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During the last decades, research on binary decision making
elucidated some of the basic neural mechanisms underlying the
decision-making process. Recently, the focus of experimental as
well as modeling studies began to shift from simple binary choices
to decision making with multiple alternatives. In this article, we
address the question how different numbers of choice alternatives
might be handled and encoded in the brain. We present a minimal,
biophysically realistic spiking neuron model for decision making
with multiple alternatives. Our model accounts for the relevant
aspects of recent experimental data of a random-dot motion-
discrimination task on both the cellular and behavioral level.
Notably, all network parameters and inputs in our network are
independent of the number of possible alternatives used in the
tested experimental paradigms (2 and 4 alternatives and 2 alter-
natives with an angular separation of 90°). This avoids the use of
extra top-down regulation mechanisms to adapt the network to
the number of choices. Furthermore, we show that increasing the
number of neurons encoding each choice alternative is positively
related to the network’s capacity of choice-number-independent
decision making. Consequently, our results suggest a physiological
advantage of a pooled, multineuron representation of choice
alternatives.

attractor networks � parietal cortex � random-dot motion �
computational model

A lready decades ago, decision making between multiple
alternatives was the subject of psychophysical reaction-time

studies, which revealed an increase in reaction times with the
number of choices (1). With the objective of shedding light on the
neural mechanisms underlying decision making, experimental
and theoretical studies mainly focused on the simplest case of
binary choice (2–4). Thereby, the lateral intraparietal area (LIP)
was identified as a candidate for bounded integration in the
decision process. Its neural activity correlates with the choices
and reaction times of monkeys performing the random-dot
motion (RDM) task (Fig. 1A), a well-established paradigm to
test for accumulation and integration of evidence during deci-
sion making (5–7).

One biophysically realistic spiking neuron model of LIP that
successfully simulated behavioral and physiological data from
the binary RDM task was proposed by Wang (8). It is based on
attractor dynamics and winner-take-all competition of 2 discrete
selective populations of neurons (pools), each representing 1
alternative. Choice behavior, regardless of the number of alter-
natives, was captured successfully by some firing-rate models of
neural networks (9–12). However, it is difficult to relate these
rate models to possible physiological realizations of multiple-
choice decision making.

Last year, experimental studies extended the RDM paradigm
to more than 2 alternatives (11, 13). Churchland et al. (13)
compared behavioral data and recordings from single LIP
neurons of a 4-choice RDM task with the original 2-alternative
task. Reaction times and error rates for 4 alternatives were found
to be longer and higher, respectively, consistent with earlier

studies (1). In an additional control condition with 2 targets
separated by 90° (90° case), monkeys needed longer to decide
than in the standard (180°) 2-alternative case but performed with
the same accuracy. Notably, the experiments of Churchland et al.
(13) provided the first electrophysiological data on a 4-alterna-
tive decision task.

Two theoretical studies (14, 15) just recently proposed con-
tinuous models of multiple-choice decision making. Both models
can account for important findings of Churchland et al. (13).
One, by Beck et al. (14), focused on the implementation of
probability distributions and optimality, whereas the model of
Furman and Wang (15), like our model, features high biophysical
detail. It combines Wang’s discrete 2-alternative model (8) with
a model of analog sensory input (16), where a ring of neurons
represents continuous directions of motion. However, it cannot
account for the condition with 2 targets 90° apart. What is more,
their model requires regulatory mechanisms depending on the
number of alternatives, like an adaptation of the target input and
an external top-down control signal during the decision-making
period.

Here, we propose a different approach to extend the biophys-
ically based binary decision model (8). Instead of a continuous
representation, we increased the number of discrete neural
populations that encode the possible alternatives (Fig. 1 B and
C). Previously, networks with discrete populations have been
adjusted to exhibit winner-take-all competition for one partic-
ular set of choice alternatives (8) or memory states (17). In our
study, we analyzed how the network’s competition regimes could
be brought into accord for different numbers of alternatives.
With a common parameter set for the 2, 4, and 90° case, we
successfully simulated all experimental paradigms tested by
Churchland et al. (13), without the need of any number-of-
choice-dependent mechanism. Besides, we found that encoding
decision alternatives by populations of neurons with a big
relative pool size, a high ‘‘coding level,’’ favors a common
decision regime for 2 and 4 choices. Taken together, our results
indicate a physiological advantage of a pooled, multineuron
representation of choice alternatives.

Results
In this study, we intended to design a minimal, biophysically
realistic spiking neuron model of decision making for more than
2 alternatives to replicate and explain recent behavioral and
electrophysiological data (13). We further aimed to extend
Wang’s analysis (8, 18) by exploring the effects of the size of the
neural populations that encode the possible choices.
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Neurons of 1 population (pool) share common inputs and
connectivity. Our network contains 1 homogenous inhibitory
pool of neurons, connected to all excitatory neurons. These are
subdivided into 4 selective pools (red), encoding the 4 possible
choices, and 1 nonselective pool, emulating the activity in the
surrounding brain areas (Fig. 1B). Each selective pool contains

f�NE neurons, where f is the coding level of the selective pools.
The stochastic nature of the network due to finite-size effects
allows decision formation even for unbiased inputs (19). This
network feature and the shared feedback inhibition enable
winner-take-all competition in a certain range of external inputs,
referred to as ‘‘range of decision making.’’ The recurrent con-
nectivity �� of neurons within a selective pool is higher than the
connectivity �� between selective pools (Fig. 1C). To model the
circular spatial distribution of the targets in the experiment (Fig.
1A and ref. 13), we increased the connectivity between pools
representing neighboring targets by the weight �T (Fig. 1C). For
a detailed description of the network connectivity, dynamics, and
parameters please refer to Methods and supporting information
(SI) Methods.

The proposed model can be viewed as a representation of a
local microcircuit in area LIP. Consistent with LIP neurons
during working memory tasks (6, 13, 20) our model exhibits
persistent activity due to the strength of its recurrent connections
(Fig. S1).

Spiking-Neuron Simulations in Comparison with Experimental Data.
Churchland et al. (13) tested monkeys on the RDM task (Fig.
1A), comparing 3 experimental paradigms. Either 2 opposing
targets, 4 targets (90° apart) or 2 targets with an angular distance
of 90° (90° case) were presented to the monkey, before the
motion signal started. The targets indicated the possible direc-
tions of motion coherence to the monkey and continued to be
present throughout the full trial.

In our model, the 4 selective pools are thought to represent the
populations of neurons in LIP where the spatial information
about 1 respective target signal and the motion directed toward
this target are combined. Accordingly, we modeled the target
and motion stimuli presented to the monkey as shown in Fig. 1D
following the approach of Wong et al. (21). The motion input
resembles the output of middle temporal area (MT) neurons
projecting to LIP. MT activity represents a momentary estimate
of motion direction and coherence (22). Importantly, the motion
stimulus input is received by all selective neurons in the network,
whereas the target input is applied just to the particular pools
corresponding to the possible choices. The coherence of the
random-dot motion, which controls the task difficulty, is mod-
eled by a bias to the motion signal (see Methods). Our network
is generally capable of decision making even without the target
signal (Fig. S2). If the external input lies within the range of
decision making, the shape of the target input affects reaction
times, but not the network’s capacity of decision making.

Churchland et al. (13) measured the accuracy and speed of the
monkey’s choices for several motion coherences (Fig. 2 B and D).
Fig. 2 A and C shows the reaction times and performance, i.e.,
the fraction of correct choices, obtained by our simulations.

In the experiments as well as in our simulations, the reaction
times were longer for 4 possible alternatives than for the
2-alternative case. For the 90° case, they were intermediate, with
larger differences at lower motion strengths. Starting at chance
level, the accuracy increased until it reached 100% for high
motion strengths (Fig. 2 C and D). Except for very high
coherences, choices among 4 alternatives were less accurate than
binary decisions, also in comparison with the 90° case. There, the
monkeys performed as well as in the standard 2-choice case. In
our simulations, the accuracy in the 90° case resembles the
standard binary case (Fig. 2C), with somewhat higher values at
intermediate motion coherence. In summary, although we did
not attempt a perfect quantitative fit to the experimental data,
the psychometric functions obtained by our model simulations
match the experimental observations (13) very well in all rele-
vant aspects.

Behavioral differences between the 2, 4, and 90° case must be
based on differences in the temporal evolution of the firing rates

A

B C

D

Fig. 1. Experimental design, network architecture, and stimulation proto-
col. (A) The multiple-choice RDM task. While the monkey is fixating on a
central point, the possible alternatives are indicated by 2 or 4 target signals.
One of the targets is located in the response field (RF) of the LIP neuron
recorded. After a delay, a patch of dynamic random dots appears with a
proportion of dots moving coherently toward one of the targets, although the
remaining dots keep moving randomly. The amount of coherence controls the
task difficulty. The monkey has to decide on the net direction of motion and
report its choice by a saccadic eye movement to the corresponding target.
(B) Diagram of the spiking neuron network model. The network consists of a
population of excitatory pyramidal neurons, structured into 4 selective pools
(red) and a nonselective population, that inhibit each other through shared
feedback from an inhibitory pool of interneurons. All neurons receive an
external background input in the form of a Poisson spike train with a firing
rate of 2.4 kHz, simulating spontaneous activity in the cerebral cortex. Unla-
beled arrows denote a connectivity of 1. (C) Connectivity between selective
pools shown representatively for 1 pool. The recurrent connection is denoted
as �� and the interpool connection as �-. Connection weights to and from
neighboring pools are additionally enhanced by a value �T. (D) Time course of
input to selective pools. Depending on the number of alternatives a target
input was applied to either 2 or 4 pools (see Methods and SI Methods for
details). All selective pools receive an input representing the motion stimulus.
Both inputs start with a latency of 200 ms after target or motion onset.
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during the decision process. In Fig. 3 the simulated temporal
evolution of firing rates is displayed for single trials and trial
averages for each paradigm at zero motion coherence. Notably,
even for zero motion strength, the network exhibits competition
because of its stochastic dynamics (Fig. S3).

The general temporal structure is in good agreement with the
experimental observations of LIP neurons (13, 20, 23): Through-
out the target period, between target input and motion stimulus
onset, the selective pools representing the targets exhibit ele-
vated firing rates, followed by a ‘‘dip’’ to lower activity after
motion onset and subsequent ramping activity. In the model, the
dip in the firing rate is caused by a reduction of the target input
with an assumed latency of only 80 ms before the motion signal
is supposed to arrive in LIP with a latency of 200 ms (see SI
Methods). Possible physiological origins are divided attention or
upstream inhibition of the target signal caused by the onset of
random-dot motion (15, 21). With the arrival of the motion
signal, the integration process starts, and a decision is finally
made, characterized by the ramping-up of activity of the winning
pool.

A major discovery of Churchland et al. (13) was that, regard-
less of the number of targets and motion coherence, the decision
process is terminated at 1 single activity threshold. Differences
between the 2- and 4-choice cases were instead observed during
the target phase and in the early motion epoch. For 4 choices, the
target response was, on average, 16.1 � 1.6 Hz lower than for 2
choices (13). Our model matches these findings well, even

quantitatively. The average firing rates during the target phase
for 4 alternatives are approximately 20 Hz lower than for 2
possible choices (Fig. 3 A and B). The population activity of the
inhibitory neurons is �32 Hz (average over 800- to 1,300-ms
interval) for 4 targets compared with 22 Hz for the 2-choice and
90° cases. Because there are no parameter differences between
the task conditions, the differences in firing rate are caused
solely by the shared feedback inhibition. The interneurons
reduce the activity of the pyramidal neurons more for 4 alter-
natives. As in the experiments (13), the differences in firing rates
of the selective target neurons persist during the dip after motion
onset. Hence, the accumulation of evidence starts at lower values
for 4 alternatives. In the trial average (Fig. 3B) the slope of data
accumulation for correct trials is similar for the 2 conditions. In
our simulations, in accordance with the experimental findings
(13), a decision is reached when the population activity of 1
selective pool crosses a threshold of 50 Hz. The longer reaction
times in the 4-choice task are therefore explained by the longer
excursion of the neural activity to a common threshold in the
experiments as well as in our simulations. The 90° condition is
displayed in Fig. 3 A and B Bottom. Firing rates during the target
phase are similar to the standard 2-choice case and slightly
higher during the dip after motion onset. In our model, the
longer average reaction times in the 90° case compared with the
standard 2-choice task emerge through a prolonged symmetric
state with high firing rates in both selective target pools (Fig. 3A
Bottom). This leads to a smaller slope of average ramping activity
toward the threshold (Fig. 3B Bottom) and thus to longer
reaction times. The latter is also observed experimentally (13).
The prolonged symmetric state, however, would hardly be
measurable because the effect is lost in the trial average.

C D

A B

Fig. 2. Speed and accuracy of simulated decisions and comparison to exper-
imental data (13). (A) Simulated mean reaction times of correct trials as a
function of motion coherence, fitted by a hyperbolic tangent function (see SI
Methods). Decisions among 4 possible choices take longer than between 2
alternatives, whereas reaction times in the case of 2 choices 90° apart are
intermediate between 2 and 4 choices for low coherence values. (B) Mean
reaction times of 2 monkeys performing the RDM task (see ref. 13 for details).
(C) Simulated psychometric functions, fitted by Weibull functions (see SI
Methods). Performance in the 4-choice task is lower than for 2 choices. In the
90° case, accuracy is similar to the standard 2-choice case, with even higher
performance at intermediate motion coherence. One thousand trials were
simulated for each data point. At low motion coherence, some trials had to be
excluded in the 4-alternative condition (at most 2%) and in the 90° case (at
most 5%), because they failed to reach a decision within the simulation time
of 4,000 ms (see SI Methods). (D) Experimentally observed performance of
monkeys in the RDM task. B and D are adapted with permission from Church-
land et al. (13). Please note that the scales of the simulated and experimental
data are identical. For better assignment in A and C, the simulated motion
coherence values are used as labels.

A B

Fig. 3. Simulated temporal evolution of population-averaged firing rates at
zero motion coherence for single trials (A) and trial average over 1,000
network simulations (B). Red and black lines denote inhibitory and nonselec-
tive pools. Selective pools for single trials are colored according to the target
illustrations (Right). For the trial average (B), the ‘‘winning’’ neural pools were
averaged (cyan). The ‘‘losing’’ pools were averaged according to their inputs
and relative target location to the winning population. During the target
phase, the activity of the neurons representing the target-selective popula-
tions are increased to, on average (800- to 1,300-ms interval), 57 Hz in the
2-choice and 90° case compared with 36 Hz in the 4-choice case. This difference
persists during the dip after the onset of the motion stimulus. Therefore, in the
case of 4 targets the decision process starts at lower firing activity. The slope
of the ramping activity is on average smaller in the 90° case (Bottom) than in
the standard 2- (Top) and 4-choice (Middle) conditions, whereas its starting
point is similar to the 2-choice case.
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With increasing motion coherence and hence decreasing task
difficulty, the build-up rates increase for all 3 tested paradigms
(Fig. S4), explaining the faster reaction times (Fig. 2 A).

Mean-Field Approximation and Range of Decision Making. As already
stressed, other than the respective number of pools receiving the
target input, neither network parameters nor inputs in our model
depend on the number of alternatives. The network thus exhibits
categorical decision making for 2 and 4 choices for the same
range of external input �.

To investigate how this overlap of decision regimes for 2 and
4 choices depends on different network parameters, we used a
mean-field approximation of the network model (see ref. 17 and
SI Methods). With this approximation, the computational cost of
scanning the parameter space can be drastically decreased, as the
number of dynamical variables is reduced to 1 for each neural
population. By solving the mean-field equation one obtains the
approximated average firing rate of each neural population when
the system has settled into a stationary state. Consequently,
starting from different initial firing rates, the fixed points of the
firing rates can be calculated for the selective network popula-
tions. There are 3 qualitatively different network states, whose
existence and stability depend on the parameter configuration
(18): The spontaneous state, with all pools firing at low rates; the
decision state, where exactly 1 pool shows considerably higher
activity than the others; and mixed states, with 2 or more pools
firing at high rates. The 4 different initial conditions we used
cover the possible firing rates at different temporal stages of the
spiking simulation (see Fig. 4 and SI Methods). The range of
external inputs where, for all initial conditions and both exper-
imental paradigms, a decision is reached, i.e., 1 pool lapses into
an up-state of high firing rate, was termed ‘‘range of decision-
making.’’ It defines a region of multistable decision states.

To explore the effect of the relative size of the selective pools
on the range of decision making, we performed the mean-field
analysis for different coding levels. The coding level is defined
as the fraction of excitatory neurons in the network selective for
1 target direction, and thus determines the relative size of the
neural populations representing a specific choice (selective
populations). Fig. 4A shows an example of the stable fixed
points, the attractors, of the firing rates for the parameters used
in the spiking simulations (coding level of 0.2, �� � 1.48 and
�T � 0.015). The different colors denote different initial con-
ditions. At lower external inputs, for some initial conditions, all
pools stay in their spontaneous state, whereas for higher external
inputs (from � � 50 Hz) a mixed double-up state emerges.
Increasing the external inputs even more will result in mixed
states with 3 and 4 pools firing at high rates, as observed for
example during the target phase. The yellow regions in Fig. 4 A
and B depict the overlap of decision states for the 2- and 4-choice
case, where for all initial conditions 1 pool wins the competition,
and a categorical decision is made (the range of decision
making). Fig. 4B shows the dependence of the range of decision
making (width of yellow region, coding level � 0.2) on �T, the
enhancement of connectivity between neurons from neighboring
selective pools. As one can see in Fig. 4B, there is an optimal
value of �T for a given parameter set (* black arrow). Fig. 4A is
a horizontal cut through Fig. 4B at �T � 0.015, the optimal value
for a coding level of 0.2.

When changing the coding level, the connectivity �� has to be
adapted as shown in Fig. 4C to keep the firing rates of the
up-state at the values obtained for the spiking simulation
parameters (� 60–80 Hz, Fig. 4A), which match the experimen-
tal observations (13). The range of decision making was then
measured at its optimal �T value and plotted against the coding
level (Fig. 4D). Interestingly, we found the range of decision
making to increase linearly with the coding level. For a coding
level smaller than 0.125, no common decision state can be found

for the 2- and the 4-choice task, regardless of the neighboring
connectivity �T. The linear relation of the coding level to the
optimal range of decision making was also found for a smaller
AMPA/NMDA ratio than that used in the simulations, for the
same and higher connectivity ��, confirming the generality of
the outcome (Fig. S5).

A B

DC

ω
+

Fig. 4. Common range of decision making for 2 and 4 alternatives in a
mean-field approximation of the network. (A and B) For the parameters used in
the spiking model simulations (except �I � 1.1 instead of 1.125), the stable fixed
points were calculated with the mean-field approximation over a range of
external input � from 0 to 100 Hz in steps of 0.5 Hz for the 2- and 4-choice
condition and for 4 different initial conditions. Red, 1 pool starting at 120 Hz, the
rest at 0 Hz; green, 2 opposite pools 30 Hz, the rest 0 Hz; blue, all 4 pools 30 Hz;
black, all 4 pools 0 Hz. (A) Stable fixed points of firing rates of the selective pools
(�T � 0.015). In the decision state, exactly 1 pool is firing at a high rate, in the
double-up state 2 pools. The traces of all other pools firing at low rates (�2 Hz)
overlap. For 4 alternatives, because all pools receive the input �, there are 2
double-up states: one with neighboring pools (e.g., 1 � 2) firing at high rates, the
other with opposing pools (e.g., 1 � 3) firing at high rates. In the 2-choice case,
the input� isappliedonlyto2opposingselectivepools (1�3),andthusonlythese
pools will fire at high rates. The yellow region labels the range of decision making
(see text) where the network is in the decision state for all initial conditions.
(B) Starting and end points of decision states for the different initial conditions
depend on the enhanced connectivity �T between neighboring selective pools.
Keepingtheotherparametersfixed, thevalueof theneighboringconnectivity �T

with the optimal, i.e., broadest, range of decision making was determined by
performing the fixed-point analysis explained above for �T � 0 to 0.1 with steps
of 0.0025. There is an optimal value of �T for one parameter set, resulting in the
broadest range of decision making (* black arrow); here, �T � 0.015 (the value
used in the spiking simulation and in A). (C) Dependence of the connectivity ��

on the coding level f for constant fixed-point firing rates. To explore the relation
between f and the range of decision making, the optimal value of �T was
determined for 11 different values of f from 0.1 to 0.225. When changing the
coding level, the network connectivity has to be adapted to keep the up-state
fixed-point firing rates at the same values. Thus, the connectivity value �� was
adjusted in steps of 0.0025 until the up-state fixed points matched the values for
the parameters of the spiking simulation (f � 0.2 and �� � 1.48, see A). For the
�� values shown, theup-statesdeviatedby less than2Hz inthe20- to60-Hzrange
of external inputs, for the respective coding levels. Note that by changing ��, the
connections between the selective pools �� change accordingly because of the
normalization condition. (D) Optimal range of decision making increases linearly
with the coding level. For each coding level, the optimal �T was determined as
showninB,andthebroadnessoftheyellowregion, therangeofdecisionmaking,
was plotted against the coding level with a precision of 0.5 Hz. The black line is
a linear fit to the data.
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Discussion
In this article, we present a biophysically realistic spiking neuron
model for decision making with 2 and 4 alternatives. Notably, all
network parameters and inputs in our network are independent
of the number of possible alternatives we tested. Differences in
firing rates and psychometric functions are solely based on the
number of possible targets presented, which in the network
corresponds to the number of pools receiving the target input.
Moreover, we not only extended Wang’s model (8) to more than
2 choice alternatives, but also analyzed how the size of the neural
populations that encode the choice alternatives affects the
network’s capacity for multiple-choice decision making. In a
mean-field approximation of the network, we found a linearly
increasing relation between the relative size of the selective pools
(the coding level) and the range of decision making. This implies
that pooling over many neurons favors decision making inde-
pendent of the number of choices.

Network Properties and Parameters. Our network is an extension
of Wang’s model for binary decision making (8) to 4 alternatives.
Like the original models (8, 17), our model is capable of storing
information by exhibiting persistent activity, because of slow
recurrent excitation, which also enables the accumulation of
sensory information. Categorical decision formation in the
network is based on attractor state dynamics and feedback
inhibition, which mediates competition. Besides modifying the
number of selective pools representing the possible choices from
2 to 4, we introduced an additional enhancing connectivity �T
between neighboring pools to model the circular location of the
targets in the experiment, assuming a slightly higher correlation
between pools 90° apart than between anticorrelated pools 180°
apart. Quantitatively, the connectivity between neighbors is only
increased by 1.7% in our simulations, but �T proved essential to
regulate the range of decision making (Fig. 4B). It is generally
advantageous to optimize the overlap between the competition
regimes for different numbers of alternatives, because this
minimizes the need for additional regulation mechanisms like
top-down signals from other brain areas. An adaptation of the
network connectivity during the learning phase to optimize the
range of decision making is therefore a plausible process.

Discrete or Continuous Representation. Extending decision making
to more than 2 alternatives finally amounts to the question about
continuous alternatives. At present, there are no experimental
results on a RDM task with more than 4 discrete or continuous
alternatives. Thus, it is still not clear when subjects reach their
limit to distinguish possible motion directions or how accurately
they can determine motion direction in a continuous task.
Infinite precision may not be needed to obtain the final resolu-
tion of the cognitive and motor systems (13). A discrete network
model with a finite number of selective neural populations might
thus be sufficient to account even for continuous choices.

In the following, we will discuss our results in comparison with
the recently proposed continuous models (14, 15) of multiple
decision making. Furman and Wang’s (15) model, like ours, is a
biophysically detailed attractor model. Their network consists of
directionally tuned neurons whose preferred directions cover a full
circle. Excitatory neurons are connected according to a Gaussian
curve depending on their difference in preferred directions. This
continuous approach allows for testing 8 targets spaced 45° apart.
However, in 49% of the trials no categorical decisions could be
made, because activity around adjacent targets tended to merge. In
addition, their continuous model could not account for the differ-
ences in reaction time observed between the standard 2-choice case
and the 90° case (13). The 2 conditions resulted in identical
outcomes in their simulations (15).

Our discrete model with spatially tuned connections between

the selective pools could account very well for all tested para-
digms, including the 90° case. Additionally, we were able to
explain the intermediate reaction times of the 90° case, based on
a prolonged symmetric state of the 2 selective populations. Thus,
pooling over many neurons and introducing a graded connec-
tivity between the pools might represent the physiological con-
ditions of neurons in LIP more accurately than a ring structure
where each neuron encodes 1 special direction.

Beck et al. (14) took a distinct, parallel approach with respect
to the biophysically realistic attractor models. Their model is
focused on possible probabilistic properties of neurons. It fits
Churchland’s data (13) well. However, in contrast to the exper-
imental findings, different activity thresholds were used in the 2
and 4 alternative case to terminate the decision. The probabi-
listic approach so far accounts well for single-cell data. Yet, to
verify whether populations of LIP neurons really encode prob-
ability distributions as predicted, future multiunit recording
experiments are required (14).

Importance of Pool Size. Apart from successfully accounting for all
experimental paradigms, the pool structure of our model entails
an important advantage regarding the network’s dynamics: Our
network operates in a range of categorical decision making,
independent of the tested paradigms. In Furman and Wang’s
model (15), the simulations needed to be controlled by inputs
dependent on the number of possible targets, which were
supposed to originate from unknown higher level brain areas or
normalization processes. They introduced an adaptation of the
target input and an external control signal during the decision-
making period as mechanisms to regulate the dynamical range of
decision making for the respective numbers of alternatives.

In contrast, in our model there is no need to adapt either
parameters or inputs to the number of choice alternatives. Using
a mean-field approximation of the model, we found that the
overlap of decision regions for 2 and 4 choices increases linearly
with the relative size of the selective populations that encode the
choice alternatives (the coding level). A possible explanation of
this effect might be given based on the recurrent connectivity. To
keep the fixed-point firing rates of the model constant while
increasing the coding level, the recurrent connectivity of the
network has to be adapted nonlinearly, as shown in Fig. 4C. In
turn, the more neurons encoding a choice alternative, the higher
the recurrent activity each neuron in that pool receives. In fact,
we observed that the recurrent activity a single neuron receives
increases linearly with the coding level. We believe that this
increase of recurrent activity stabilizes the decision state.

Furman and Wang (15) suggested that their top-down signal
could also serve to control the speed–accuracy tradeoff. In our
network, an input-based control of speed–accuracy tradeoff
could be implemented with the advantage of being independent
of the number of possible choices, following the study of Roxin
and Ledberg (24), where increasing the inputs was found to
decrease reaction times and performance monotonically.

Although the network structure of Furman and Wang’s (15)
model generally offers the possibility to simulate any number of
alternatives and angular locations, a biophysically realistic model
accounting for all experimental paradigms and more than 4
choice alternatives is still an objective for future research. Taken
together, our results indicate the benefit of a pooled, multineu-
ron representation of choice alternatives. We suggest that a
bigger pool size, apart from the obvious advantage of redun-
dancy in case of neural loss, or of averaging out noise by pooling
across inputs, enables the network to exhibit relatively stronger
recurrent inputs useful for stabilizing decision states.

Methods
Network. Our model is based on the network introduced by Brunel and Wang
(17). It was originally intended to model object working memory and persis-
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tent activity, but has already been successfully applied to model neural activity
of LIP neurons in the RDM task with 2 alternatives (8). Single neurons are
modeled as integrate-and-fire neurons with conductance-based synaptic re-
sponses. They are connected by 3 types of receptors that mediate the synaptic
currents flowing into them: AMPA, NMDA glutamate, and GABAA receptors,
which are described by realistic synaptic kinetics (see SI Methods).

Connectivity Weights. The synaptic efficacies are assumed to be already
formed and, therefore, are kept fixed during the simulation. Consistent with
a Hebbian rule, cells within 1 selective pool have stronger weights for recur-
rent connections (�� � 1) because their activity is thought to be correlated,
whereas anticorrelated cells between selective pools and from the nonselec-
tive to selective pools have weaker connection weights (�� � 1). Each selective
pool in our model has 2 ‘‘neighboring’’ selective pools, corresponding to its 2
perpendicular targets, and 1 ‘‘opposing’’ pool, representing the target at 180°
angular distance. The connections to and from the neighboring pools are
enhanced by a value �T, assuming a slightly higher correlation between the
neighboring pools than between the anticorrelated opposing pools (Fig. 1C).
The connections in the network are normalized so that the overall excitatory
recurrent synaptic drive remains constant with only baseline input applied to
the network (spontaneous state) (17). This is accomplished by adapting ��

according to � � 1 � f (2�T � �� � 1)/(1 � f ), where f is the coding level.
Inhibitory-to-excitatory connections are denoted by a weight �I. All other
connections have a baseline weight of 1 (Fig. 1 B and C).

Simulation of Sensory Inputs. Mimicking the sensory stimuli of the experimen-
tal protocol (13), an external target and motion input are applied to the
network during the spiking simulation. Depending on the number and loca-
tion of the targets in the different experimental conditions, the neurons of
either all 4 selective pools, the 2 opposing pools or, in the 90° case, 2 neigh-
boring pools receive the same target input during the model simulation. We
assume that the target input is passed on to the respective pools as a Poisson
spike train with a time-dependent firing rate of

�target � �
0 Hz 0 � t � ttarget

�400 � 100 exp���t � ttarget	
�1		 Hz ttarget � t � tmotion

� 80 ms,
�25 � 375 exp���t � tmotion	
�2		 Hz t 	 tmotion � 80 ms

where ttarget � 500 ms and tmotion � 1,300 ms are the onset times for the target
and the motion stimulus, respectively. The time course of the target signal
follows the approach of Wong et al. (21) and is in accordance with experi-
mental findings (13, 23). The initial exponential decay, �1 � 100 ms can be
explained by short-term adaptation. The dip in the firing rate is modeled by
an exponential decrease of the target input with �2 � 15 ms, starting with a
latency of 80 ms after motion stimulus onset.

Based on electrophysiological recordings from MT neurons (22), the motion
stimulus at zero coherence was simulated as a Poisson spike train with a time
invariant rate of �motion � 20 Hz to all selective pools starting at 1,500 ms.
Coherent motion was modeled as a positive bias to 1 selective pool, balanced
by a reduction of the motion input in the other 3 selective pools, so as to keep
the total motion input to the network constant. A motion coherence of 100%
corresponds to a bias of 60 Hz to 1 selective pool, resulting in a motion input
of 80 Hz to this particular pool and 0 Hz to the other selective pools. We
simulated 10 motion coherences: 0%, 1.67%, 3.33%, 5%, 8.33%, 12.5%, 25%,
50%, 75%, and 100%.

Spiking Network Simulations. Each trial in the network was run for a total of
4,000 ms. A decision was reached when 1 selective pool crossed a threshold of
50 Hz and surpassed the other selective pools by at least 5 Hz. The reaction time
RT was calculated as the difference between the motion onset tmotion and the
time the threshold was reached tthres, plus an additional time tsaccade � 80 ms
to account for saccade initiation and execution.

Mean-Field Approximation. We followed the mean-field approximation de-
rived in Brunel and Wang (17) to scan the parameter space to find a parameter
set matching the experimental findings. This approximation provides fixed
points of the population firing rates, the stationary states of the populations
after the period of transients. The firing rates would be exact if the number of
neurons was infinitely large and the unitary postsynaptic potentials elicited by
presynaptic spikes were infinitesimally small. See Fig. 4 and SI Methods for the
calculation of the range of decision making.

A more detailed description of the simulation procedure, including Table
S1 with the default values as well as mathematical details of the network and
the mean-field approach, can be found in SI Methods.
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