional structural elements could

Figure 6. ZnT3 homology modeling with the bacteria Yiip zinc transporter. Human ZnT3 pairs or ZnT3 pairs bridged in trans by dityrosine
bonds between tyrosine residues 357 and 372 were modeled using AMMP and visualized with Pymol. Modeling coordinates were obtained from the
crystal structure of YiiP bound to zinc atoms. A) Depicts lateral views of ZnT3 pair surface models. Gray lines represent the middle of the lipid bilayer.
Zinc atoms are depicted as green spheres. Tyrosines 357 and 372 are depicted either single or bonded in yellow. B) Depicts diaphanized surface
models to highlight the position of zinc atoms (green spheres). C) Cytoplasmic views of the solvent exposed areas in the absence or presence of
dityrosine bonding. Blue depicts the negative and red the positive potentials. D) Cytoplasmic view of zinc atoms arrangement in the cytosolic domain
of ZnT3 pairs either in the absence of dityrosine bonds (green spheres) or in the presence of dityrosines (yellow spheres). Dityrosines bonds are
represented as a reference point.
doi:10.1371/journal.pone.0005896.g006

mouse ZnT3-HA results are mean6SD in one experiment by triplicate. B) Cell lines expressing mouse ZnT3-HA or human ZnT3-myc were incubated
with or without H2O2 or MG132 and extract analyzed by immunoblot with myc and HA antibodies. C and D) Vesicular zinc storage was measured in a
microplate reader. Non-transfected cells (NT) and cells expressing myc-tag human ZnT3 (wild type), ZnT3Y357F or ZnT3Y372F mutants were
incubated with the indicated concentration of ZnSO4. Zinquin staining was expressed by mg of protein. NT: 22.465.4, wild type ZnT3: 63.8618.8,
Y357F: 53.763.8. Y372F: 17.464.3, n = 3 independent experiments. E) Permanent PC12 cell lines expressing wt ZnT3 and ZnT3Y357F or ZnT3Y372F
mutants were incubated with the indicated concentration of ZnSO4 for 24 hr. Cell viability was measured by trypan-blue exclusion as described in
Materials and Methods. Y357F mutant increased viability from 34611.3 (wt) to 54.3615 (p,0.05) at 225 mM and from 20.1 (wt) 65 to 29.964.3
(p,0.005) at 250 mM (n = 5 in two independent experiments). In contrast, loss-of-function Y372F mutant decreases cell viability to 4.560.48
(p,0.001) and 1.5760.71 (p,0.0001), respectively (n = 6 in two independent experiments.
doi:10.1371/journal.pone.0005896.g005
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modulate the ability of tyrosine residues to form covalent bonds.

To test this hypothesis, we asked whether the amino terminal

domain of human ZnT3 could confer sensitivity to oxidative stress-

induce oligomerization to the mouse ZnT3 and vice verse. To this

end, we constructed a mouse ZnT3-HA chimeras containing the

amino terminal of human ZnT3 (hmZnT3-HA) and a human

ZnT3-myc chimera containing the amino terminal of mouse

ZnT3 (mhZnT3-myc) (Fig. 8A). Constructs were transfected in

PC12 cells and cells incubated with H2O2 or MG-132 (Fig. 8B and

C). Mouse ZnT3 amino terminal decreased the H2O2-induced

dimerization of the human chimera mhZnT3-myc (Fig. 8B). In

contrast, the human amino terminal domain increases dimeriza-

tion of the mouse ZnT3 chimera (hmZnT3-HA) in response to

H2O2 and oligomerization-induced by MG-132. Therefore, the

amino terminal domain influences the ability of carboxy-terminal

tyrosines to form covalent tyrosine bonds.

Discussion

In this study we demonstrate that tyrosine dimerization in a

polytopic transmembrane protein, the zinc transporter 3

(SLC30A3/ZnT3), regulates the transporter’s subcellular localiza-

tion and its transport capacity. These functional changes correlate

with structural rearrangements within the cytosolic domain of

ZnT3 that favor the accessibility of zinc to metal binding sites, as

suggested by molecular modeling studies. ZnT3 tyrosine dimer

formation occurs spontaneously and it is induced by oxidative

stress. Our conclusions are supported by phenotypes resulting

from discrete tyrosine to phenylalanine mutants, illustrated in

Fig. 9. Three tyrosines in the carboxy-terminal of ZnT3 were

subject to site directed mutagenesis Y330 (TLTYHVA), Y357

(SRLYSRF) and Y372 (VEQYQPE). ZnT3 carrying the Y357 to

phenylalanine mutation behaved as ‘‘gain-of-function’’ mutant,

Figure 8. ZnT3 amino terminal domain regulates tyrosine dimerization. A) ZnT3 mouse and human chimeras, hmZnT3-HA and mhZnT3-
myc, in which amino terminal domains (1–75) were exchanged were incubated with or without H2O2 or MG132 (B and C). Oligomerization was then
compared with wild type mouse and human ZnT3. B) The amino terminal domain of mouse ZnT3 decreases human transporter’s oligomerization. C)
Human amino terminal increases mouse ZnT3 tyrosine oligomerization.
doi:10.1371/journal.pone.0005896.g008

Figure 7. Dityrosine-dependent dimerization in SLC30A family members. A) Carboxy terminal primary sequences of ZnTs 1–8 containing
tyrosine residues are compared with ZnT3 tyrosines 330, 357 and 372. Negatively (E/D) and positively (R/K) charge residues are depicted in green and
blue, respectively. ZnT3Y372 and ZnT4Y355 and 413 share a conserved YXXE sequence. NT denotes not tested. B) HEK293 cells were transiently
transfected with plasmids encoding myc-tagged versions of human ZnT1, 3, 4, 5 and 7. Cell extracts were analyzed by immunoblot with myc
antibodies. All zinc transporters tested, except ZnT7 showed covalently modified species resistant to SDS and reducing agents in the presence of
H2O2. C) HEK293 cells transiently transfected with myc-tagged versions of wild type ZnT4 and Y355F, Y404F and Y413F mutants were incubated with
the indicated concentrations of H2O2 during 30 min. Samples were analyzed by western blots with myc and SUMO2/3 antibodies. All three ZnT4
tyrosine mediated covalent tyrosine dimers.
doi:10.1371/journal.pone.0005896.g007
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with increased dimer formation, enhanced ZnT3 targeting to

SLMVs and cell protection to zinc toxicity. In contrast, mutation

of Y372 induced a ‘‘loss-of-function’’ phenotype, with reduced

dimerization, decrease SLMV targeting, impaired zinc transport

into vesicle compartments and decrease protection to zinc toxicity.

Until now, dimerization of polytopic transmembrane proteins

has been shown to occur by covalent and non-covalent interaction

mainly through transmembrane domains. Covalent cysteine-based

dimer formation has been extensively described for neurotrans-

mitter transporters, such as the dopamine transporter, DAT [55]

and the glycine transporter [56] as well as receptors [57]. The fact

that dimeric forms of ZnT3 were resistant to reducing agents and

increased in response to oxidative stress, lead us to investigate

tyrosine-mediated dimerization. Since its discovery in 1959,

dityrosine formation has been described as a post-translational

modification related with cellular stress and disease [48].

Dityrosine modifications are produced in response to oxidative

stress, aging [16], UV and c irradiation [17]. Increased levels of

dityrosine have been found in atheromatous plates [18], cataracts

[16], acute inflammation, systemic bacterial infection [19] and

recently associated with a-synuclein fibrillogenesis [20] and Ab
amyloid oligomerization [21]. Di-tyrosine formation as a normal

post-translational modification has been described only in a

limited group of structural proteins of the bacteria cell wall and

insect ligaments [12], and in proteins of the extracellular matrix as

collagen [13] and elastin [11]. Here we show tyrosine dimerization

in a polytopic transmembrane protein, mediated by tyrosine

residues in the carboxy terminal domain. In contrast to the

described damage connotation and structural roles of dityrosine

bonds, ZnT3 tyrosine modification presents a new functional

paradigm for dityrosine bonds as regulators of both subcellular

localization and metal transport activity. This ZnT3 post-

translational modification occurs spontaneously and it is regulated

by oxidative stress.

PC12 cells expressing wild type human ZnT3 and tyrosine

mutants incubated with H2O2 enabled us to identify tyrosine 372

as a major residue mediating ZnT3 dimerization (Fig. 3). ZnT3

dimers formed between Y330-Y330, Y357-Y357 or Y330-Y357

are likely less abundant (Fig. 9, dotted line in Y372F mutant).

Moreover, double mutants Y330F, Y357F containing an intact

Y372, shows reduce dimerization. This indicates that Y372

formed dimers with Y330 or Y357 but not Y372-Y372 dimers

(Fig. 9, Y300, 357F). Additionally, double mutant Y357F, Y372F,

expressing an intact Y330 also shows reduce dimerization

indicating that dimers Y330-Y330 are poorly represented (Fig. 9

Y357, 372F). The fact that no detectable phenotype was observed

in Y330 mutant indicates that dimerization between Y372 and

Y357 is the predominant state of ZnT3 dimers at steady state

(Fig. 9 wild type).

Interestingly, the gain-of-function phenotype obtained by

mutagenesis of tyrosine 357 in human ZnT3 indicates that

tyrosine 357 might regulate the availability or proximity of Y330

and Y372 for dimer formation. Tyrosine residues involved in

dityrosine bond formation or those adjacent could be subject to

tyrosine post-translational modifications that could modulate

dimerization and function of membrane proteins. For example

NetPhos 2.0 (Technical University of Denmark) predicts that

tyrosine 357 in human ZnT3, possesses a high probability for

being a phosphate acceptor (0.633). Additionally, nitrosylation of

tyrosines, a mofidication induced by oxidative stress, could

modulate dityrosine bond formation of zinc transporters. These

posttranslational events could affect tyrosine-dependent covalent

dimerization, zinc transport, and cell response to metal challenges.

Zinc transport capacity is modulated by the dimeric state of

ZnT3. Two lines of evidence lead us to conclude that dimers or

higher oligomeric forms are the likely ZnT3 functional states. First,

we observed a correlation between zinc transport into vesicle

compartments and dimerization when comparing mouse and

human ZnT3. The mouse ZnT3 fails to transport zinc into vesicle

compartments as previously reported [23,40]. In contrast, zinc

transport capacity was 2.4 times higher in human ZnT3. Human

ZnT3 forms dimers in response to H2O2, while the mouse

transporter was almost insensitive. Moreover, we observed a

significant zinquin staining in cells expressing ZnT4 and 5 but not

ZnT7 (Fig. 5A). ZnT4 and ZnT5 form covalent oligomeric species

in response to oxidative stress but not ZnT7 (Fig. 7B). Second,

zinquin staining was lost in cells expressing the ‘‘loss-of-function’’

Y372F mutant (Fig. 5 C and D). Interestingly, zinc transport was

not increased in the gain of function ZnT3Y357F mutant in assays

that acutely assess zinc transport capacity (,1 hour; Fig. 5 C and

Figure 9. Model of ZnT3 dimer formation deduced from single and double tyrosine mutations. ZnT3 carboxy-terminal domains of two
adjacent ZnT3 molecules are depicted by two vertical parallel black lines. Tyrosine residues and their position are illustrated in black circles. Lines
connecting black circles depict covalent tyrosine bonds. Single and double mutant indicate that the predominant dimer is formed between Y372-
Y357. Sorting to SLMVs and zinc transport was evaluated in the gain-of-function ZnT3Y357F and the loss-of-function ZnT3Y372F mutants. Increased
dimerization of the ZnT3Y357F mutant increased its targeting to SLMVs without affecting its zinc transport capacity, measured by zinquin staining,
but increase resistance to zinc toxicity. In contrast, mutation of Y372 decreases SLMV sorting, completely prevents zinc transport and increase cell
toxicity to zinc. +/2 denotes reduce respect to wild type and ND experiment not done.
doi:10.1371/journal.pone.0005896.g009
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D), but became evident as a small yet significant increase in assays

that explored sustained zinc transport capacity required to evade

zinc toxicity (,24 hours, Fig. 5E). In contrast, the loss-of-function

ZnT3Y372F mutant increases cell death induced by zinc.

Although, the mechanism is unknown, one possibility is that

ZnT3Y372F may act as dominant negative mutant over

endogenous zinc transporters leading to an unbalance of zinc

homeostasis.

We described tyrosine mediated dimerization in two member of

the SLC30A family, ZnT3 and ZnT4. Considering the distribution

of charged residues surrounding ZnT3 and ZnT4 tyrosines, we

propose that a putative motif YXXE is at least one of the primary

sequences involved in dityrosine bond formation in ZnT family

members. Whether this motif could be expanded to YXX[D/E] or

to YXE remains unknown, yet these primary structure arrange-

ments would encompass ZnT2 and ZnT1 as candidates for

dityrosine bonding, respectively (Fig. 7A). The generality of a

YXXE motif, whether this motif is an obligated component in

dityrosine bond formation, or whether there are multiple sequences

that could mediate dityrosine bond formation requires further

testing in other membrane proteins.

Primary sequence determinants are not the only factors defining

dityrosine-mediated dimerization. Differences in oligomerization

and zinc transport capacity exhibited by the mouse and human

ZnT3 orthologs pointed to a role of the amino terminal domain

modulating dityrosine dimerization. Human ZnT3 amino terminal

confers an enhanced capacity to respond to oxidative stress induced-

oligomerization to mouse ZnT3. In contrast, mouse amino terminal

confers an attenuated response to oxidative stress to the human

transporter. These observations suggest species differences in

biological mechanisms that depend on synaptic vesicle zinc content.

In conclusion we identified tyrosine dimerization as a new

redox-sensitive post-translational modification in the SLC30A

family of zinc transporters. Moreover, we demonstrate that

dimers/oligomers are likely a functional intermediary in ZnT3

zinc transport. This mechanism uncovers new avenues of zinc

homeostasis regulation by oxidative stress shared by several

members of the SLC30A family. Elucidation of such mechanism

will help us to understand the role of zinc and zinc transporters in

pathologic conditions such as neurodegenerative diseases and

diabetes, in which zinc transporters are thought to be involved.

Supporting Information

Figure S1 Covalently modified ZnT3 is not sumoylated. PC12

cells non-transfected (mock) or transfected with HA-tagged versions

of SUMO1, SUMO2 or SUMO3 were incubated without (A) or

with H2O2 or MG132 (B). Triton-X100 soluble supernatant (500

ÎJg) were immunoprecipitated with HA antibodies and immuno-

complexes analyzed by immunoblot with antibodies against either

the HA epitope present in recombinant SUMO or myc engineered

in ZnT3. HA immunoprecipitation did not isolated ZnT3 dimers or

high molecular weight species under any condition. Unspecific

binding of ZnT3 to HA-coated beads was detected in untransfected

mock extracts (Fig. 3B lane 3). Input 2%.

Found at: doi:10.1371/journal.pone.0005896.s001 (3.78 MB TIF)
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