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Although the reticulospinal tract is a major descending motor pathway in mammals, its contribution to upper limb control in primates
has received relatively little attention. Reticulospinal connections are widely assumed to be responsible for coordinated gross movements
primarily of proximal muscles, whereas the corticospinal tract mediates fine movements, particularly of the hand. In this study, we used
intracellular recording in anesthetized monkeys to examine the synaptic connections between the reticulospinal tract and antidromically
identified cervical ventral horn motoneurons, focusing in particular on motoneurons projecting distally to wrist and digit muscles. We
found that motoneurons receive monosynaptic and disynaptic reticulospinal inputs, including monosynaptic excitatory connections to
motoneurons that innervate intrinsic hand muscles, a connection not previously known to exist. We show that excitatory reticulomo-
toneuronal connections are as common and as strong in hand motoneuron groups as in forearm or upper arm motoneurons. These data
suggest that the primate reticulospinal system may form a parallel pathway to distal muscles, alongside the corticospinal tract. Reticu-
lospinal neurons are therefore in a position to influence upper limb muscle activity after damage to the corticospinal system as may occur
in stroke or spinal cord injury, and may be a target site for therapeutic interventions.

Introduction
The reticulospinal tract is a major descending pathway by which
the brain controls spinal motor output in all vertebrates. Studies
in cat, rodents, and lamprey have established that its functions
include locomotor control (Grillner et al., 1997; Mori et al.,
2001), postural and gait adjustments during locomotion (Or-
lovskiı̆, 1970; Drew et al., 1986; Mori, 1987; Prentice and Drew,
2001; Schepens and Drew, 2004), and contributing to posture
and movement during targeted reaching (Schepens and Drew,
2004, 2006, Davidson and Buford, 2004). In primates, corticospi-
nal pathways are the focus of most study. Their importance in
man is highlighted by the impairments following stroke. The
prevailing view is that the reticulospinal and other medial de-
scending systems control coordinated whole-body postural and
orienting movements, while the phylogenetically younger corti-
cospinal tract fractionates movements of individual limbs
(Kuypers, 1981). The corticospinal tract is especially well devel-
oped in primates and is thought to be critically important for
dexterous hand and finger movements (Lawrence and Kuypers,
1968a; Porter and Lemon, 1993).

Consistent with this idea, within the spinal cord reticu-
lospinal terminals are distributed mainly among intermediate

zone interneurons, or medial motoneurons innervating axial
and proximal limb muscles (Kuypers, 1981; Holstege and
Kuypers, 1982, 1987; Jones and Yang, 1985; Martin et al.,
1985). In cats, reticulospinal axons make monosynaptic exci-
tatory and disynaptic excitatory and/or inhibitory connec-
tions with limb motoneurons (Grillner et al., 1968; Jankowska
et al., 1968; Lund and Pompeiano, 1968; Wilson and Yoshida,
1969; Shapovalov and Gurevitch, 1970; Peterson et al., 1979;
Takakusaki et al., 2001). The single intracellular study of pri-
mate reticulospinal tract (Shapovalov, 1972) identified mono-
synaptic excitation in proximal, but not distal, hindlimb mo-
toneurons. Microstimulation experiments also emphasize
responses in proximal muscles (Perreault et al., 1994), al-
though recent studies in monkey did find reticulospinal effects
as far distal as the wrist (Davidson and Buford, 2004, 2006).

Here we made intracellular recordings from antidromically
identified cervical spinal motoneurons to examine the actions of
reticulospinal fibers in macaque monkeys. We stimulated de-
scending fibers in the region of the medial longitudinal fasciculus
(MLF) of the medulla, a location where many descending reticu-
lospinal axons can be activated (Jankowska et al., 2003; Edgley et
al., 2004). While it is known that fibers of the medial vestibulospi-
nal (Nyberg-Hansen, 1964; Wilson et al., 1968) and tectospinal
tracts (Kuypers, 1981) also descend in this region, we believe that
our data are most consistent with the activation of the reticu-
lospinal system (see Discussion).

Our results show that significant numbers of motoneurons
projecting throughout the upper limb receive short latency syn-
aptic input from the reticulospinal tract. This includes monosyn-
aptic connections to motoneurons projecting to hand muscles,
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indicating that the reticulospinal system can influence the control
of finger movements.

Materials and Methods
General. All animal procedures were performed under UK Home Office
regulations in accordance with the Animals (Scientific Procedures) Act,
1986, and were approved by the Local Research Ethics Committee of
Newcastle University. Recordings were made from three terminally anes-
thetized adult rhesus macaque monkeys (M. mulatta; 2 female; monkeys
A, B, and F).

Surgical preparation. All procedures were performed in a nonrecovery
setting. Deep anesthesia was induced using sevoflurane (3–5% in 100%
O2). After tracheal intubation, a carotid artery and external jugular vein
were cannulated. Flexible bipolar stimulating nerve cuffs were implanted
around the following nerves of the right arm: the radial nerve just below
the shoulder (supplying extensor muscles of the proximal arm, forearm,
and digits), the deep radial nerve at the elbow (supplying forearm and
digit extensors), the median and the ulnar nerve at the elbow (supplying
forearm flexors and intrinsic hand muscles), the median and the ulnar
nerves at the wrist (supplying intrinsic hand muscles). A laminectomy
was performed exposing cervical spinal segments C5-T1. The anesthetic
regimen was then switched to an intravenous infusion of propofol (5–14
mg � kg �1 � h �1) and alfentanil (7–23 �g � kg�1 � h�1). The vertebral
column was clamped at high thoracic and midlumbar levels. The head
was fixed stereotaxically and angled to produce 60° neck flexion. A tung-
sten stimulating electrode (LF501G, Microprobe), insulated except for its
tip, was implanted in the left medullary pyramidal tract (PT) using a
double angle stereotaxic technique (Soteropoulos and Baker 2006). Cor-
rect location was verified using antidromic volleys evoked in the motor
cortex following stimulation through the electrode, and orthodromic
spinal volleys. The indifferent was a silver wire electrode inserted under
the scalp.

A second tungsten stimulating electrode was implanted in the right
medial longitudinal fasciculus (MLF) in the upper medulla to allow stim-
ulation of the reticulospinal tract. This again used the double angle tech-
nique, targeting stereotaxic coordinates AP0, R0.5, DV0. Electrode posi-
tioning was guided by recording descending volleys evoked by
stimulation through the electrode in the spinal cord. The indifferent was
another silver wire electrode inserted under the scalp. The low thresholds
to evoke a spinal volley from the MLF electrode (25–35 �A at the site
where the electrode was finally fixed in place) suggested involvement of
axons close to the electrode tip.

At the end of the experiments, anesthesia was increased to a lethal level
(60 mg � kg �1 pentobarbitone intraperitoneal, or anesthetic regimen de-
scribed above) and the animals were perfused through the heart with PBS
followed by 4% paraformaldehyde. Brains were removed and, after cryo-
protection in sucrose (30%), sectioned at 75 �m on a microtome. Sec-
tions were mounted and stained with cresyl violet before reconstruction
of the location of stimulating electrode tips. Example sections are shown
in Figure 1 A–D.

To ensure that the MLF electrode did not activate corticospinal fibers,
occlusion tests were performed. Spinal volleys evoked by stimuli (300
�A) delivered through the PT and MLF electrodes were recorded both
independently and in combination with a variable delay (300 – 600 �s)
between the stimuli. Off-line, averaged volleys were examined for evi-
dence of occlusion in the volleys evoked by combined stimuli, which
would occur if both stimuli activated the same axon. Occlusion was not
seen; an example is illustrated in Figure 1 E–G. Stimuli delivered sepa-
rately through PT and MLF electrodes elicited large, clear volley re-
sponses in the cervical spinal cord (Fig. 1 E, F ). When both stimuli were
delivered together (400 �s delay, MLF first), a larger volley was recorded
which matched almost exactly the arithmetic sum of the individual vol-
leys (Fig. 1G). The close match strongly implies that the responses were
mediated by independent fiber tracts.

After checking motor thresholds for each implanted nerve cuff, paral-
ysis was induced (atracuronium, 0.7 mg � kg�1 � h�1) and ventilation
commenced. A bilateral pneumothorax was made to minimize respira-
tory movements. A mineral oil pool was constructed to prevent cooling
or desiccation of the exposed cord. Continuous monitoring of a broad

range of physiological parameters (including blood pressure, oxygen sat-
uration, heart rate, end-tidal CO2, and core temperature) ensured deep
anesthesia and physiological stability throughout.

Recordings. Intracellular recordings were made from spinal motoneu-
rons using sharp glass micropipettes (tip impedance 5–25 M�) filled
with 2 M potassium acetate, inserted into the dorsolateral funiculus
through small holes made in the dura and arachnoid. Motoneurons were
antidromically identified from the implanted nerve cuffs (stimuli deliv-
ered at 3� motor threshold) allowing them to be assigned to muscle
groups. Responses were recorded to single stimuli and trains of up to four
stimuli (300 �A biphasic pulses, 0.2 ms per phase, train frequency 300
Hz, 1 Hz repetition rate) applied to the PT and MLF electrodes in turn.
Isolated constant-current stimulators were used to deliver all stimuli. A
silver ball electrode on the cord dorsum close to the electrode penetration
point (C6-Th1 segments) recorded surface volleys simultaneously with
intracellular potentials. Intracellular waveforms were sampled at 25 kHz
(gain 100, 20 Hz to 9 kHz bandpass) via a Power1401 interface (Cam-
bridge Electronic Design) together with epidural waveforms (12.5 kHz
sampling rate, gain 10,000, 10 Hz to 4 kHz bandpass) and stimulus mark-
ers. Onset latencies of small EPSPs were made easier to measure by mem-
brane hyperpolarization (injection of up to 20 nA) if possible.

Analysis. Postsynaptic responses in motoneurons were identified from
superimposed single sweep and averaged records. Segmental latencies
(SLs) of EPSPs were measured from the first inflection of the correspond-
ing epidural volley to the onset of the postsynaptic response. Latencies of
�1 ms were considered to be monosynaptic (Jankowska et al., 2003). In
all cases responses to trains of stimuli were also recorded. Response
amplitudes were measured from the onset to peak of the EPSP.

Results
Reticulospinal tract forms direct and indirect synaptic
connections with cervical spinal motoneurons
In cats and rats, reticulospinal neurons have been shown to make
monosynaptic connections with spinal motoneurons, but there is
no direct information on projections of this type to primate distal
upper limb motoneurons. We found that both monosynaptic
and disynaptic EPSPs were evoked by MLF stimulation in pri-
mate cervical motoneurons. We report here intracellular record-
ings from 140 antidromically identified motoneurons obtained
over three experiments; Table 1 lists the target muscle groups.

An example disynaptic reticulospinal EPSP is shown in Figure
2A–E, from a forearm flexor motoneuron antidromically acti-
vated from the median nerve above the elbow (Fig. 2A), but not
at the wrist. A single MLF stimulus evoked a small EPSP with SL
�1 ms (vertical dashed lines, Fig. 2B) and amplitude �70 �V
(gray shading). A larger EPSP followed the third stimulus of a
train (Fig. 2C) (SL 1.3 ms, amplitude 0.13 mV), and adding a
fourth stimulus further augmented the EPSP (Fig. 2D) (ampli-
tude 0.21 mV, SL 1.5 ms). Segmental latencies �1 ms and tem-
poral facilitation with multiple stimuli are characteristic features
of disynaptic responses. For comparison, Figure 2E shows a
monosynaptic EPSP evoked in this cell by single pulse PT stimu-
lation (SL 0.6 ms). At 0.9 mV (gray shading), the corticospinal
EPSP was 4.3 times larger than the largest disynaptic effect from
the RST.

Figure 2F–J illustrates responses in a different forearm flexor
motoneuron, again antidromically identified as projecting to
forearm flexors (Fig. 2F shows antidromic activation following
stimulation of the median nerve at the elbow; there was no re-
sponse to median nerve at the wrist). In this case there was mono-
synaptic excitation from the MLF: a single MLF stimulus pro-
duced a clear EPSP (Fig. 2G, vertical dashed lines and gray
shading) (SL 0.97 ms, amplitude 0.43 mV). As expected for a
monosynaptic response, each subsequent stimulus of a train
evoked EPSPs of similar shape and amplitude: (Fig. 2H, I). The
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segmental latencies were similar for each stimulus, as were the
shapes of the initial rising phases of the EPSPs. The declining
phases showed differences, most likely due to superimposed di-
synaptic or polysynaptic inhibition. The corresponding mono-
synaptic corticospinal EPSP for this cell is shown in Figure 2 J (SL
0.8 ms). At 1.0 mV, this response was 2.3 times larger than the
reticulospinal EPSP.

Population data are illustrated in Figure 3, for all 140 anti-
dromically identified upper limb motoneurons, divided by mus-
cle group. For all groups tested, the majority of cells responded to
single PT stimuli with monosynaptic EPSPs (Fig. 3A–D). Disyn-
aptic reticulospinal EPSPs were found in between 25 and 76% of
motoneurons. Monosynaptic reticulospinal EPSPs occurred less
frequently: they were seen in none of the 15 radial nerve mo-

Figure 1. Positioning of PT and MLF stimulating electrodes. A–D show histological verification of stimulation sites from one animal. A and C show whole brainstem sections with lesions at the
tips of the MLF and PT electrodes, respectively. XII, Hypoglossal nucleus. The tip positions are visible in B and D, which show the regions marked by boxes from A and C at higher magnification. E–G
show an example of the occlusion test used to aid positioning of MLF stimulating electrodes. All panels show epidural recordings from the dorsal surface of the cervical spinal cord. Brackets enclose
volley responses. Arrows indicate point of stimulus delivery. E, Following a 300 �A stimulus delivered through MLF electrode. F, Following a 300 �A stimulus delivered through PT electrode. G,
Following combined stimulation of PT and MLF with 400 �s separation (MLF first). The red trace shows arithmetic sum of E and F, while the black trace shows the recorded volley. The near perfect
overlay indicates an absence of occlusion, strongly implying that the responses were mediated by independent fiber tracts. Calibrations in E apply to E–G. N values indicate number of stimuli.

Table 1. Target muscle groups innervated by motoneurons recorded in this study

Antidromic from Number recorded (over 3 experiments) Principal muscle groups

Radial nerve in axilla but not radial nerve at the elbow 15 Upper arm extensors (triceps)

Radial nerve in axilla and radial nerve at the elbow 16 Forearm (wrist and digit) extensors

Median nerve at the elbow but not median nerve at the wrist 61 Forearm (wrist and digit) flexors

Median nerve at the elbow and median nerve at the wrist 10 Intrinsic hand muscles: thenar eminence and
lumbricals 1 and 2

Ulnar nerve at the elbow but not ulnar nerve at the wrist 10 Forearm (wrist and digit) flexors

Ulnar nerve at the elbow and ulnar nerve at the wrist 28 Intrinsic hand muscles: interosseous, lumbricals,
and hypothenar eminence
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toneurons that innervated triceps, �10%
of motoneurons that innervated the fore-
arm flexors and extensors, and 26% of in-
trinsic hand muscles. While we required a
segmental latency �1 ms to classify an
EPSP as monosynaptic, these latencies
were slightly shorter for EPSPs following
PT compared with MLF stimuli (mean �
SEM 0.689 � 0.018 ms vs 0.892 � 0.03 ms,
p � 0.001, Mann–Whitney U test). In to-
tal, 48% of the population (67 cells) had
monosynaptic and/or disynaptic excita-
tion evoked by MLF stimulation. Almost
all of these received convergent input from
both corticospinal and reticulospinal
tracts (61/67 cells, 91%). The average
monosynaptic corticospinal EPSP was
more than five times larger than either the
average monosynaptic or disynaptic re-
ticulospinal EPSP. Clear inhibitory effects
without concomitant EPSPs from MLF
stimulation were not observed in any mo-
toneurons, although late hyperpolariza-
tions superimposed on the EPSPs sug-
gest that IPSPs were evoked when trains
of stimuli were used (see Fig. 2C, D, M,N
for examples). Because they were super-
imposed on EPSPs, reliable identifica-
tion and characterization of these IPSPs
was difficult and they could not be ana-
lyzed further.

Reticulospinal connections to
motoneurons controlling hand and
wrist muscles
It is of special interest to know whether the
reticulospinal tract makes direct or indi-
rect connections to spinal motoneurons
innervating intrinsic hand muscles: strong
corticospinal connections to these mo-
toneurons are usually assumed to underlie
the unique dexterity of the primate hand.

Figure 2K–O illustrates an example
motoneuron antidromically activated
from the median nerve at the wrist (Fig.
2K), indicating that it innervated intrinsic
hand muscles (most likely thenar muscles
controlling the thumb). Stimuli delivered
to the MLF elicited powerful, short-
latency monosynaptic EPSPs (amplitude
0.81 mV, SL 0.9 ms) (vertical dashed lines
and gray shading, Fig. 2L). Trains of MLF
stimuli elicited responses with similar rising phases and ampli-
tudes (Fig. 2M,N). In this cell the monosynaptic reticulospinal
response exceeded its corticospinal counterpart: a single stimulus
to PT resulted in a monosynaptic EPSP 0.6 mV in amplitude, SL
0.9 ms (Fig. 2O).

As previously reported (Fritz et al., 1985; Porter and Lemon,
1993), the corticospinal EPSPs were more frequent and exhibited
a trend toward larger effects in motoneurons innervating forearm
or hand muscles compared with those projecting to the upper
arm (Fig. 3). Surprisingly, trends in incidence of EPSPs evoked
both monosynaptically and disynaptically by MLF stimuli were

not unlike the trends seen for corticospinal EPSPs: the frequency
was at least as large in intrinsic hand motoneurons as in more
proximally projecting forearm or upper arm motoneurons and,
where connections were present, the amplitudes of MLF-evoked
EPSPs (monosynaptic and disynaptic) were generally similar in
the different muscle groups.

Discussion
The present results force a reevaluation of the role of the reticu-
lospinal tract in primate motor control. They show that reticu-
lospinal descending pathways are in a position to influence mo-
toneurons projecting both to proximal and distal limb muscles,

Figure 2. Cervical spinal motoneurons receive monosynaptic and disynaptic reticulospinal input. A–E, Example motoneuron
projecting to forearm flexors that received disynaptic reticulospinal contacts. A, Antidromic activation from median nerve above
the elbow (overlain single sweeps). B–D, Disynaptic reticulospinal EPSPs following single 300 �A MLF stimulus (B), train of three
stimuli (C), and train of four stimuli (D). Each panel shows averaged intracellular records (top) with simultaneously recorded
epidural volleys below. Vertical dashed lines highlight the segmental latency of the response. Calibrations in B apply to B–D. E,
EPSP evoked in this cell following single 300 �A stimulus to PT. F–J, Example monosynaptic EPSPs evoked following reticulospi-
nal activation in a spinal motoneuron also projecting to forearm flexors. Panels and plotting conventions are as in A–E. K–O,
Example motoneuron projecting to thenar muscles which received powerful monosynaptic input from the reticulospinal tract.
Panels and plotting conventions are as in A–E, except that responses to a train of two and three stimuli are shown in M and N,
respectively.
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including intrinsic hand muscles, and can do so via both direct
monosynaptic and disynaptic pathways. In our data reticulospi-
nal connections were as common in intrinsic hand muscle mo-
toneurons as in forearm and upper arm groups. Reticulospinal
pathways may thus provide a parallel to the corticospinal path-
way for supraspinal control.

The finding that fibers activated by stimulation near the MLF
influence forearm and hand muscles was surprising. Lesions that
involve these fiber tracts (reticulospinal, vestibulospinal, and
tectospinal) have a powerful effect on the control of axial and
postural muscles (Lawrence and Kuypers, 1968b; Kuypers, 1981).
Microstimulation studies of the reticular formation found the
most potent effects in proximal muscles (Perreault et al., 1994;
Davidson and Buford, 2004, 2006). Given the novelty of our find-
ings, it is important to consider the possibility that MLF stimula-
tion activated other descending pathways. Activation of cortico-
spinal fibers, by either axon reflex or current spread to the
pyramidal tract, was excluded by our occlusion test (Fig. 1E–G).
Rubrospinal fibers originate far rostral to the medulla where the
MLF stimulating electrode was located; the axons pass laterally

(Kuypers et al., 1962), whereas the elec-
trode tips were close to the midline (Fig.
1). Current would have to spread several
millimeters to have activated the rubrospi-
nal tract, making this possibility unlikely.
Primate tectospinal neurons are few
(Harting, 1977) and reported not to make
monosynaptic connections with mo-
toneurons (Anderson et al., 1972). Studies
of the medial vestibulospinal tract in cat
suggest that it is purely inhibitory to mo-
toneurons (Wilson et al., 1970). Some pre-
motor interneurons such as the C3/C4
propriospinal neurons have axons ascend-
ing to the medulla. However, these are less
common in primate and their terminals in
the lateral reticular nucleus are also later-
ally positioned, several millimeters from
the MLF electrodes. The large MLF elec-
trode volleys suggest that the major fiber
pathway activated was reticulospinal.

Our classification of effects evoked by
MLF stimulation as monosynaptic or di-
synaptic was based on the properties and
the latency of the evoked EPSPs. However,
it is likely that we underestimated the prev-
alence of monosynaptic connections:
stimulation in the MLF activates some re-
ticulospinal fibers directly, and others
transsynaptically (especially after trains of
stimuli) (Jankowska et al., 2003; Edgley et
al., 2004). Our criterion for a monosynap-
tic connection was segmental latency �1
ms, relative to the descending volleys of
directly activated reticulospinal fibers; by
measuring the latency relative to the first
segmental volley, we automatically take
account of utilization time and axonal
conduction delay to the cord. However,
any actions evoked by transsynaptically
activated reticulospinal fibers would be
classified as disynaptic in motoneurons by
this criterion, although they could be me-

diated by direct reticulomotoneuronal contacts.
The corticospinal and reticulospinal actions in upper limb

motoneurons were similarly distributed but had some key differ-
ences, most notably amplitude. On average, monosynaptic corti-
cospinal EPSPs were five times larger than monosynaptic or di-
synaptic reticulospinal EPSPs. Part of this difference could be the
activation of different fiber numbers. The stimuli we used acti-
vated large descending volleys (Fig. 1E–G) but were unlikely to
have activated all reticulospinal axons that descend in the region
of the MLF. Large stimulating currents would risk stimulus
spread and a possible mixed descending volley. Instead, we used a
fixed stimulus intensity (300 �A), yielding robust but pure spinal
volleys. Reticulospinal axons arise from many locations including
the medullary gigantocellular reticular formation level with and
caudal to the MLF stimulating electrodes. These fibers may not
have been activated.

In all species studied the reticulospinal tract influences mo-
toneurons by a mixture of direct (monosynaptic) and indirect
effects. From studies in nonprimates, reticulospinal output is
considered to control movement predominantly via spinal inter-

Figure 3. Population data. A–D, Histograms of incidence (left) and mean amplitude (right) of monosynaptic EPSPs from the PT
(PT mono), monosynaptic EPSPs evoked from the MLF (MLF mono), and disynaptic EPSPs from the MLF (MLF di). The numbers
above each column in the incidence plots give the raw numbers of motoneurons. Error bars in amplitude plots are SEM. Amplitudes
of disynaptic EPSPs are measured from the response to the last of a train of three or four shocks.

Riddle et al. • Primate Reticulomotoneuronal Connections J. Neurosci., April 15, 2009 • 29(15):4993– 4999 • 4997



neurons [i.e., at least disynaptically (Baldissera et al., 1981)].
However, monosynaptic connections to limb motoneurons, in-
cluding some acting distally have been consistently found. Wil-
son and Yoshida (1969) reported monosynaptic EPSPs in most
motoneurons of cat ankle and foot digit muscles, including 2/5
motoneurons projecting in the plantar nerve innervating intrin-
sic foot muscles. Peterson et al. (1979) found monosynaptic con-
nections to cat upper limb motoneurons, including those pro-
jecting distally. The significance of these connections is harder to
assess. Microstimulation studies in the MLF or reticular forma-
tion focus on muscles above the elbow, with little reference to
more distal muscles, presumably because obvious responses were
not seen (Drew and Rossignol, 1990; Perreault et al., 1994; Da-
vidson and Buford, 2004, 2006; Davidson et al., 2007). Important
findings in relation to this are the spike-triggered averaging re-
sults between reticulospinal neurons and limb EMG (Schepens
and Drew, 2006; Davidson et al., 2007). Davidson et al. (2007)
demonstrated that microstimulation within the primate reticular
formation produced bilateral activation of forearm and shoulder
muscle groups as far distal as the wrist. Spike- and stimulus-
triggered averaging yielded similar activity patterns, implying in-
dividual reticular neurons are capable of motoneuronal activa-
tion. In cat, postspike depression (reflecting inhibition that is at
least disynaptic) was particularly common. The paucity of
postspike facilitations in cat, despite the evidence from acute
studies that monosynaptic connections with motoneurons exist,
suggests that interneuronally mediated effects dominate. Criti-
cally, Schepens and Drew (2006) found that while the reticulospi-
nal neuron activity was similar during reaching movements of
either forelimb, postspike depression in the EMG occurred selec-
tively when only one limb was moving. This implies a movement-
specific gating at the level of spinal interneurons. A possible in-
terpretation is that the monosynaptic connections are relatively
weak and unable to evoke overt movement in response to stim-
ulation or postspike effects in spike-triggered averaging, but that
the disynaptic connections are more potent and more easily pro-
duce movements.

In primates, the forelimb is critical for fine manipulation. An
important function of the reticular formation identified in cats
(Schepens and Drew, 2004, 2006) and primates (Davidson and
Buford, 2004) is the control of forelimb reaching. Our data sug-
gest that this extends to control of the hand movements that
complete a complex goal directed reach. In contrast to reticu-
lospinal outflow, monosynaptic corticospinal EPSPs in macaque
monkeys are common; it is unclear how functionally important
disynaptic inputs are in the awake behaving state (Maier et al.,
1997; Alstermark et al., 1999; Nakajima et al., 2000; Olivier et al.,
2001; Sasaki et al., 2004). Primate corticomotoneuronal connec-
tions may underlie the ability to produce relatively independent
finger movements. Species that lack dexterous hands, such as
cats, have only disynaptic connections from the corticospinal
tract to motoneurons (Kuypers, 1981). New World primates
have an intermediate pattern, with mainly disynaptic connec-
tions but some weak, slowly rising monosynaptic corticospinal
EPSPs (Maier et al., 1997).

Corticomotoneuronal cells in macaques project to multiple
motoneuron pools (Fetz and Cheney, 1978; Shinoda et al., 1981;
Buys et al., 1986). By addressing muscles not individually, but as
functional groups of synergists, the formidable degrees of free-
dom involved in controlling the hand may be reduced, permit-
ting effective independent finger control (Schieber, 2001). Al-
though the reticulospinal tract has some features required for
dexterous hand movement control, it is unclear whether all de-

tails of its organization are suitable to subserve this function.
From the anatomy, microstimulation, and spike-triggered aver-
aging data, it is unlikely that single reticulospinal neurons control
small groups of muscles in a fractionated way. Individual RST
axons exhibit extensive collateralization throughout the cervical
and lumbar enlargements of cats (Peterson et al., 1975; Mat-
suyama et al., 1997, 1999). In addition there is evidence for bilat-
eral effects from reticulospinal neurons (Jankowska et al., 2003;
Schepens and Drew, 2006; Davidson et al., 2007). This may rep-
resent the necessary anatomical substrate for the control of larger
functional muscle groups.

Lawrence and Kuypers (1968b) made combined lesions of the
pyramids and the lateral medulla, interrupting rubrospinal fi-
bers. In these monkeys the hand was not completely paralyzed
but could still be used in whole-arm, whole-body movements,
e.g., holding a support while climbing or grasping. Reticulospinal
fibers are prime candidates for mediating this type of distal mus-
cle activity. This fits with a general theme for reticulospinal func-
tion: descending fibers have widespread connections with diverse
muscles that act in synergy during whole-body movement (Law-
rence and Kuypers, 1968b; Drew and Rossignol, 1990; Schepens
and Drew, 2006). For example, microstimulation in the cat usu-
ally evokes responses in multiple muscles, frequently multiple
limbs and/or limb and head (Drew and Rossignol, 1990). In cats,
there is considerable recovery of basic locomotor function after
lesions of corticospinal and rubrospinal tracts that can be attrib-
uted to medially descending pathways (Drew et al., 2002), al-
though movements of the most distal muscles do not fully
recover.

The demonstration that both monosynaptic and disynaptic
connections link reticulospinal tract fibers to distal limb mo-
toneurons may have significance for repair or rehabilitation. This
could form the substrate for the recovery of hand use following
loss of corticospinal control in nonhuman primates (Lawrence
and Kuypers, 1968a; Sasaki et al., 2004), and thus present a target
for rehabilitation after stroke in man.
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