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Abstract. For the accurate prediction of in vivo hepatic clearance or drug–drug interaction potential
through in vitro microsomal metabolic data, it is essential to evaluate the fraction unbound in hepatic
microsomal incubation media. Here, a structure-based in silico predictive model of the nonspecific
binding (fumic, fraction unbound in hepatic microsomes) for 86 drugs was successfully developed based
on seven selected molecular descriptors. The R2 of the predicted and observed log((1−fumic)/fumic) for
the training set (n=64) and test set (n=22) were 0.82 and 0.85, respectively. The average fold error (AFE,
calculated by fumic rather than log((1−fumic)/fumic)) of the in silico model was 1.33 (n=86). The predictive
capability of fumic for neutral drugs compared well to that for basic compounds (R2=0.82, AFE=1.18 and
fold error values were all below 2, except for felodipine and progesterone) in our model. This model
appears to perform better for neutral compounds when compared to models previously published in the
literature. Therefore, this in silico model may be used as an additional tool to estimate fumic and for
predicting in vivo hepatic clearance and inhibition potential from in vitro hepatic microsomal studies.
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INTRODUCTION

Significant progress have been made recently in the
prediction of in vivo hepatic clearance (1–3) and drug–drug
interaction potential (4–6). The determination of intrinsic
clearance (CLint) and inhibition constant (Ki) through in vitro
microsomal incubation can provide a basis for these predic-
tions. However, lipophilic drugs tended to bind nonspecifically
to microsomal phospholipids, resulting in an underestimation
of CLint (7–9) or an overestimation ofKi (10–12). Consequent-
ly, in vivo hepatic clearance and the extent of inhibitory drug
interactions were often underpredicted.

Investigators have tried to use relative low microsomal
protein concentration to avoid the nonspecific binding (13).
However, relative high concentrations (1 to 2 mg/mL) were
still needed when studying phase II metabolic reactions (14)
and in vitro assessment of the time-dependent inhibition
potential (15). As such, it is essential to correct the metabolic
kinetic parameters (CLint and Ki) by the unbound fraction to
microsomes (fumic) in order to ensure accurate pharmacoki-
netic estimation of potential drug candidates. Unfortunately,
currently available experimental methods for measuring the
fumic are relatively labor- and time-consuming.

In order to avoid these experimental studies, in silico
prediction of fumic has gained great interest recently. Austin
et al. (16) reported a linear relationship between log((1−
fumic)/fumic) and logP/D (logP for bases, while logD7.4 for
acids and neutrals) of 56 drugs (R2=0.82). Hallifax and
Houston (17) proposed that the relationship between logP/
D and log((1−fumic)/fumic) was nonlinear. They concluded
that the nonlinear empirical equation gave more unbiased
predictions of fumic for drugs with low binding affinity (fumic>
0.9) when compared with the model by Austin et al. Later,
Gertz et al. addressed the limitations of these empirical
predictive tools and their applicability for fumic predictions
over a range of lipophilicity and microsomal protein
concentrations (18). They concluded that the accuracy of
fumic predictions for highly lipophilic drugs was poor by both
equations, while the Hallifax equation provided more
accurate fumic predictions on average.

Interestingly, Sykes et al. (19) reanalyzed the data
reported by Austin et al. and found that the logP values
clearly correlated well with the transformed fumic (R

2=0.90)
for bases but less predictive for neutrals (R2=0.34) and acids
(R2=0.10). They obtained good discrimination between drugs
classified as strong binders (experimental fumic<0.50) and
those with a lower degree of binding (experimental fumic>
0.50) by molecular modeling approaches.

Recently, Gao et al. (20) developed a quantitative in
silico model correlating fumic of 1,223 drug-like molecules
with two-dimensional molecular descriptors. These investiga-
tors demonstrated that lipophilicity was the most important
molecular property contributing to fumic in this high perfor-
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Table I. Characteristics of, and Results Obtained for, the 86 Drugs Studied to Establish the Present In Silico Model

No. Dataset Drugs log((1−fumic)/fumic) Chemical class Observed fumic Predicted fumic Fold error Ref.

1 Training Bumetanide −1.0607 A 0.92 0.90 1.02 (16)
2 Training Cerivastatin −0.2688 A 0.65 0.75 1.15 (16)
3 Training Cinoxacin −1.0607 A 0.92 0.99 1.08 (16)
4 Training Diclofenac −1.5097 A 0.97 0.81 1.20 (16)
5 Training Emodin 0.6297 A 0.19 0.12 1.57 (18)
6 Training Gemfibrozil −0.5248 A 0.77 0.67 1.15 (18)
7 Test Glipizide −1.3802 A 0.96 0.96 1.00 (16)
8 Training Glyburide −0.6585 A 0.82 0.85 1.04 (16)
9 Training Ibuprofen −1.0048 A 0.91 0.85 1.07 (16)
10 Test Indomethacin −0.6297 A 0.81 0.93 1.15 (16)
11 Test Ketoprofen −1.0607 A 0.92 0.92 1.00 (16)
12 Training Losartan −0.9542 A 0.9 0.78 1.15 (16)
13 Test Mycophenolic acid −0.5754 A 0.79 0.89 1.12 (18)
14 Training Oxaprozin −0.8256 A 0.87 0.79 1.10 (16)
15 Test Piroxicam −1.0607 A 0.92 0.88 1.04 (16)
16 Training Repaglinide −0.4320 A 0.73 0.68 1.08 (18)
17 Test Rosiglitazone −0.4102 A 0.72 0.87 1.21 (18)
18 Test Sulfadoxine −1.5097 A 0.97 0.98 1.01 (16)
19 Training Sulindac −0.7884 A 0.86 0.87 1.01 (16)
20 Training Tenidap −0.1581 A 0.59 0.86 1.45 (19)
21 Test Tenoxicam −1.5097 A 0.97 0.85 1.14 (19)
22 Training Tolbutamide −1.5097 A 0.97 0.97 1.00 (16)
23 Training Tolmetin −1.1950 A 0.94 0.99 1.05 (16)
24 Test Warfarin −1.1950 A 0.94 0.68 1.38 (16)
25 Test Amiodarone 2.6981 B 0.002 0.00 1.86 (16)
26 Training Amitriptyline 1.0548 B 0.081 0.22 2.77 (16)
27 Training Betaxolol −0.2126 B 0.62 0.63 1.02 (16)
28 Training Buspirone −0.7533 B 0.85 0.40 2.10 (18)
29 Training Carvedilol 0.9542 B 0.1 0.15 1.53 (18)
30 Test Chlorpromazine 0.9080 B 0.11 0.11 1.02 (16)
31 Test Clomipramine 1.4034 B 0.038 0.08 2.07 (16)
32 Training Clozapine 0.4543 B 0.26 0.51 1.95 (16)
33 Training Codeine −1.3802 B 0.96 0.90 1.07 (18)
34 Training Dextromethorphan −0.4102 B 0.72 0.38 1.90 (18)
35 Training Diltiazerm −0.7884 B 0.86 0.33 2.59 (16)
36 Test Diphenhydramine −0.3889 B 0.71 0.48 1.48 (16)
37 Training Ezlopitant 1.6902 B 0.02 0.01 1.88 (19)
38 Training Fluvoxamine 0.4320 B 0.27 0.35 1.30 (28)
39 Training Imipramine 0.7202 B 0.16 0.26 1.61 (16)
40 Training Ketamine 0.0174 B 0.49 0.56 1.15 (19)
41 Test Levallorphan −0.7202 B 0.84 0.37 2.29 (18)
42 Training Lorcainide −0.0348 B 0.52 0.24 2.13 (19)
43 Test Mibefradil 1.5097 B 0.03 0.03 1.09 (18)
44 Training Miconazole 1.5097 B 0.03 0.08 2.73 (28)
45 Training Naloxone −0.8256 B 0.87 0.73 1.19 (18)
46 Test Nicardipine 1.3802 B 0.04 0.12 3.02 (19)
47 Training Phenytoin −0.6297 B 0.81 0.88 1.08 (28)
48 Training Promethazine 0.9080 B 0.11 0.16 1.46 (16)
49 Training Propranolol 0.1047 B 0.44 0.58 1.31 (16)
50 Training Quinidine −0.3680 B 0.7 0.45 1.57 (16)
51 Training Quinine 0.2499 B 0.36 0.45 1.25 (28)
52 Training Tamoxifen 2.5216 B 0.003 0.01 2.52 (16)
53 Training Terfenadine 1.6902 B 0.02 0.03 1.65 (18)
54 Training Thioridazine 2.0418 B 0.009 0.03 3.00 (16)
55 Training Trimeprazine 1.0548 B 0.081 0.12 1.54 (16)
56 Test Verapamil 0.2311 B 0.37 0.17 2.24 (16)
57 Training Zolpidem −0.8653 B 0.88 0.69 1.28 (19)
58 Training 2-Ethoxybenzemide −1.6902 N 0.98 0.92 1.06 (16)
59 Training Albendazole −0.1047 N 0.56 0.68 1.22 (16)
60 Test Aldosterone −0.1761 N 0.6 0.85 1.41 (28)
61 Training Alprazolam −0.6585 N 0.82 0.77 1.06 (16)
62 Training Amobarbital −1.5097 N 0.97 0.94 1.03 (16)
63 Training Androstenedione 0.0174 N 0.49 0.57 1.17 (28)
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mance model. However, the information of the original
dataset was not open to the public. Therefore, a model not
only with high prediction accuracy but also with open-sourced
dataset would be useful for researchers in assessing quantita-
tive structure vs. fumic relationships.

In this study, quantitative structure–fumic relationship was
constructed just based on molecular descriptors for a dataset of
86 drugs covering a large range of molecular properties.
Molecular descriptors were calculated using TSARTM software
version 3.3 (Accelrys Inc.) (21), preADMET (22), and SciFinder
Scholar 2007 (23). Then, the feature selection was performed by
stepwise regression, and an in silico model was established with
multiple linear regression (MLR) method. The principal
objectives of the study were, therefore, (1) to develop a
quantitative relationship between the molecular structure
descriptors and log((1− fumic)/fumic); (2) to estimate the
predictive accuracy of in silico model, and (3) to understand
what structural factors determining fumic.

MATERIALS AND METHODS

Data Collection

The observed fumic values of 86 drugs were obtained
from the literatures as described in Table I. These fumic

values were measured at the microsomal protein concentra-
tion of 1 mg/mL or converted to fumic values at 1 mg/mL
based on the equation proposed by Austin et al. (16). The
fumic values of each drug were transformed to log((1−fumic)/
fumic). As shown in Fig. 1, the fumic values of 86 drugs did not
follow a normal distribution. The transformation of fumic to
log((1−fumic)/fumic) yielded a more desirable distribution and
could reduce unequal error variances simultaneously. There-

64 Training Caffeine −1.9956 N 0.99 0.99 1.00 (28)
65 Training Carbamazepine −0.8256 N 0.87 0.84 1.04 (16)
66 Training Colchicine −1.1950 N 0.94 0.89 1.06 (16)
67 Test Diazepam −0.2881 N 0.66 0.55 1.20 (16)
68 Training Felodipine 1.1950 N 0.06 0.16 2.72 (18)
69 Training Fluconazole −1.6902 N 0.98 0.97 1.01 (28)
70 Training Hexobarbital −1.3802 N 0.96 0.93 1.03 (16)
71 Test Isradipine 0.2881 N 0.34 0.38 1.12 (16)
72 Training Mebendazole −0.3680 N 0.7 0.76 1.09 (16)
73 Training Methocarbamol −0.7202 N 0.84 0.94 1.12 (16)
74 Training Methohexital −0.7884 N 0.86 0.89 1.04 (19)
75 Training Methoxsalen −0.9080 N 0.89 0.82 1.09 (16)
76 Training Metyrapone −1.5097 N 0.97 0.93 1.05 (16)
77 Test Midazolam −0.0696 N 0.54 0.47 1.16 (18)
78 Training Nifedipine −0.3680 N 0.7 0.71 1.02 (18)
79 Test Omeprazole −0.8256 N 0.87 0.73 1.19 (19)
80 Training Oxazepam −0.4102 N 0.72 0.66 1.08 (18)
81 Training Phensuximide −0.4771 N 0.75 0.97 1.29 (16)
82 Training Prednisone −0.1047 N 0.56 0.64 1.15 (16)
83 Training Progesterone 0.7884 N 0.14 0.30 2.15 (28)
84 Training Simvastatin 1.1950 N 0.06 0.09 1.49 (18)
85 Training Testosterone 0.0174 N 0.49 0.42 1.17 (28)
86 Training Triazolam −0.5497 N 0.78 0.75 1.04 (16)

Table I. (continued)

No. Dataset Drugs log((1−fumic)/fumic) Chemical class Observed fumic Predicted fumic Fold error Ref.

Fig. 1. Distribution of fumic and log((1−fumic)/fumic) for 86 drugs
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fore, the observed log((1−fumic)/fumic) was considered as the
dependent variable in the model construction.

Calculation of Molecular Descriptors

The 2D structures of 86 drugs were searched in SciFinder
Scholar 2007 and the mol files were saved for further
calculation. Then, the molecular descriptors that were known
to influence almost all pharmacokinetic properties were
selected as original independent variables. A set of 32
descriptors was obtained from TSAR 3.3, preADMET online,
and SciFinder Scholar 2007, including: molecular refractivity,
cosmic torsional/electrostatic/total energy, number of atoms/
halogen atoms/heteroatoms, heat of formation, energy of the
lowest unoccupied molecular orbital (LUMO), energy of the
highest occupied molecular orbital (HOMO), ΔE (LUMO–
HOMO), number of primary/secondary/tertiary amine
groups, number of carboxylic acid groups, number of single/
double/aromatic bonds, total absolute atomic charge, total/
aromatic rings, number of negatively/positively charged
groups, rigid/rotable bonds, number of hydrogen bond
acceptors/donors, logD7, logP, molecular weight, mean net
charge per molecule of the compounds (fi) (24), and polar
surface area.

Feature Selection

As expected, only some of the 32 descriptors are
significantly correlated with log((1−fumic)/fumic). Further-
more, many of the descriptors are intercorrelated, which has
a negative effect on the accuracy and interpretability of the
final quantitative model. Therefore, stepwise regression
method was employed to perform the feature selection
process in this study.

Model Development and Evaluation

MLR analysis was applied to develop the in silico model.
In order to examine the predictive power and robustness of
our model, the entire dataset should be subdivided into
training and test set. In general, there are three methods for
the selection of training and test set: (1) selection based on a
random manner; (2) selection based on clusters of the
dependent variable; (3) selection based on clusters of factor
scores of the descriptor space along with or without the
biological activity values. Due to the skew distribution of
fumic, the entire dataset was categorized into training set (n=
64) and test set (n=22) by the cluster analysis of log((1−
fumic)/fumic). The whole range of log((1−fumic)/fumic) was
divided into bins, and compounds belonging to each bin were
randomly assigned to the training or test set. Meanwhile,
leave-one-out (LOO) cross-validation was performed. Then,
R2 and Q2 resulted from LOO (Q2

LOO) were calculated to
evaluate the model predictability.

Two other commonly employed accuracy test criteria, the
fold error and the average fold error (AFE), were used to
evaluate the predictive accuracy, as represented by Eqs. 1 and 2,
respectively. The percentages of drugs with the fold error more
than two (E2-fold) and three (E3-fold) were calculated to estimate
the accuracy of the model in our study, respectively. A
prediction is usually thought to be successful if the value of
AFE is less than two (25).

fold error ¼
fumic;predicted
fumic;observed

; if fumic;predicted > fumic;observed

fumic;observed
fumic;predicted

; otherwise

(
ð1Þ

average fold error ¼ 10

Pn
i¼1

log
fumic;predicted
fumic;observed

������
n ð2Þ

Fig. 2. Correlation between the predicted and observed log(1−fumic)/ fumic) for acidic,
basic, and neutral drugs (empty circles acids, n=24, y=0.78x−0.19, R2=0.43; multiplication
symbols bases, n=33, y=0.73x+0.20, R2=0.82; empty triangles neutrals, n=29, y=0.76x−
0.14, R2= 0.82; training set (black symbols): n=64, y=1x, R2=0.82; test set (red symbols):
n=22, y=0.94x−0.08, R2=0.85))
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RESULTS AND DISCUSSION

The Predictive Performance and Accuracy of the Model

Seven descriptors were chosen via the feature selection
to construct the in silico model. Then, the model for the
training set was built with 64 drugs, as represented by Eq. 3.

log 1� fumicð Þ=fumicð Þ ¼ 0:2595x1*� 0:1038 x2*

� 0:2173 x3*þ 0:1275 x4*

þ 0:9060 x5*� 0:1416 x6*

þ 0:2217 x7*� 0:2535 ð3Þ

where x1 is the cosmic electrostatic energy; x2 is the number
of aromatic bonds; x3 is the number of negatively charged
groups; x4 is the number of positively charged groups; x5 is
logP; x6 is the mean net charge per molecule of the
compounds; x7 is polar surface area (PSA). All of the selected
descriptors, the values of which can be obtained directly from
the authors, are standardized to ensure that all descriptors had
equally determinant strength affecting log((1−fumic)/fumic).
The standardized values with a mean value of zero and a
variance of unity are represented as “x*” in Eq. 3.

The correlation between predicted log((1−fumic)/fumic)
and observed log((1−fumic)/fumic) from in silico model is
shown in Fig. 2. It is seen that the in silico model exhibits high
predictive performance: for the training set, n=64, R2=0.82
(R2=0.85 for test set), Q2

LOO=0.75, RMSE=0.45, F=36.31,
p<0.0001, the slope equal to unity and the intercept to zero
(the slope is 0.94 and the intercept is −0.08 for test set).

The observed and predicted values of fumic, and the fold
error values of 86 drugs are shown in Table I. As can be seen,
75% of drugs are found with fold error<2 and only 2% of
drugs with fold error>3 and AFE= 1.33 (Table II) in our
model. For training set, 82% of drugs are found with fold
error<2 and only 5% of drugs (one drug) with fold error>3
and AFE=1.34. And for test set, 86% of drugs are found with
fold error<2 and only 0% of drugs with fold error>3 and
AFE=1.33. Therefore, the fumic can be predicted accurately
by our model.

Predictive Differences among Acids, Bases, and Neutrals

Figure 2 also describes the respective correlations
between predicted and observed values of log((1−fumic)/
fumic) for acids, bases, and neutral compounds. As stated
earlier, the good prediction of bases is more easily achieved

than neutral compounds and acids. Our model predicted fumic

for bases well (R2=0.82, AFE=1.68). Furthermore, prediction
of fumic for neutral drugs was comparable (R2=0.82, AFE=
1.18), which might be a positive feature of this model.
Unfortunately, for acids, the correlation between log((1−
fumic)/fumic) and the seven descriptors was still poor (as
shown in Fig. 2; R2=0.43). However, the fold error values of
acids were all below 2 (Table II), indicating that the predictive
accuracy of acids in our model might still be useful in some
circumstances. The slope of the fitted line (Fig. 2; 0.78) for
acids was similar to bases (0.73) and neutral compounds
(0.76). These findings indicate that the prediction of fumic for
acids in our model is still reasonable. In fact, the poor
correlation of acids was probably due to the relative narrow
distribution of observed fumic values (or the log((1−fumic)/
fumic) values). As can be seen in Table I, except for emodin,
the range of the log((1−fumic)/fumic) for acids is from −1.5097
to −0.1581, with a log unit span of 1.4, (most of the fumic

values are within the range of 0.6–0.9). In contrast, for bases
and neutral compounds, the log unit spans of the log((1−
fumic)/fumic) are 4.0 and 3.2, respectively. The relative low
nonspecific binding of acids to hepatic microsomes likely
results in the skew distribution of the fumic and the poor
correlation between log((1−fumic)/fumic) and the selected
seven descriptors.

Fig. 3. Coefficients plot of the seven selected molecular descriptors

Table II. The Predictive Accuracy of the Present In Silico Model vs. Literature Models

Chemical class No.

Present study Austin et al. model Hallifax-Houston model

E2-fold (%) E3-fold (%) AFE R2 AFE R2 AFE R2

Total 86 15 2 1.33 0.85 1.47 0.75 1.33 0.79
A 24 0 0 1.12 0.43 1.16 0.49 1.12 0.56
B 33 33 6 1.68 0.82 1.92 0.79 1.68 0.76
N 29 7 0 1.18 0.82 1.34 0.61 1.18 0.66
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Identification of Important Molecular Descriptors
Affecting Fumic

Our results shown in Eq. 3 suggest that the descriptors
chosen strongly correlate with fumic, thus, allowing some
mechanistic interpretations of the model. In general, these
molecular descriptors relate to molecular lipophilicity, charge
state, flexibility, polarity, and extent of ionization at pH 7.4, as
shown in Fig. 3.

The molecular mechanism of nonspecific binding is pres-
ently unclear, but it is believed to depend on the lipophilicity and
the electronic charge. The main binding contributors can be
divided into non-electrostatic and electrostatic terms, wherein
the non-electrostatic contributions include lipophilic interac-
tions, van der Waals interactions, and translational, rotational,
and configurational entropies (26).

As can be expected, the extent of microsomal binding
generally increases with increasing lipophilicity of the drug.
Especially, as the main structural contributor, logP is positively
correlated with fumic (Eq. 3), consistent with the above
analysis. The cosmic electrostatic energy, parameter x6 (fi),
the number of positively charged groups and the number of
negatively charged groups are descriptors representing the
above electrostatic term contributing to the nonspecific
binding. As shown in Eq. 3 and Fig. 3, the cosmic electrostatic
energy is the second important descriptor in our model. It is
energy descriptor accounting for the noncovalent interaction
potential energy, which determines the binding affinity of a
molecule to the pertinent receptor(s). The parameter x6 (fi) is
calculated from the pKa and pH7.4, and its value is equal to the
ionization fraction for compounds at pH7.4 (24). Thus, it
denotes the contribution of electrostatic interaction to the
nonspecific binding based on the ionization of the compounds.
However, the basic compounds clearly exhibit enhanced
binding over neutral or acidic compounds with similar lip-
ophilicity. This enhanced phospholipid binding of bases is
thought to be due to a favorable electrostatic interaction
between the protonated base and phosphate groups of the
phospholipids (27). The negative charges for acidic drugs at
pH 7.4 would likely limit their nonspecific binding. This
conclusion can be used to explain the positive effect of the x4
(the number of positively charged groups) on fumic, and the
negative effect of the x3 (the number of negatively charged
groups) on fumic (Eq. 3). The PSA and the number of aromatic
bonds are two other contributors in our model.

Comparison between In Silico and Published Models

The performance of the present model vs. the models
published by Austin et al. and Hallifax-Houston were
compared (Table II).

In general, our model compared favorably to these
models for basic and neutral compounds but fared equally
inadequately for acidic compounds. The present model differs,
however, in its approach in that it utilizes more structural
specific parameters such as the number of positively or
negatively charged groups, the cosmic electrostatic energy
and PSA, etc., in addition to log P and log D. The involvement
of these parameters provided additional insights into the
molecular mechanisms of nonspecific binding of drugs to
hepatic microsomes, especially for the electrostatic interaction.

CONCLUSIONS

A structure-based in silicomodel was developed successfully
for the prediction of the nonspecific binding of drugs to hepatic
microsomes. Especially, the prediction of fumic for neutral drugs
demonstrated similar capability to that for basic drugs (R2=0.82,
AFE=1.18 and fold error values were all below 2, except for
felodipine and progesterone). The lipophilicity, charge state, and
the extent of ionization at pH 7.4 were identified as important
properties affecting fumic. One obvious weakness of the present
model is the skew distribution of fumic in the entire dataset (most
of the compounds were in the range of fumic>0.7, especially for
the acids). A larger dataset, composed of drugs with uniform
distribution of fumic values, is necessary for accurate fumic

prediction and for further reliable evaluation of the free
clearance and drug–drug interaction.
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