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Abstract. The in vivo metabolic clearance in human has been successfully predicted by using in vitro data
of metabolic stability in cryopreserved preparations of human hepatocytes. In the predictions by human
hepatocytes, the systematic underpredictions of in vivo clearance have been commonly observed among
different datasets. The regression-based scaling factor for the in vitro-to-in vivo extrapolation has
mitigated discrepancy between in vitro prediction and in vivo observation. In addition to the elimination
by metabolic degradation, the important roles of transporter-mediated hepatic uptake and canalicular
excretion have been increasingly recognized as a rate-determining step in the hepatic clearance. It has
been, therefore, proposed that the in vitro assessment should allow the evaluation of clearances for both
transporter(s)-mediated uptake/excretion and metabolic degradation. This review first outlines the
limited ability of subcellular fractions such as liver microsomes to predict hepatic clearance in vivo. It
highlights the advantages of cryopreserved human hepatocytes as one of the versatile in vitro systems for
the prediction of in vivo metabolic clearance in human at the early development stage. The following
section discusses themechanisms underlying the systematic underprediction of in vivo intrinsic clearance by
hepatocytes. It leads to the proposal for the assessment of hepatic uptake clearance as one of the kinetically
important determinants for accurate predictions of hepatic clearance in human. The judicious combination
of advanced technologies and understandings for the drug disposition allows us to rationally optimize new
chemical entities to the drug candidate with higher probability of success during the clinical development.
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INTRODUCTION

It has become critically important to discover more
bioavailable drug candidates in many therapeutic targets
where the drug would be preferably given per oral to the
patients. At the early discovery stage in the development of
new drug, the in vitro metabolic stability is routinely
examined in a high-throughput manner at the pharmaceutical
companies. The rationale of this strategy is that the in vitro
metabolic stability in the preparations from human should
reasonably well predict in vivo clearance in human. In
parallel with the in vitro assessment for the metabolic stability
in preclinical species as well as human, the pharmacokinetics
of new chemical entities is often examined in order to identify
the major route(s) of elimination in animals from in vitro/in
vivo correlation analysis. These data assure that any in vitro

data using hepatic derived systems would be meaningful for
the quantitative prediction in human. Predictions based on the
metabolic clearance from in vitro samples have been able to
account for the potential interspecies differences in the metab-
olism. However, much evidence such as drug–drug interactions
through the inhibition of transporters (1–3) and interindividual
variations of pharmacokinetics through the genetic polymor-
phism in the transporters (4,5) has also suggested that the
transporter-mediated uptake and excretion processes, often or
partly at least, become a rate-determining step as a determinant
of hepatic clearance and pharmacokinetics in human for many
drugs (4,6–8). Therefore, the accuracy of prediction for the
hepatic clearance in human will be certainly improved by
integrating transporter-mediated process(es) into the existing
paradigm for the prediction, based on the understanding of rate-
determining step in the hepatic clearance in human.

PREDICTIONOFHEPATICCLEARANCE: FROMLIVER
MICROSOMES TO HEPATOCYTES

Based on the accumulated data for the quantitative
prediction of hepatic clearance from in vitro studies with rat
liver microsomes and isolated rat hepatocytes, the prediction
strategy was proposed by Houston in 1994 (9) and 1997 (10).
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Following those reports, many results were published and
consistently indicated that the in vivo hepatic (or total body)
clearance could be reasonably well predicted from themetabolic
(intrinsic) clearance determined in the in vitro system on the
basis of existing pharmacokinetic premises (9–26). Most studies
in early years used rat liver microsomes and/or rat hepatocytes
for the prediction of clearance due to the feasibility of in vitro
experiments and limited availability of human samples (9–
17,21,24). The prediction strategy established in rat has been
extended to that for human as the in vitro samples (liver
microsomes, liver slices, and freshly isolated hepatocytes) from
human have become prevalent since early 1990s (18–
20,22,23,25–27). The prediction of pharmacokinetics in human
with reasonable level of confidence is one of the crucial
components in the assessment of probability of success (POS)
of drug candidate at the preclinical evaluation stage. Therefore,
the in vitro studies with widely and routinely available human
preparations certainly contributed to the reduction of attrition
rate attributable to the inappropriate pharmacokinetics in
human during the clinical development at the pharmaceutical
companies (28,29).

It has been long recognized that the isolated rat
hepatocytes generally provide better in vitro grounds for the
quantitative/qualitative predictions of in vivo metabolism
than liver slices and subcellular fractions (10). The advantages
of using isolated rat hepatocytes over other in vitro prepara-
tions have been well documented in the context of quantita-
tive predictions of in vivo metabolism. For example, the
predictions by isolated rat hepatocytes for the inhibitory
effects of metabolite(s) on the disposition of parent com-
pounds (i.e., product inhibition) were quantitatively successful
for diazepam (12) and phenytoin (17) in rat: the overwhelm-
ing accumulation of inhibitory metabolite(s) in the liver
microsomes underpredicted in vivo metabolism of parent
drugs due to the lack of conjugation activities. In vitro
preparations with activated liver microsomes also underpre-
dicted in vivo UDP-glucuronosyltransferase activities in rat
(30) and human (31,32), likely due to the insufficient activation
of conjugative activity in liver microsomes to the extent
relevant to in vivo (31) and/or to the potent competitive
inhibitions by unsaturated long-chain fatty acids (oleic, linoleic,
and arachidonic acids) released during microsomal incubations
(33); in contrast, the metabolic clearance primarily catalyzed
by glucuronidation in hepatocytes generally well predicted in
vivo clearance in human (31,34,35). It has been consistently
demonstrated that the accuracy of predictions for hepatic
clearance by hepatocytes was superior to that by liver micro-
somes for a wide range of drugs in rat (10,21) and for the drugs
predominantly metabolized by glucuronidation in human (31).

Despite the data suggesting that the preparation of
freshly isolated hepatocytes is a superior in vitro tool for the
prediction of metabolic clearance in human to that of
subcellular fractions, the unpredictable availability of fresh
liver from human precluded this in vitro system from routine
applications. Cryopreserved preparation of human hepato-
cytes has instead become prevalent and versatile in vitro
system alternative to freshly isolated human hepatocytes.
Cryopreserved human hepatocytes have been reported to
retain qualitatively and quantitatively comparable metabolic
activities with those in hepatocytes from fresh liver (36–42).
However, the comparisons between predicted and observed

metabolic clearance in human in different datasets
(27,35,41,43,44) have indicated that the in vitro metabolic
clearance obtained from both human liver microsomes (43)
and cryopreserved human hepatocytes (27,35,41,44,45) sys-
tematically underpredicted in vivo metabolic clearance by ∼9
and 3∼6-fold, respectively. Consequently, in order to mitigate
the quantitative discrepancy between in vitro prediction and
in vivo observation in human, the empirical and regression-
based scaling factors specifically obtained from the in vitro
preparation used for the prediction, instead of biological
(anatomical) scaling factors such as microsomal content and
hepatocellularity, were employed for the extrapolation of in
vitro data to in vivo (27,35,43,45). Empirical (or regression-
based) scaling factor represents the discrepancy (observed/
predicted) between calculated metabolic (or intrinsic clear-
ance) from in vivo hepatic clearance and those predicted from
in vitro metabolic clearance in the cryopreserved human
hepatocytes by using hepatocellularity or in human liver
microsomes by using liver microsomal content as a biological
scaling factor. For example, regression analysis indicated that
the calculated metabolic clearance from in vivo was approx-
imately threefold larger (8.5×109 cells per kilogram body
weight, solid line in Fig. 1) than those predicted from
hepatocellularity (3.1×109 cells per kilogram body weight,
dotted line in Fig. 1) (27). Similar regression analyses for
different datasets found that the empirical scaling factors
necessary for accurate predictions were 5.2-fold (35) and 5.6-
fold larger (45) than hepatocellularity (2.5–3.1×109 cells per
kilogram body weight) and ninefold larger than the biological
scaling factor based on human liver microsomal content (856-
mg microsomal protein per kilogram body weight) (43). In
order to examine the potential discrepancy and adequate
(regression-based) scaling factor for the prediction in human,
the values of in vitro metabolic clearance were determined for
seven standard drugs (naloxone, buspirone, verapamil,
lidocaine, imipramine, metoprolol, and timolol) in the
preparations of cryopreserved human hepatocytes from ten
different donors (Fig. 1) (27). Consistent with the
observations in other datasets (27,35,41,43–45), large
interindividual variations were obtained in the in vitro
metabolic clearance among different donors by a maximum
of tenfold. Interestingly, the prediction for metabolic

Fig. 1. Interindividual variation of metabolic clearance among
cryopreserved human hepatocytes and an empirical scaling factor
for the quantitative prediction. Data are from (27)
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clearance in rat from rat liver microsomes and rat hepatocytes
did not show any significant systematic bias (21), suggesting
that the discrepancy can be only evident in human (27,35,41,43–
45). Possible mechanisms for the systematic underprediction by
biological scaling factors (41,46) are discussed in the following
section. For human tissue preparation, there is an impact from
extrinsic factors such as tissue handling and storage procedures
on the preparation used for the prediction (43). Therefore, the
empirical scaling factor needs to be determined in the human
preparation used for the extrapolation of in vitro data to in vivo.

Negatively biased interindividual variations of metabolic
clearance in the in vitro human preparations suggested that a
careful pooling of liver preparations as well as an empirical
evaluation of scaling factor would improve accuracy of
prediction by minimizing potentially biased coverage of
metabolizing enzyme activities in the individual preparation.
Figure 2 shows the example of the pooling process for the in
vitro preparations consisting of cryopreserved human hep-
atocytes from multiple donors. The calculated values of
metabolic clearances from in vivo data (reported from clinical
studies) for seven standard drugs (naloxone, buspirone,
verapamil, lidocaine, imipramine, metoprolol, and timolol
which are known to undergo the metabolic degradation
catalyzed by different enzymes responsible for both phases I
and II metabolism in human) were compared with those
determined in the individual preparation of cryopreserved
human hepatocytes from ten different donors (donor # a to j).
As shown in the figure, metabolic activity for imipramine
(standard compound e) in the preparations (donor # b and d)

deviated from the regression lines between in vivo and in
vitro metabolic clearance, suggesting that these two prepara-
tions had significantly lower activities for imipramine metab-
olism than those calculated by the empirical scaling factor
(i.e., slope of regression line, cells per kilogram). Therefore,
the regression line with better correlation between in vivo
and in vitro metabolic clearance represents a better coverage
by empirical (regression-based) scaling factor for major
metabolizing enzymes in human. In this study, the in vitro
metabolic clearance determined in the pooled sample con-
sisting of preparations from donors f and h provided pre-
dictions of in vivo metabolic clearance based on the best
regression line for the in vitro-to-in vivo extrapolation for 12
drugs [i.e., seven standard drugs (naloxone, buspirone,
verapamil, lidocaine, imipramine, metoprolol, and timolol)
five test drugs (propranolol, diclofenac, quinidine, phenace-
tin, and caffeine)].

Metabolic stability is routinely examined for new chem-
ical entities at the discovery stage in conjunction with the
early identification of metabolic “soft spot” which facilitates
structure modification for the lead optimization. Because of
the presence of all hepatic drug-metabolizing enzymes and
cofactors at physiological levels, the intact hepatocytes are
generally more relevant in vitro experimental system than
liver microsomes even for the early screening of metabolic
stability (40,47,48). In order to clarify the limited predication
ability of the results from metabolic stability data with liver
microsomes for the in vivo metabolic clearance, the values of
metabolic stability in liver microsomes (as percent remaining)

Fig. 2. Correlation of metabolic clearance between in vitro and in vivo among cryopreserved hepatocytes from different donors
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are plotted against those in hepatocytes (as metabolic
clearance) based on in-house dataset (Fig. 3). As clearly
shown in these figures, the compounds having metabolic
stability in liver microsomes >30% remaining could have a
wide range of metabolic stability (metabolic clearance) in the
corresponding hepatocytes. In contrast, the compounds
having metabolic stability in liver microsomes <30% remain-
ing were very unstable also in the hepatocytes with the
metabolic clearance of >100 mL/min per kilogram. Dataset
with rat liver microsomes and hepatocytes was much larger
than that with human samples, while no species difference
was observed in the cutoff (30%) for the relation between
percent remaining in liver microsomes and metabolic clear-
ance in hepatocytes. Therefore, the usefulness of the screen-
ing study with human liver microsomes would be limited to
the higher-throughput screening of no promising compounds
in terms of metabolic stability which needs to undergo
structure modification based on the information on the
metabolic “soft spot.”

One of the goals at drug discovery stage is to identify the
drug candidates which likely possess appropriate pharmaco-
kinetics with lower hepatic clearance and higher oral bio-
availability in human especially when the drug is favorably
given to the patients by oral administration. Shibata et al. (27)
reported that the in vivo hepatic clearance in human was
successfully predicted with cryopreserved human hepatocytes
suspended in 100% human serum for the model drugs which
mainly undergo the elimination by the metabolism in human
liver. The subsequent reports consistently indicated that the
hepatocytes suspended in 100% serum have more accurately
predicted in vivo metabolic clearance in rat (49) and human
(47,50) than those in the absence of serum. The method has
been applied to the prediction of pharmacokinetics (clear-
ance, bioavailability, and terminal half-life) in human for drug
candidates, and the accuracy of predictions was evaluated by

the comparison of predicted values with the observed
pharmacokinetics in first-in-human (FIH) studies (Table I
and Fig. 4). The oral clearance (CLoral) was calculated from
area under the curve (AUC) and dose after oral adminis-
trations of drug candidates in the FIH studies as follows:

CLoral ¼ Dose
AUC0�1

ð1Þ

For the prediction of CLoral from in vitro data, the
metabolic clearance determined in the cryopreserved human
hepatocytes suspended in 100% human serum was extrapo-
lated to that for in vivo (CLmet) with an aid of the regression-
based empirical scaling factor for the preparation used as
previously described. The hepatic clearance (CLH) and
hepatic availability (FH) in human were calculated by the
dispersion model (51) incorporating predicted metabolic
clearance (CLmet), dispersion number (DN, 0.17) (51), and
hepatic blood flow in human (QH, 21 mL/min per kilogram)
(52) as follows:

CLH ¼ QH �RB � 1� 4a

1� að Þ2 exp a�1
2DN

h i
� 1� að Þ2 exp � aþ1

2DN

h i
0
@

1
A

2
4

3
5

ð2Þ

FH ¼ 1� CLH

QH �RB
ð3Þ

where a ¼ 1þ 4� RN �DNð Þ0:5 , RN ¼ CLmet= QH �RBÞð ,
and RB represents blood-to-plasma concentration ratio. By
using the calculated CLH and the mean value of apparent
volume of distribution (Vd) from preclinical species corrected
by the species difference in the unbound fraction in plasma

Fig. 3. Comparison between liver microsomes and hepatocytes for the metabolic stability screening at
discovery stage
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(18,23,53), the terminal half-life (t1/2) in human was predicted
as follows (18):

t1=2 ¼ 0:693� Vd
CLH

ð4Þ

Based on the reports that the rat can serve as a reliable
animal model to predict drug absorption in human based on
the linear correlation in the percent of absorbed dose
between rat and human (54,55), the absorption fraction (fa)
in human was predicted from the combined recovery of
radioactivity from bile and urine after an oral administration
of radiolabeled compound to the bile duct cannulated rat.
Assuming that the intestinal metabolism was negligible for

the compounds (i.e., FG =1 in Eq. 5), the predicted fa was then
used for the prediction of CLoral as follows (23):

CLoral ¼ CLH

f a � FG � FH
ð5Þ

As shown in Fig. 4, the predicted terminal half-lives and
CLoral reasonably well agreed with those observed in FIH
studies for all ten drug candidates. These data suggested that
the in vitro system consisting of cryopreserved human
hepatocytes suspended in 100% serum can predict pharma-
cokinetics in human for the drug candidates which undergo
hepatic metabolism as a predominant route of elimination.
The prediction has facilitated prioritization/selection of clin-
ical development candidates with POS assessment of human
pharmacokinetics at the preclinical stage prior to the entry of
clinical studies.

LIMITATION OF IN VITRO METABOLIC CLEARANCE
TO PREDICT IN VIVO INTRINSIC CLEARANCE

Systematic underpredictions of in vivo metabolic clear-
ance have been reported for human when the standard
biological scaling factors were used to extrapolate the values
of metabolic clearance determined in human liver microsomes
and isolated (or cryopreserved) human hepatocytes to those in
vivo as described in the previous section (22,23,26,27,35,41,43–
46). Iwatsubo et al. (26) reported significant discrepancy
between in vivo intrinsic clearance and in vitro metabolic
clearance for 25 drugs in human (Fig. 5). As shown in the
figure, for most outliers having >5-fold difference between in
vivo and in vitro, the calculated values of in vivo intrinsic
clearance from human were sevenfold to 80-fold higher than
that predicted from the metabolic clearance determined in the
in vitro studies. Several possible reasons for the discrepancy are
discussed in the following sections.

The interindividual variation in the metabolic activities
would likely be caused by the intrinsic factors such as genetic

Table I. Prediction of Terminal Half-life and Oral Clearance in First-in-Human Studies (Data From In-house Database)

Compound #

Observed in FIH study Predicted

Dose (mg) t1/2 (h) CLoral
a (mL/min/kg) t1/2

b (h) fa
c CLoral

d (mL/min per kilogram)

1 0.5 5.1 0.36 2–5 0.59 1.3
2 1 11.4 5.5 4–5 0.66 6.1
3 0.4 9.4 1.2 6–11 0.80 0.54
4 5 7.9 2.4 2–3 0.84 7.9
5 12.5 13.1 10.9 4–10 0.82 9.3
6 2.5 14.1 33.4 14 0.68 35.8
7 0.5 3.5 26.5 3–6 0.69 22.5
8 5 40 1.0 20 0.76 3.6
9 10 19 2.1 9 0.79 9.2
10 350 8.9 12.8 9 0.50 24.6

aCLoral ¼ Dose
AUC0�1

b t1=2 ¼ 0:693� Vd
CLH

where Vd represents the observed Vd in preclinical species (corrected by unbound fractions) and CLH represents the value
predicted from the incubation of cryopreserved human hepatocytes suspended in 100% human serum

cCombined fractions of radioactivity (percent of dose) excreted into bile and urine after PO dosing of radiolabeled compound to bile duct
cannulated rats

d CLoral ¼ CLH
fa�FH

where CLH and FH represent the values predicted from cryopreserved human hepatocytes suspended in 100% serum.

Fig. 4. Comparison of predicted and observed oral clearance in First-
in-Human (FIH) studies. Numbers are corresponding to those
compounds in Table I
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polymorphism, smoking, alcohol drinking, or drug adminis-
tration. However, the intrinsic variability itself would result in
a uniform variation, leading to both overpredictions and
underpredictions of in vivo clearance by in vitro metabolic
clearance. The values of in vitro metabolic clearance of
midazolam determined in S-13 fractions prepared from
biopsy samples were extrapolated to the hepatic clearance
by using standard biological scaling factor (56,57). The
predicted clearance was well correlated with in vivo clearance
calculated from pharmacokinetic information on the same
individuals, irrespective of a large interindividual difference
in the CYP3A content between 1.6 and 27.3 pmol/mg of S-13
protein. These results suggested that the extrapolation of in
vitro metabolic clearance determined in the in vitro samples
prepared under well-controlled condition (e.g., biopsy) well
predicts in vivo metabolic clearance and interindividual
variation in human by using biological scaling factor (56,57)
as observed for rat studies (21). Therefore, the extrinsic
factors such as preparation process and/or storage condition
of liver samples from human are likely responsible for the
potential loss of metabolic activity, resulting in the systematic
underprediction by biological scaling factors for human
samples (23,27,38,41).

The extrahepatic metabolism for the drug in human has
been well documented (58–60), which could theoretically
contribute to the discrepancy between in vivo intrinsic
clearance and in vitro metabolic clearance (in vivo> in vitro).
Metabolizing enzymes in the extrahepatic tissues include
CYP isoforms (61), flavin-containing monooxygenases
(62,63), carboxylesterase (64–67), and UDP-glucuronosyl-
transferases (68). Especially for the compounds undergoing
CYP3A-mediated metabolism in the liver with negligible
urinary excretion as a parent form, the intestinal first-pass
metabolism (as a clearance in the intestine, CLG, in Eq. 6)
can significantly contribute to the total body clearance (CLtot)
as a hidden factor as follows (69–71):

CLtot ¼ CLH þ FH � CLG ð6Þ

Therefore, the hepatic clearance (and in vivo metabolic
clearance in the liver) calculated from total body clearance is
likely overestimated by ignoring potential clearance from
intestinal metabolism (Eq. 6). However, the contribution of

intestinal first-pass metabolism has been reported to be
quantitatively significant for CYP3A substrates only when
the compound undergoes extensive first-pass metabolism in
the liver with the hepatic metabolic clearance for unbound
drug of >100 mL/min per kilogram (which corresponds to
>4 mL/min per gram liver assuming that the liver and body
weights in human are 1,700 g and 70 kg, respectively) (72,73).
These data suggested that the overestimation would be only
evident for the compounds extensively metabolized by both
liver and intestine such as cyclosporine (74), tacrolimus (75),
and midazolam (76,77). Generally, the quantitatively impor-
tant contribution of extrahepatic metabolism to the total body
clearance becomes discernible by the specialized surgical
procedures applied to assess the AUC values after drug
administration and blood sampling at a number of sites
relative to the liver and the extrahepatic organs of interest,
which is practical only in the experimental animals (30,70,78).
Instead, the judicious combination of in vitro metabolic
clearance from preclinical animals as well as human and in
vivo total body clearance in preclinical animals has been
successfully adopted for the prediction of hepatic clearance in
human with an aid of empirical and drug-specific scaling
factor for the in vitro-to-in vivo extrapolation (43,79,80).
Drug-specific scaling factor represents a correction factor for
any systematic difference between in vitro and in vivo
parameters or systematic underprediction of in vivo clearance
caused by indiscernible factor(s) including potential contri-
bution of extrahepatic metabolism determined by the in vitro/
in vivo correlation (or IVIVC) approach. Although the
mechanism(s) of discrepancy would not be fully understood
by the time when the new drug candidate enters the
predevelopment stage, the IVIVC method has been helpful
for the preliminary prediction of clearance in human.

Systematic underprediction of in vivo metabolic clear-
ance can be also caused by the lack of appropriate correction
of nonspecific bindings of compounds to the in vitro
incubation matrices such as microsomal lipids and cellular
components. It is an important tenet of pharmacokinetics that
the only unbound compound, which is assumed to undergo
the free exchange and reach rapid equilibrium between
outside and inside cells, can be subject to the metabolism
and excretion. Therefore, the unbound fractions in blood and/
or in the in vitro incubation matrices have been often used to
convert the values from enzyme kinetics into that for the
unbound compound in order to quantitatively predict phar-
macokinetics in experimental animals and human
(19,35,43,81,82). The prediction ability of in vitro metabolic
data obtained from human liver microsomes was examined
for 29 drugs with wide ranges of structure and physicochem-
ical property (19): predictions for the hepatic clearance (CLH)
were carried out with “well-stirred” model (83) either
disregarding both unbound fractions in the blood (fB) and in
the microsomal reaction mixture (fm; Eq. 7), incorporating
only fB (Eq. 8) or incorporating both fB and fm (Eq. 9).

CLH ¼ QH � CLu;met

QH þ CLu;met
ð7Þ

CLH ¼ QH � fB � CLu;met

QH þ fB � CLu;met
ð8Þ

Fig. 5. Correlation between in vivo intrinsic clearance and in vitro
metabolic clearance for 25 drugs in human. Data are taken from (26)
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CLH ¼
QH � fB � CLu;met

fm

QH þ fB � CLu;met

fm

ð9Þ

As shown in Fig. 6, the predictions based on the in vitro
values reasonably well agreed with human hepatic clearance
when both unbound fractions were taken into predictions
(shown by open circles in Fig. 6). For these drugs, the
systematic underprediction of hepatic clearance was observed
if only unbound fraction in the blood was incorporated into
the equation (shown by closed triangles in Fig. 6). On the
other hand, the discrepancy (as expressed by fold error
between predicted and observed hepatic clearance) became
indiscernible among prediction models with or without taking
unbound fractions into the prediction for the drugs with high
hepatic clearance. As the hepatic clearance becomes closer to
hepatic blood flow, the clearance is more independent of
metabolic (intrinsic) clearance consisting of unbound frac-
tions (in blood/microsomal incubation mixture) and intrinsic
clearance for unbound form. Results indicated that the
incorporation of both unbound fractions (fB and fm) would
provide best predictions of human hepatic clearance based on
the in vitro microsomal data regardless of structure, physico-
chemical property, or hepatic clearance of drugs.

The hepatic clearance is described by different equa-
tions, depending on the mathematical model used for
describing disposition of compounds in the liver, and the
relation between hepatic clearance and intrinsic clearance
(CLint) depends on the models as shown by Fig. 7. Under the
assumption that the drug (or chemical entity) is mixed
infinitely well inside the liver, the “well-stirred” model is
applicable to the hepatic clearance (83):

CLH ¼ QH � CLint

QH þ CLint
ð10Þ

In the opposite extreme case in terms of flow dynamics
of solutes in the sinusoidal space of the liver, the drug is

mixed only in the infinitely small section along the flow path
from input to output of the liver, the “parallel-tube” model is
applicable (83):

CLH ¼ QH � 1� e�
CLint
QH

� �
ð11Þ

In addition to the aforementioned two extreme cases,
based on the analysis on the distribution of hepatic residence
time of solutes after the bolus injection into the liver, the
“dispersion” model (Eq. 2) described in the previous section
was introduced as the mathematical model more relevant to
the observed flow dynamics in the liver than others (84):

CLH ¼ QH �RB � 1� 4a

1� að Þ2 exp a�1
2DN

h i
� 1� að Þ2 exp � aþ1

2DN

h i
0
@

1
A

2
4

3
5

ð12Þ

where a ¼ 1þ 4� RN �DNð Þ0:5 and RN ¼ CLint=QH� DN is
the dispersion number which determines the extent of
dispersion of solutes in the liver: the “dispersion” model
(Eq. 2) becomes both “well-stirred” (Eq. 10) and “parallel-
tube” (Eq. 11) models when the DN approaches infinite (i.e.,
infinitely mixed condition) and zero (i.e., no mixing condi-
tion), respectively. The prediction of in vivo hepatic clearance
from the same intrinsic clearance is not significantly different
among models, while the calculation of in vivo intrinsic
clearance from the observed hepatic clearance is more
dependent on the models for the compounds with higher
hepatic clearance, closer to the hepatic blood flow rate
(Fig. 7a). For example, the values of in vivo intrinsic
clearance for the hypothetical compound having hepatic
clearance of 20 mL/min per kilogram are calculated to be
420, 93, and 64 mL/min per kilogram by “well-stirred,”
“dispersion,” and “parallel-tube” models, respectively, when
the hepatic blood flow rate (QH) is assumed to be 21 mL/min
per kilogram (52). For the direct comparison of intrinsic
(metabolic) clearance between in vivo and in vitro, the “in
vivo” intrinsic clearance is often calculated from in vivo
clearance by using “well-stirred” model because of the
mathematical simplicity. The calculation can yield the “over-
estimated in vivo” intrinsic clearance, leading to the under-
prediction by the in vitro intrinsic (metabolic) clearance. On
the other hand, the prediction of oral clearance (Fig. 7b),
which directly relates hepatic clearance and availability with
information on absorption fraction to AUC value after oral
administration (Eqs. 1 and 5), highly depends on the model
used for the prediction, especially for the compounds with
relatively high intrinsic clearance (> 20 mL/min per kilo-
gram). Comparisons of the accuracy in the predictions among
different mathematical models have been reported (10,21,79).
Results indicated that the three models predicted hepatic
clearance with equal levels of accuracy (10,21), while the
predictions of in vivo metabolic clearance from in vitro data
were comparable between “parallel-tube” and “dispersion”
models, and both more accurate with less biased and higher
precision than “well-stirred” model (21) or the “dispersion”
model provided more reliable prediction for the high-
clearance drugs than the other models (20,85–87).

Fig. 6. Accuracy of prediction for the hepatic clearance in human
from in vitro metabolic clearance with or without incorporating
unbound fractions. Data in the shaded area are considered to be
successful (0.5<fold error<2). Data are taken from (19)
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The expression of intrinsic clearance for the unbound
compound involved in the overall elimination in the liver
(CLint,all) has been further expanded into the incorporation of
distinct processes representing diffusions on the sinusoidal
membrane and biliary excretion as well as metabolic degra-
dation (88–90). The general (or expanded) expression of
CLint,all (Eq. 13) consists of clearance for the diffusions
through membrane in the direction of sinusoid → hepatocytes
(PSinf) and that of hepatocytes → sinusoid (PSeff) as well as
the clearance for metabolic degradation and/or biliary
excretion as a parent form if any (CLint). The equation has
become more versatile and crucial as the roles of uptake and
efflux transporters as well as diffusion barriers have been
increasingly recognized as a rate-determining step in the
elimination from the liver (4,6,7).

CLint;all ¼ PSinf � CLint

PSeff þ CLint
ð13Þ

Equation 13 indicates that the rate-determining step in
the overall elimination in the liver changes according to the
relative magnitude of PSeff versus CLint. In the case that the
membrane permeability (or PSeff) of the compound is much

less than the metabolic clearance (or the clearance for the
metabolism plus biliary excretion if any, i.e., PSeff << CLint),
CLint,all becomes equal to PSinf as follows:

CLint;all ¼ PSinf � CLint

PSeff þ CLint
! PSinf when PSeff < < CLint ð14Þ

This indicates that the calculated in vivo intrinsic
clearance from in vivo hepatic clearance does not necessarily
represent the clearance for the metabolism and/or biliary
excretion. The in vivo intrinsic clearance can be much larger
than the predicted intrinsic clearance from in vitro (metabo-
lism) studies if the PSinf is larger than CLint. The value of PSinf
is more contributing to the in vivo intrinsic clearance when
transporter(s) is (are) more involved in the influx process
especially for the less lipophilic compounds in Fig. 5. These
compounds likely show larger discrepancies between in vivo
(overall) intrinsic clearance and in vitro metabolic clearance
(i.e., in vivo intrinsic clearance > in vitro metabolic clearance).
In contrast, for the highly membrane permeable compounds
(PSinf and PSeff >> CLint), the contribution of transporter(s)
to either PSinf or PSeff would be less significant, and the
passive diffusion determines the clearance for both directions
(PSinf ≈ PSeff). Then, CLint,all becomes equal to CLint as
follows:

CLint;all ¼ PSinf � CLint

PSeff þ CLint
! CLint when PSinf � PSeff

>> CLint ð15Þ

Therefore, under the condition in Eq. 15, the in vivo
intrinsic clearance can represent the clearance by metabolism
(plus biliary excretion as a parent form if any). One may need
to be aware that the relative magnitude of PSeff vs. CLint can
also change along with the escalation of dose, due to the
decreased CLint by the saturation of metabolism (91,92).

Recent analysis on the relation between plasma protein
binding and transporter-mediated hepatic uptake also pro-
vided possible explanations for the underprediction of hepatic
clearance (93). The trend for the underprediction of in vivo
hepatic clearance in human was more evident for the
compounds which were highly bound to the plasma proteins
(unbound fraction<5%) and substrates of hepatic uptake
transporters (40). These observations suggested that the
overestimation of the effect of plasma protein binding can
lead to an inaccurate prediction of in vivo intrinsic clearance:
the plasma protein binding would not restrict the access of
compounds to the hepatocytes as much as anticipated from
the assumption of rapid equilibrium between unbound and
bound forms of compound in the process of high extraction
by a transporter-mediated hepatic uptake (93,94).

PREDICTION OF TARNSPORTER-MEDIATED
HEPATIC UPTAKE CLEARANCE FROM IN VITRO
DATA

Theoretically, the transporter-mediated uptake often or
partly at least becomes a rate-determining step as a determi-
nant of hepatic intrinsic clearance as described in the previous

Fig. 7. Effects of intrinsic clearance (CLint) on hepatic clearance
(CLH; a) and oral clearance (CLoral; b) in various mathematical
models. Simulations were carried out by “well-stirred” model (Eq.
10), “parallel-tube” model (Eq. 11) and “dispersion” model (Eq. 2).
The values of QH, fB, and DN are 21 (mL/min/kg), 1.0, and 0.17,
respectively. The value of CLoral was calculated from CLH and FH

(Eq. 3) based on the Eq. 5, assuming fa � FG ¼ 1
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section (4,7,8,95). Much evidence has been accumulated to
support the notion that the transporter-mediated hepatic
uptake has been playing an important role in the hepatic
intrinsic clearance (and hepatic clearance) in human for many
drugs (4,7). Such evidence includes the drug–drug interaction
by the inhibition of transporters (1–3) and interindividual
variation of pharmacokinetics by the genetic polymorphism
of transporters (96–100). For example, cyclosporine A
significantly increased systemic exposures of cerivastatin (1)
and repaglinide (3) by inhibiting OATP1B1-mediated hepatic
uptake (2). Genetic polymorphism of OATP1B1 (96–100)
caused variation in the pharmacokinetics in human for many
drugs such as fexofenadine (101), pitavastatin (102,103),
pravastatin (104–110), repaglinide (111,112), rosuvastatin
(113), temocapril (109), and valsartan (109). Although these
data strongly suggest that the transporters are involved in the
elimination process of drugs as much as the pharmacokinetics
are affected by the perturbations of transporter activities, the
quantitative prediction of overall intrinsic clearance (CLint,all

in Eq. 13) by each individual clearance remains to be
challenging (90).

For the quantitative extrapolation of human CYP-
mediated metabolic activity in the recombinant CYP isoform
to that in the liver microsomes, the utilization of relative
activity factor (RAF) was proposed by Crespi (114). The
RAF represents the ratio of the metabolic activity of the
CYP-isoform-specific marker substrate in the human liver
microsomes to that in the complementary-DNA-expressed
system for the same isoform, and the value quantitatively
facilitates bridging metabolic activities between both in vitro
systems (115–118). Successful extrapolations of in vitro
metabolic clearance obtained in the recombinant CYP iso-
forms to that in vivo have been well documented for the
compounds with less significant contribution of hepatic
uptake to overall clearance in human (115,119–121). This
approach cannot only provide quantitative information on the
relative contribution of CYP isoform(s) involved in the metab-
olism of the compound of interest but also the preliminary
prediction of hepatic clearance attributable to the CYP-mediated
metabolism in human at discovery stage (87,116,122,123). Similar
methods have been applied to the quantitative assessment for
relative contribution of particular transporter to the overall
uptake of the compound of interest in hepatocytes by using
RAFs with the reference ligands such as taurocholate (124) and
estradiol-17β-D-glucuronide (E217βG) (125) to Ntcp and
Oatp1a1, respectively. In these approaches, the values of RAF
were calculated as the ratios of uptake clearance of test
compound to that of reference ligand in the transporter
expressing systems (Rexp) and hepatocytes (Rhep). The percent-
age of contribution was then calculated as follows (124,125):

% contribution ¼ Rexp

Rhep
� 100 ð16Þ

The method has been further extended to the assessment of
percentage contributions of OATP1B1- andOATP1B3-mediated
hepatic uptakes of pitavastatin (126), E217βG (126), and
fexofenadine (127) in human hepatocytes by applying reference
ligands, estrone 3-sulfate and cholecystokinin octapeptide for
OATP1B1 and OATP1B3, respectively, to the uptake clearance
in the transporter-expressing HEK293 cells and cryopreserved

human hepatocytes. The concept of RAFwith reference ligand to
the specific transporter has been successfully utilized to predict
percentage contribution of particular transporter to overall
hepatic uptake process observed in hepatocytes, and the method
warranted potential application to the quantitative predictions for
the hepatic clearance in human based on the clearance deter-
mined in the specific transporter-expressing cells.

Cryopreserved human hepatocytes have been used for
the assessment of hepatic clearance as they have demonstrat-
ed to retain the activities of OATP transporters which were
reasonably comparable with those in freshly isolated hepato-
cytes from human (128–130). A typical experimental protocol
for the determination of initial uptake rate includes a rapid
separation of cellular component from the incubation medi-
um by the centrifugation of cell suspension layered over
silicone oil, followed by the determination of compound
amount in the cell lysate after the digestion with potassium
hydroxide or trichloroacetic acid (131,132). The designated
time points for the sampling need to be short enough to
calculate the initial slope for the linear uptake into the cell
along the incubation time, when the uptake process is assumed
to be predominant in the accumulation of compounds in the
cell. Also, the radiolabeled compound is often used in order to
avoid the potential underestimation of the transported amount
in the cell caused by the metabolic degradation. Therefore,
most of published studies have examined the hepatic uptake of
radiolabeled compounds into the cells through the silicon oil
layer by the rapid centrifugation (126,128,133,134), while the
method is not practical at the early discovery stage when the
radiolabeled compound is not routinely available. Recently,
the “media loss” assay in the isolated rat hepatocytes, which
determines the loss of parent compound from the incubation
medium, has been proposed to quantitatively predict the
impact of hepatic uptake on the intrinsic clearance in vivo for
the unbound compound in rat (90,135). The values of
(unbound) intrinsic clearance for 36 compounds, which were
not significantly eliminated into bile or urine as parent forms,
were calculated from (1) the initial disappearance rate from
whole suspension (conventional method), (2) the AUC of
compound concentrations in the incubation medium, and (3)
the initial disappearance rate from the incubation medium
(Fig. 8). Predicted intrinsic clearance was compared with the
observed in vivo values, and the comparison indicated that the
conventional prediction (based on the disappearance from
whole-cell suspension) yielded the poorest projection (r2=0.25
and average ratio=57) among three approaches, while the
prediction from the initial disappearance rate from medium
provided the best projection (r2= 0.72 and average ratio=3)
(135). Large differences (as the fraction of drug in the
incubation medium<0.65) were observed for the majority of
compounds between concentrations in the whole-cell
suspension (conventional assay) and in the incubation medi-
um (“media loss” assay), suggesting that the incorporation of
hepatic uptake clearance is crucial for the accurate prediction
of in vivo intrinsic clearance for most of the compounds
tested in the study. The values of in vivo intrinsic clearance
for the marketed drug transporter substrates (monelukast,
bosentan, atorvastatin, and pravastatin) were also predicted
well by the in vitro intrinsic clearance based on the initial
disappearance rate in the “media loss” assay with freshly
isolated human hepatocytes (135) (Table II). Interestingly, the
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prediction by the “media loss” assay based on the AUC
resulted in more significant underprediction (average fold
error=16) than that based on the initial disappearance rate
(average fold error=3). Theoretically, the intrinsic clearance
calculated from “media loss” represents the value for overall
elimination consisting of diffusions on the sinusoidal mem-
brane and biliary excretion as well as metabolic degradation
(Eq. 13) only when the calculation is based on the AUC from
the infinite integration of medium concentration. Therefore,
the deviation of calculated intrinsic clearance based on the
AUC from observed in vivo intrinsic clearance (Fig. 8)
suggests potential degradation of cellular activities for trans-
porters/enzymes during incubation for a long time period for
the accurate assessment of AUC values (136,137). It was also
suggested that the “media loss” assay from the initial
disappearance rate may effectively eliminate the terminal
phases of polyexponential profiles, the component of which
can be affected by the artifacts inherent in the in vitro
systems: the in vitro hepatocytes system may have a greater

efflux (hepatocytes → incubation medium) clearance by
passive diffusion through the larger surface area than the
cells only facing to the perisinusoidal space of Disse in
the intact liver (138). The concept of “media loss” assay for the
accurate assessment of hepatic uptake clearance has been
extended to the two-compartment model which enabled accu-
rate predictions of the clearances for hepatic uptake, passive
diffusion, and metabolism for atorvastatin, cerivastatin, and
indomethacin by simultaneous fittings to the changes of drug
concentrations in both incubation medium and cells along the
incubation time in rat hepatocytes (139). The hepatic clearances
for these drugs were predicted from the obtained parameters,
and the predicted values from “media loss” assay well agreed
with the observed hepatic clearance, in contrast to that from
conventional assay (based on the disappearance fromwhole-cell
suspension). This approach allows the predictions for the
contributions of hepatic uptake to both overall hepatic clearance
(Eq. 13) and unbound drug concentrations in the hepatocytes.
Compartment-model-based analysis has been further extended
to the mechanistic assessment of Michelis–Menten parameters
(Km andVmax) responsible for the transporter-mediated hepatic
uptake, bidirectional passive diffusion, and nonspecific binding
which directly reflect those obtained from in vitro experiments
(140). These mechanistic approaches can provide an integrated
tool not only for the accurate predictions of pharmacokinetics
but also for the predictions of potential drug–drug interactions
by transporter(s) and/or CYP(s) and of efficacy by liver-targeted
drug candidates.

Future prediction of hepatic and oral clearance in human
judiciously incorporates both information on metabolic clear-
ance and transporter-mediated membrane permeability of
drug candidates into the prediction paradigm as described in
Fig. 9. Potential contribution of transporter-mediated clear-
ance to overall hepatic clearance would be identified by the
evaluation of difference in the concentrations between whole
cells and medium in the incubation with cryopreserved
human hepatocytes (90,135). Following the identification of
positive contribution, the compartment-model based analysis
for the time-course of drug concentrations in the hepatocytes
(139,140) provides parameters for each transporter-mediated
kinetic process in hepatic clearance (Eq. 13). The integrated
approach to the in vitro-to-in vivo extrapolation of hepatic
clearance by combining in vitro metabolic and transporter-
mediated clearance would allow the predictions of hepatic
and oral clearance for the drug candidates undergoing
kinetically significant transporter-mediated clearance process
(es) in human.

Fig. 8. Ratio of intrinsic clearance for unbound drugs calculated from
plasma clearance in rat (CLint, ub, in vivo) to that determined in the
incubation with isolated rat hepatocytes (CLint, ub, in vitro). Calcu-
lations of in vitro intrinsic clearance (CLint, ub, in vitro) were based on
(1) the initial disappearance rate in whole suspension [conventional
method] (filled circles, with average ratio=57, dotted line), (2) the
AUC in the medium (filled triangles, with average ratio=16) and (3)
the initial disappearance rate in the media (empty circles, with
average ratio=3, solid line) in the isolated rat hepatocytes. Data are
taken from (135)

Table II. Prediction of In Vivo Intrinsic Clearance for Unbound Drugs Using Human Hepatocytes Based on the Initial Disappearance Rate in
“Media Loss” Assay (Data From (135))

Compound Mean CLint (μL/min/106 cells)

In vivo intrinsic clearance for unbound drug (mL/min per kilogram)

Predicted Observed

Montelukast 360±250 1,100 2,700
Prazosin 12±1.2 36 50
Pravastatin 2.1±1.4 6.6 23
Atorvastatin 100±19 320 910
Bosentan 38±6.5 120 340
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CONCLUSION

With recent advance in technology and continued
accumulation of our knowledge for drug transporters (4,7),
the identification of transporter(s) responsible for the phar-
macokinetics of drug candidates has greatly facilitated both
discovery and development of new drug candidates with
higher POS from drug metabolism and pharmacokinetics
point of view. For example, the transporter(s) involved in the
hepatobiliary transport in human can be directly identified
(141–143) by using the panels of double transfectant (or
quadruple transfectant) such as OATP1B1/MRP2 (142,144),
OATP1B1/MDR1 (142), OATP1B1/BCRP (142), OATP1B3/
MRP2 (145,146), OATP1B1 OATP1B3 OATP2B1/MRP2
(147) and OCT1/MDR1 (148), which consist of the trans-
porters for sinusoidal uptake/canalicular efflux on the basal/
apical membranes in the polarized cell lines. Like the
identification of CYP isoform(s) involved in the metabolism
of the drug candidate, the information on the identified
transporter(s) would be very useful to evaluate the liability of
potential drug–drug interaction/genetic polymorphism and to
assess the POS for liver-targeted candidates. However, unlike
the metabolism study with recombinant CYP isoforms, the
quantitative predictions of in vivo clearances from the trans-
cellular transport data in the transporter(s)-transfected cell
lines remain to be explored (95,149).

Cryopreserved human hepatocytes have been widely and
routinely utilized as the most versatile in vitro system which
maintains both metabolizing and transporting activities rea-

sonably comparable with those in the freshly isolated human
hepatocytes (27,36,40,42,44,45,47,48). Despite the fact that
the values and advantages of hepatocytes for the prediction of
hepatic clearance in human have been demonstrated as
described herein, the limitation of capability for the quanti-
tative prediction, especially characterized by a systematic
underprediction of scaled-up hepatic clearance with a biolog-
ical scaling factor (hepatocellularity), has emerged from
different datasets as a significant concern. In order to mitigate
the discrepancy between in vitro predication and in vivo
observation, the empirical and regression-based scaling
factors have been inevitably employed for the accurate
predictions by human hepatocytes (27,34,35,43,45,79,135).
The understanding of potential mechanism(s) underlying the
systematic underprediction will improve our confidence of
prediction by rationalizing the empirical strategy for the in
vitro-to-in vivo extrapolation of data from human hepatocytes
(40,90).

The hepatic clearance has been recognized as a hybrid
parameter consisting of distinct clearance processes such as
passive diffusion, hepatic (sinusoidal) uptake, efflux from cell
to sinusoid, metabolism, biliary excretion, and (canalicular)
transporter-mediated efflux into the bile. Although the
equation for (overall) intrinsic clearance in the hepatic
elimination (Eq. 13) can be simplified under certain circum-
stances (Eqs. 14 and 15), it is generally difficult to identify the
rate-determining step in the hepatic disposition, especially
when the information on relative magnitude of clearance
representing each process is limited for the drug candidate of
interest at discovery stage. The assay of both concentrations
in the incubation medium and whole suspension of hepato-
cytes along with the incubation time can serve as one of the
simple methods to identify the compounds having a signifi-
cant contribution of hepatic uptake to the in vitro intrinsic
clearance (135). The positive data from this assay will provide
strong rationale for further studies on the identification of
transporter(s) and the quantitative assessment of hepatic
uptake process as a potential rate-determining step in hepatic
clearance (139,140).

Future prediction of pharmacokinetics in human will
increasingly rely on the systematic and integrated approaches
to the hepatic and total-body clearance. Successful prediction
paradigm will certainly need to incorporate the in vitro piece
of quantitative information on physicochemical properties,
kinetics of transporter-mediated (sinusoidal and canalicular)
transports, and metabolic degradation in the liver as well as
qualitative information on the identified transporter(s) and
enzyme(s) responsible for the pharmacokinetics in human.
Figure 9 shows lead optimization process for the successful
development candidate by the predictions of hepatic and oral
clearance in human described in this article. Future workflow
is also extended by incorporating the evaluations of trans-
porter-mediated hepatic clearance into the optimization
strategy as shown by dotted lines. For metabolically promis-
ing NCEs, kinetically significant contribution of transporter-
mediated clearance process(es) to overall hepatic clearance
(Eq. 13) would be subsequently identified by in vitro experi-
ments using cryopreserved human hepatocytes. The informa-
tion on transporter(s) allows the assessment whether the
transporter-mediated clearance would likely be liable for high
hepatic clearance/interindividual variation/DDI and the con-

Fig. 9. Lead optimization for the successful development candidate
by the predictions of hepatic and oral clearance in human. Future
workflow for the incorporation of transporter-mediated hepatic
uptake into the optimization strategy is shown by dotted lines
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tribution should be mitigated by structure modification; or the
transporter-mediated clearance would likely be beneficial (for
example, for liver-targeted drug candidates) and the discov-
ery should proceed to further evaluations for the develop-
ment. A judicious combination of quantitative and qualitative
data from in vitro studies can allow the predictions for the
potential effects of transporter-mediated and/or CYP-medi-
ated drug–drug interactions and changes of pathophysiolog-
ical conditions on the unbound drug concentration in the liver
and target organ. It also allows a rational optimization of the
pharmacokinetic properties of drug candidates, leading to the
successful development of ideal drugs with fewer interindi-
vidual differences, fewer drug interactions, and more selective
delivery to the target organ (7).
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