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Abstract Interest in anthocyanin-pigmented potato tuber
Xesh is increasing. To genetically map and characterize loci
that inXuence this trait, diploid potato clone 10618-01,
which has partially pigmented Xesh, was crossed with dip-
loid 320-02, which has white Xesh. Almost all progeny
exhibited purple coloration in the Xesh, with some clones
having only a small percentage of tissue pigmented, other
clones having most tissue pigmented, and the majority of
clones showing intermediate color phenotypes. The two
parents and 228 progeny were genotyped with 493 AFLP, 8
CAPS, and 13 SSR markers. QTLs inXuencing extent of
Xesh pigmentation were detected on chromosomes 5, 8, and
9. The potato homolog of Petunia an1, a basic helix-loop-
helix (bHLH) transcriptional regulator of anthocyanin
biosynthesis, was found to co-localize with the QTL on
chromosome 9. A CAPS marker based on this gene was
used to evaluate a collection of 21 tetraploid potato clones
with highly or fully pigmented red or purple Xesh, as well
as 53 cultivars with white or yellow Xesh. All 21 pigmented-
Xesh clones shared a marker allele that was present in only 21
of the 53 white and yellow clones, suggesting that a common
bHLH allele contributes toward, although it is clearly not
suYcient for, highly or fully pigmented tuber Xesh in
cultivated potato.

Introduction

Consumer interest in potatoes with red or purple Xesh has
been increasing over the past decade, in part because of
novel appearance, and in part because of the perceived ben-
eWts of higher antioxidant content (Tsuda et al. 2000; Ross
and Kasum 2002; Brown et al. 2003, 2005, 2007; Scalbert
et al. 2005). Red and purple tuber Xesh color results from
the accumulation of anthocyanin pigments (Lewis et al.
1998; Rodriguez-Saona et al. 1998; Naito et al. 1998;
Eichhorn and Winterhalter 2005).

Pigmented tuber Xesh is conferred by the Pf locus
(De Jong 1987). Pf is tightly linked with I, which is required
for pigmentation of tuber skin and maps to chromosome 10
(De Jong 1987; Dodds and Long 1955; van Eck et al. 1994).
The I locus is also known as D in tetraploid potatoes (Salaman
1910). Pf alone is not suYcient for tuber Xesh to be com-
pletely pigmented; potatoes with this gene may exhibit a
small, intermediate, or large degree of Xesh coloration. In
many plants, tissue-speciWc accumulation of anthocyanins is
mediated by R2R3MYB genes and/or bHLH regulators
(Cone et al. 1986; Ludwig et al. 1989; Ludwig and Wessler
1990; Quattrocchio et al. 1998, 1999; Selinger et al. 1998).
The potato ortholog of Petunia an2, an R2R3MYB regulator
of anthocyanin production, maps to the same region of the
genome as Pf and I (De Jong et al. 2004).

Several other potato genes are also known to inXuence
potato color. The R locus, which co-segregates with
dihydroXavonol 4-reductase (De Jong et al. 2003), is
required for the production of red anthocyanins, while the
P locus, which codes for Xavonoid 3�,5�-hydroxylase (Jung
et al. 2005), is required for production of purple pigments.

Several recent studies have reported on potential health
beneWts of consuming potatoes with anthocyanin-pigmented
Xesh. For example, rats fed with purple potato Xakes have
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signiWcantly higher serum antioxidant potential and hepatic
Cu/Zn-superoxide dismutase in the liver (Han et al. 2006).
Potato anthocyanin may also help combat both prostate
cancer (Reddivari et al. 2007) and breast cancer (Thompson
et al. 2009). To more eYciently manipulate tuber Xesh
color in our applied breeding program, we would like to
better understand the genetic basis for Xesh pigmentation.
Toward this end, we constructed a diploid population that
segregates for degree of tuber Xesh coloration, and report
here on a QTL analysis of the pigmented Xesh trait, as well
as a follow-up marker analysis of tetraploid potato cultivars
with and without pigmented tuber Xesh.

Materials and methods

Plant materials

Diploid potato clone 10618-01, which has purple, partially
pigmented tuber Xesh, was crossed as a female with white-
Xeshed diploid 320-02 to form an F1 mapping population
consisting of 228 clones. Both diploid parents were kindly
provided by H. De Jong (AAFC, Fredericton, NB). WIS
clones with pigmented tuber Xesh were kindly provided by
S. Janksy (USDA-ARS, Madison, WI). POR04PG01-2 was
kindly provided by C. Brown (USDA-ARS, Prosser, WA).
NY clones were provided by the Cornell University potato
breeding program.

Phenotyping

The extent of tuber Xesh coloration was evaluated with
tubers produced in the greenhouse. Each clone was grown
in two pots, and the largest tuber from each pot was scored.
The average score of the two tubers was used for QTL anal-
ysis. All 228 progeny, as well as both parents, were geno-
typed. After genotyping, two daughter clones appeared to
be identical; one of the two was excluded from subsequent
analysis. Thirteen of the remaining 227 clones did not
tuberize well or died in 2006, and were not included in any
QTL analyses. A further 15 clones did not tuberize well or

Table 1 CAPS markers developed in this study

Marker Approx. 
product size (bp)

Restriction 
enzyme

Chromosome Primer sequences

21BA 470/400 None 10 F: GTGATTATGTCATCCAAAAGTTTATAG
R: GAATTTCTGAGGTTGAGGTCTTA

ans 700 HaeIII 8 F: TATTGCTTGTACTTCTATTTTTCGAGATAG
R: CTTGGCATATTCACTTGTTGCT

bch6 400 BcrI 6 F: AACAACCTCACATGTTTCTCCAA
R: CAAATGTACCCAACATTTCGGTTA

chi 800 MseI 5 F: ATAGAGGTTTGGAGATTGAAGG
R: ACTACACTTTGCTGCAGGGGA

chs 1600 AluI 5 F: GCGACTCCTTCGAACTGTG
R: TGAAGTTTTTCGGGCTTTAGGC

CT203 760 AluI 10 F: AGTGACGATGATGACAGAGGAGAA
R: AAATGGACTAAAGCATATAGCCGG

GP24 900 AluI 6 F: CTGCAGTCAAGGGATACATTT
R: GCGTCTCTGCAATCTATTTCT

jaf13 1480 RsaI 8 F: GAAGATCCTAACCTCATTCAGCAAATAAAA
R: GTTGCTTAAAATTATGGAGGCACTGA

Stan1 1600 TaqI 9 F: CGGCCCTAGTTATGATGAATTATCACA
R: ACCTCCACTTTAAGTTCCCTTAGC

UGPase 600 RsaI 11 F: CACCTTGACTGATGAGGGCTAT
R: TGGCACCAGCAGCTACTCTA

zep 1000 BfuCI 2 F: AGAGGGATTTAAGTGCTATCAGAG
R: CCAGTATAACAAGTGTAGCCAGAG

Fig. 1 Distribution of Xesh color phenotypes observed in 2006 in the
F1 progeny of a cross between diploid clones 10618-01 and 320-02
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died in 2007, and were not used for QTL analyses that year.
Flesh coloration was scored on an arbitrary 1–10 scale
(1 = no Xesh pigmentation, 10 = almost completely pig-
mented), where the distribution of pigment was assessed in
equatorial cross sections of mature tubers. Flesh coloration
was scored in both 2006 and 2007.

Marker analysis

Genomic DNA was extracted from plants grown in the
greenhouse using a Qiagen DNA kit, following the manu-
facturer’s instructions. AFLP markers were generated with
14 Pst+2/Mse+3 and 10 Eco+2/Mse+3 AFLP primer com-
binations according to Vos et al. (1995), using 33P-labeled
PstI or EcoR1 primers. AFLP ampliWcation products were
separated on a 5% denaturing polyacrylamide gel. Sizes of
ampliWcation products were estimated by comparison to a
Sequamark 10 base ladder (Research Genetics, Huntsville,
AL). Images were visualized by exposing Wlm against
dried acrylamide sequencing gels. Eight CAPS markers
(Konieczny and Ausubel 1993) (SbeII—Chen et al. 2001;
F35H-4F/4R—Jung et al. 2005; 21BA, bch6, CT203,
GP24, UGPase, and zep are described in Table 1) and
13 polymorphic SSR markers of known chromosomal
location (STM0003, STM1104, STM1106, STM1053,
STM2020, STM2022, STM3009, STM3010, STM3016,
StI011, StI014, StI041, and StI049) (Milbourne et al.
1998; Feingold et al. 2005) were used to identify chromo-
somes.

Mapping

Marker data were analyzed with JoinMap 3.0 (Van Ooijen
and Voorrips 2001). Linkage groups were assembled using
the Kosambi function (Kosambi 1943). Twenty-two link-
age groups were assembled at LOD thresholds of eight or
greater. Chromosomes 2 and 7 of female parent 10618-01
were assembled at LOD 6 and LOD 5, respectively. Each
linkage group was labeled with at least one anchor marker
of known location.

QTL analysis

QTL analysis was performed with the program MapQTL 5
(Van Ooijen 2004). Two analysis models (Kruskal–Wallis
and Interval Mapping) were used. A LOD threshold of 2.85
for declaring signiWcance (P < 0.05) for interval mapping
was established by empirically permuting the data 1000
times. Linkage map and QTL locations were visualized
using MapChart 2.1 (Voorrips 2002). QTL analysis was
repeated with phenotypic data from 2006 and 2007.

Association of QTLs with anthocyanin pathway genes

CAPS markers were designed against Wve potato anthocya-
nin pathway genes (ans, Stan1, chi, chs, jaf13; Table 1).
For each CAPS marker, genomic DNA was ampliWed using
the following thermal proWle: 94°C for 2 min, then 35
cycles of [94°C, 20 s; 72°C, 60 s; 56°C, 30 s]. PCR prod-
ucts were digested with the corresponding restriction
enzyme for 3 h, then visualized on a 2% agarose gel.

Results

The progeny of a cross between diploid 10618-01, which
has purple skin and partially colored (purple and white)
tuber Xesh, and diploid 320-02, which has red skin and
white Xesh, segregated extensively for extent of purple
color in tuber Xesh. After harvest in 2006, the Xesh of 11
progeny did not appear to be pigmented at all, the Xesh of
10 progeny were heavily pigmented, while the remaining
193 progeny displayed intermediate degrees of purple Xesh
coloration (Fig. 1). All progeny had purple tuber skin. The
extent of tuber Xesh coloration was scored on a 1–10 scale
(Fig. 1).

To identify loci inXuencing extent of Xesh coloration,
the progeny and both parents were evaluated with 514
molecular markers including 493 AFLP, 13 SSR, and 8
CAPS markers. Analysis with JoinMap 3.0 readily sepa-
rated markers into 12 maternal and 12 paternal linkage

Table 2 QTLs detected by 
Kruskal–Wallis (KW) and 
Interval Mapping (IM) using 
phenotype data from 2006

QTL model Parent QTL parameters

Chromosome Markera SigniWcance value Percent variation (r2)

KW 10618-01 9 E32M48-233 0.0001 N/A

5 E32M49-442 0.001 N/A

320-02 8 P14M37-134 0.0005 N/A

5 E35M54-162 0.001 N/A

IM 10618-01 9 E32M48-233 LOD 3.6 8.1

5 E32M49-442 LOD 3.6 8.1

320-02 8 P14M37-134 LOD 2.9 6.5

5 E35M54-162 LOD 3.7 8.1
a Marker with highest 
signiWcance score
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groups. A total of 496 markers could be placed in linkage
groups with a LOD score of 5 or higher. The map of
10618-01 totaled 753 cM in length and comprised 212
markers, while the map of 320-02 totaled 907 cM in length
and was made up of 284 markers. All 24 linkage groups
included at least one anchor marker of known chromo-
somal location.

Marker and year 2006 trait data were then analyzed
using both nonparametric (Kruskal–Wallis) and parametric
(interval mapping) approaches. Kruskal–Wallis analysis

revealed signiWcant (P < 0.001) loci on chromosome 5 of
both parents: for 10618–01, at AFLP marker E32M49-442,
and for 320–02, at marker E53M54-162 (Table 2). In addi-
tion, highly signiWcant loci were detected on chromosome 8
of 320-02 at marker P14M37-134 (P < 0.0005) and on
chromosome 9 of 10618-01 at marker E32M48-233
(P < 0.0001) (Table 2). QTLs at comparable locations were
identiWed by interval mapping (Fig. 2, Table 2). The same
loci were detected when phenotypic data for year 2007 was
analyzed separately. Tuber pigmentation scores were not

Fig. 2 Location of QTLs that 
inXuenced extent of tuber Xesh 
coloration in 2006. Map loca-
tions for anthocyanin-related 
genes chi, chs, and Stan1 are 
also shown
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identical in 2006 and 2007, but were highly correlated
(r2 = 0.61). Two additional loci were detected only in 2007,
on chromosome 8 of 10618-01 at marker E32M48-318
(LOD 3.1) and chromosome 3 of 320-02 at marker
E39M50-249 (also with LOD 3.1) (data not shown).

We subsequently tested whether any known anthocyanin
biosynthetic or regulatory genes co-localize with these
QTLs. Potato chromosome 5 is known to code for at least
two anthocyanin biosynthesis genes, chalcone isomerase
(chi) and chalcone synthase (chs); chromosome 8 is known
to harbor a basic helix-loop-helix (bHLH) anthocyanin reg-
ulatory gene (homolog of Petunia jaf13), as well as antho-
cyanidin synthase (ans); and chromosome 9 is known to
code for a bHLH gene homologous to petunia anthocyanin
1 (an1) (Spelt et al. 2000; De Jong et al. 2004). CAPS
markers were developed for all these genes (Table 1). Two
of the Wve genes mapped under QTLs detected in 10618-
01: chi on chromosome 5 and Stan1, the potato homolog of
an1, on chromosome 9 (Fig. 2). Stan1 explained more phe-
notypic variation—11%—than AFLP marker E32M48-
233, which explained 8.1% (Table 2). The relationship
between the potato homologs of jaf13 and ans with the
QTL on chromosome 8 could not be evaluated, as neither
CAPS marker was polymorphic in 320-02. The Wfth gene,
chs, mapped far from the QTL on chromosome 5 of 10618-
01 (Fig. 2).

CAPS markers based on ans, chi, Stan1, and jaf13 were
tested for possible relationship with pigmented Xesh in a
panel of diverse potato germplasm consisting of 21 tetra-
ploid potato clones with red or purple Xesh and 53 clones
with white or yellow tuber Xesh. The Stan1 CAPS marker
revealed a common digestion product, about 980 bp in size,
in all 21 of the clones with pigmented Xesh (Fig. 3 and
Table 3). This same digestion product was present in only

21 of 53 white- and yellow-Xeshed clones (Fig. 3 and
Table 3), suggesting that a common bHLH allele contrib-
utes toward, but is not suYcient, for the ability to accumu-
late anthocyanin in potato tuber Xesh. No association with
Xesh color was observed with CAPS markers based on
jaf13, ans or chi in the same panel.

Discussion

This study detected loci on three chromosomes—5, 8, and
9—that mediate degree of tuber Xesh pigmentation. Alleles
inXuencing this trait descended from both the white- and
purple-Xeshed parents, with the white-Xeshed parent
contributing alleles from chromosome 5 and 8, and the
purple-Xeshed parent contributing alleles from chromosomes 5
and 9.

The only locus that has previously been implicated in
pigmentation of tuber Xesh, Pf, is presumably located on
chromosome 10, as Pf is tightly linked to I (De Jong 1987),
and I has been mapped to chromosome 10 (Van Eck et al.
1994). If Pf segregated in this cross, we would have
expected half the progeny to exhibit white Xesh. Instead,
only 11 of 214 progeny had unpigmented Xesh, suggesting
that 10618-01 is homozygous for Pf, and that Pf is neces-
sary, but not suYcient, for anthocyanin-pigmented tuber
Xesh. No polymorphic markers from chromosome 10 segre-
gated aberrantly, so Pf must have been transmitted to either
half or all progeny. As tuber skin color did not segregate in
this cross—all progeny had purple-skinned tubers—the
genes required for anthocyanin production per se were
present in all progeny. Thus, the relatively few white-
Xeshed progeny must have been white for a reason other
than lacking a necessary biosynthetic gene.

Fig. 3 Association between 
colored tuber Xesh and a CAPS 
marker allele based on the potato 
homolog of Petunia an1. Geno-
mic DNA was ampliWed with 
Stan1 primers (Table 1), restrict-
ed with Taq I, and electrophore-
sed through a 2% agarose gel. 
An arrow denotes the approxi-
mately 980 bp band present in 
all clones tested with red or 
purple tuber Xesh
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Although the genes underpinning Xesh coloration QTLs
were not conclusively established in this study, two promis-
ing candidates—chi (for a QTL on chromosome 5) and a
bHLH transcription factor similar to Petunia an1 (for a
QTL on chromosome 9)—were identiWed. Both of these
genes mapped close to, or under, the peak of the respective
QTLs. It is not obvious how chi, an anthocyanin biosyn-
thetic gene, might inXuence degree of Xesh pigmentation;
perhaps this gene exhibits functional variation in its pro-
moter region, leading to diVerences in the range of tissues
in which it can be expressed. That the potato homolog of
Petunia an1 may play a role in tissue-speciWc expression
was not surprising, as bHLH regulators of anthocyanin bio-
synthesis, such as delila in Antirrhinum majus (Goodrich
et al. 1992), B in Zea mays (Selinger et al. 1998), ivs in
Ipomoea tricolor (Park et al. 2004), tt8 of Arabidopsis
thaliana (Nesi et al. 2000; Baudry et al. 2006), the rice
Purple leaf (Pl) locus (Sakamoto et al. 2001), and the rice

Table 3 Presence/absence of t980 bp Stan1 marker allele in a panel
of potato clones with and without anthocyanin-pigmented tuber Xesh

Potato clone Flesh 
color

Stan1 980 bp 
fragment present 
(1 = yes, 0 = no)

Adirondack Blue Purple 1

Adirondack Red Red 1

All Red Red 1

Huckleberry Red 1

Magic Molly Purple 1

NYH52-1 Purple 1

NYS48-6 Purple 1

NYY3-8 Red 1

NYY4-1 Red 1

POR04PG01-2 Purple 1

Purple Peruvian Purple 1

Purple Valley Purple 1

River John Blue Purple 1

WIS00-4252-1 Purple 1

WIS01-1131-1 Purple 1

WIS01-1131-5 Red 1

WIS06-3124 Purple 1

WIS06-30155 Purple 1

WIS06-30244 Purple 1

WIS06-30340 Purple 1

WIS99-2743 Purple 1

Allegany White 0

Amandine Yellow 1

Andover White 0

Atlantic White 0

Austrian Crescent Yellow 1

Bake King White 1

Bintje Yellow 1

Carola Yellow 0

Chieftain White 0

Chippewa White 0

Cynthia Yellow 0

Desiree Yellow 1

Eva White 0

German Butterball Yellow 1

Idarose White 1

Katahdin White 0

Kennebec White 0

Keuka Gold Yellow 1

La Rouge White 0

Lehigh Yellow 0

Lenape White 0

Monona White 0

Nordonna White 1

Norland White 1

NY97 White 1

Table 3 continued

Potato clone Flesh 
color

Stan1 980 bp 
fragment present 
(1 = yes, 0 = no)

NY99 White 0

NY115 White 0

NY118 White 1

NY120 White 1

NY121 White 0

NY123 White 0

NY127 White 0

NY128 White 0

NY129 White 0

NY130 White 0

NY132 White 0

NYT15-1 White 0

Pike White 0

Prince Hairy White 1

Reba White 0

Red La Soda White 0

Redsen White 1

Rideau White 1

Rosa White 0

Salem White 0

Sandy Yellow 0

Serrana Inta Yellow 1

Snowden White 0

Stirling White 1

Superior White 1

Sylvia Yellow 0

Yagana Yellow 1

Yukon Gold Yellow 1
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red grain locus Rc (Sweeney et al. 2006) are all known to
mediate tissue-speciWc expression of anthocyanins.

Further evidence that the potato homolog of Petunia an1
(or a gene tightly linked to it) is associated with pigmented
tuber Xesh came from a comparison of varieties with and
without pigmented Xesh. All 21 pigmented Xesh clones
tested to date share an approximately 980 bp Stan1 CAPS
marker allele. Eight of the pigmented Xesh clones evaluated
were developed in Wisconsin (WIS clones), six were devel-
oped in New York (NY and Adirondack clones), one was
developed in Alaska (Magic Molly), one was developed in
Washington (POR clone), one was developed in Korea
(Purple Valley), and the remaining four are of unknown
origin. Though potato clones that accumulate anthocyanin
in tuber Xesh are not uncommon in Andean landraces, this
trait has generally been selected against in modern potato
breeding, just as pigmented kernels were selected against in
maize (Johannessen et al. 1970) and pigmented grains were
selected against in rice (Sweeney et al. 2007). Nevertheless,
as understanding of the potential health beneWts conferred
by anthocyanins has increased over the past decade, interest
in consuming anthocyanin-rich plant tissues has also
increased dramatically. Markers based on Stan1 may thus
prove useful for those seeking to more eYciently manipu-
late the nutritionally important trait of pigmented tuber
Xesh in applied potato breeding programs.
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