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Abstract

Background: Humans can effortlessly segment surfaces and objects from two-dimensional (2D) images that are projections
of the 3D world. The projection from 3D to 2D leads partially to occlusions of surfaces depending on their position in depth
and on viewpoint. One way for the human visual system to infer monocular depth cues could be to extract and interpret
occlusions. It has been suggested that the perception of contour junctions, in particular T-junctions, may be used as cue for
occlusion of opaque surfaces. Furthermore, X-junctions could be used to signal occlusion of transparent surfaces.

Methodology/Principal Findings: In this contribution, we propose a neural model that suggests how surface-related cues
for occlusion can be extracted from a 2D luminance image. The approach is based on feedforward and feedback
mechanisms found in visual cortical areas V1 and V2. In a first step, contours are completed over time by generating
groupings of like-oriented contrasts. Few iterations of feedforward and feedback processing lead to a stable representation
of completed contours and at the same time to a suppression of image noise. In a second step, contour junctions are
localized and read out from the distributed representation of boundary groupings. Moreover, surface-related junctions are
made explicit such that they are evaluated to interact as to generate surface-segmentations in static images. In addition, we
compare our extracted junction signals with a standard computer vision approach for junction detection to demonstrate
that our approach outperforms simple feedforward computation-based approaches.

Conclusions/Significance: A model is proposed that uses feedforward and feedback mechanisms to combine contextually
relevant features in order to generate consistent boundary groupings of surfaces. Perceptually important junction
configurations are robustly extracted from neural representations to signal cues for occlusion and transparency. Unlike
previous proposals which treat localized junction configurations as 2D image features, we link them to mechanisms of
apparent surface segregation. As a consequence, we demonstrate how junctions can change their perceptual
representation depending on the scene context and the spatial configuration of boundary fragments.
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Introduction

Our visual system structures the visual world into surfaces that,

if required, we recognize as familiar objects. A fundamental task of

vision therefore is to find the boundary contours separating the

regions corresponding to surfaces or objects. As our retina captures

only a 2D projection of the 3D world, mutual occlusions are a

natural consequence which can be interpreted by the visual system

as a cue to relative depth. A vivid demonstration of surface-based

depth perception is given by a painting of a professional artist who

tries to depict a scene where the visual system generates surface

segmentations in the presence of multiple occlusions (Figure 1).

However, it remains unclear what particular features are used by

the visual system to detect occlusions and whether this information

is derived locally or from more global criteria. Some recent

evidence [1,2,3] suggests that the human visual system might use

surface-related features that are specific contour junctions that

have a surface-based relevance in scene interpretation. In this

contribution, we propose a neural model that suggests how

surface-related features can be extracted from a 2D luminance

image. The approach is based on contour grouping mechanisms

found in visual cortical areas V1 and V2. Our computational

model comprises the extraction of oriented contrasts which are

subsequently integrated by short- and long-range grouping

mechanisms to generate disambiguated and stabilized boundary

representations. We argue that the mutual interactions realized by

lateral interactions and recurrent feedback between the cortical

areas considered stabilize the representation of fragments of

outlines and group them together. Moreover, we demonstrate that

the model is able to signal and complete illusory contours over a

few time-steps. Illusory contours are a form of visual illusion where

contours are perceived without a luminance or color change across

the contour. Such illusory contours can be induced by partially

occluded surfaces where the contour of the occluded object is
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perceptually completed (amodal completion) or where the

occluding object has the same luminance than parts of the

occluded background (modal completion). Illusory contours play a

significant role in the perceptual interpretation of junction

features. For instance, it was suggested by Rubin [1] that the

perception of occlusion-based junctions (T-junctions) can be

induced by L-junctions in combination with the presence of

illusory contours. Consistently, in our model junction signals are

read out from completed boundary groupings which are

interpreted as intermediate-level representations that allow for

the correct perceptual interpretation of junctions, namely L-

junctions features can be perceptually interpreted as T-junctions.

This is unlike previous approaches which are based on purely

feature-based junction detection schemes [4,5]. Taken together,

our proposed model suggests how surface-based features could be

extracted and perceptually interpreted by the visual system. At the

same time, this leads to improved robustness and clearness of

surface-based feature representations and hence to an improved

performance of extracted junction signals compared to standard

computer vision corner detection schemes. Based on these

perceptual representations, surface-related junctions are made

explicit such that they could be interpreted to interact as to

generate surface-segmentations in static or temporally varying

images.

Methods

In this section we give a short overview of the proposed model

and its components. Our model focuses on the early processing

stages of form processing in primate visual cortex, namely cortical

areas V1 and V2, and incorporates hierarchical feedforward

processing as well as top-down feedback connections to consider

the signal flow along the reverse hierarchy processing [6]. An

overview of the model architecture is depicted in Figure 2.

Overview of the model architecture
The model has been structured into three main

components. The first component comprises initial

feedforward processing. The monochromatic input image is

processed by a cascade of different pools of model cells in V1,

specifically simple, complex, end-stop, and bipole cells. Each cell

population consists of cells that are tuned to different orientation

selectivity. This is consistent with the representation of orientation

selective cells found in V1 which are arranged in hypercolumns

[7]. Our model cell types are responsive for specific local image

structures, i.e., simple and complex cells are sensitive to oriented

contrast represented by edges or bar elements, end-stop cells

respond best to contour terminations that occur, e.g., at line ends

or corners, and bipole cells are sensitive for collinear arrangements

of contour fragments with similar orientation. Model area V2

receives forward projections from V1 bipole cells and V1 end-stop

cells. These signals are then integrated by long-range V2 bipole

cells which have a larger extent than bipole cells in model V1.

Bipole cells in V2 respond to luminance contrasts as well as to

illusory contours, thus resembling functional properties of contour

neurons in V2 [8,9,10]. This finding suggests that orientation

selective mechanisms for contour integration in area V2 do not

simply represent a scaled version of V1 mechanisms for lateral

contrast integration. Their capability to integrate activities to

bridge gaps and generate illusory contours makes an important

step towards surface boundary segregation while V1 contrast

integration is selective to stimulus feature processing. The second

model component comprises recurrent feedback processing

between model areas V1 and V2. Neurons in V1 are also

responsive to more global arrangements of the scene [11]. These

response properties possibly arise from recurrent processing and

lateral connections from pyramidal neurons [12]. Whereas

feedforward connections have mainly driving character, feedback

connections are predominantly modulatory in their effects [13].

There is evidence that feedback originating in higher level visual

areas such as V2, V4, IT or MT, from cells with bigger receptive

fields and more complex response properties can manipulate and

shape V1 responses, accounting for contextual or extra-classical

receptive field effects [14,15,16]. We account for these findings by

incorporating a recurrent interaction mechanism between model

areas V1 and V2. In our model, activity in V2 serves as top-down

feedback signal to iteratively improve initial feedforward activity in

V1. The feedback signals that are delivered by descending cortical

pathways multiplicatively enhance initial activities at earlier

processing stages. Importantly, this type of feedback is not

Figure 1. (A) Painting of a professional artist [Marrara, M., 2002, reproduction with permission from the artist] that leads to the perception of
different depths induced by occlusion and colour cues. Notice how hidden surface parts are perceptually completed by the human visual system in
order to segregate surfaces apart from each other. Surfaces can also be associated with (parts of) objects in scenes depicted by trees and clouds in
(B). A human observer could use local cues such as T-junctions (red) formed by the boundary contour of surface parts to detect surface occlusions
and hence to infer depth from monocular scenes.
doi:10.1371/journal.pone.0005909.g001
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Figure 2. Overview of the core model architecture. The model consists of several stages that were designed to resemble properties of cells
found in the early primate visual cortex. Visual input is processed by the hierarchy of different stages from visual area V1 to V2 and vice versa, that is
feedforward and feedback. To enhance and complete initial contour signals, recurrent interactions between those two areas are performed iteratively
until activities at all stages converge to a stable state. The converged activities can then be read-out from distributed representations to obtain
specific maps that signal perceptually important image structures such as completed contours and different types of junction configurations. Such
mid-level features provide important cues for occlusion detection or detection of transparencies. In addition, these mid-level features can also play a
role in tasks such as border-ownership assignment which perhaps take place in higher visual areas such as V4 or IT.
doi:10.1371/journal.pone.0005909.g002

Surface-Related Features
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capable of generating new activity at positions with zero initial

activity which could lead to an uncontrolled behavior of the

overall system’s functionality. Feedback can only modulate activity

that is already present at V1 [12]. We shall demonstrate in our

results that multiple iterations of feedforward-feedback processing

between model areas V1 and V2 lead to clearly more consistent

and stable results compared to purely feedforward processing

schemes. The third component of the model comprises the

extraction or ‘‘read-out’’ of scene relevant information that is

provided by different pools of cells within the two model areas V1

and V2. Figure 2 presents an overview of the different types of

mid-level features that can be extracted from the distributed

representation of cell responses. This includes the extraction of

several maps that signal contours, illusory contours, and keypoints

characterized by different junction configurations. It has been

stressed by several authors that specific junction configurations like

T- or X-junctions provide important cues for the discovery of

occlusions or transparency [1] in the context of surface

segmentation. Therefore, we suggest that the visual system uses

specialized mechanisms to read out separate maps for such

configurations. It is important to note that our model is not only a

simple ‘‘keypoint detector’’. In fact, our model additionally

provides structural information about keypoints represented by

activities of model cell pools located at the keypoint.

Detailed description of model components
In this section, we explain the individual model parts in more

detail. For a precise mathematical description of the model and its

different processing stages the reader is referred to Appendix S1.

The detailed model architecture is illustrated in Figure 3.

Model area V1. The initial feedforward stage represents early

visual mechanisms in area V1 and V2 of the primate visual cortex.

We do not simulate processing at earlier stages of the visual

pathway such as LGN or the retina since this would not

considerably influence our results. In our model, a first step is to

simulate pools of cells that encode at each position of the input

image oriented luminance contrasts which are represented by V1

simple cells in the primary visual cortex [7]. Each model cell

represents the average responses (or firing-rate) of groups of

neurons with similar response properties. We simulate two different

types of simple cells with even and odd symmetrical receptive field

(RF) properties. These orientation selective cells respond best to

oriented line segments or edges, respectively. Simple cells are also

selective to contrast polarity, such that they signal light and dark

bars as well as light-dark and dark-light transitions. We do not,

however, keep this information separate but combine this

information to yield a representation of the local contrast energy,

which is invariant against the sign of contrast. This is motivated by

the fact that the model tries to explain computational stages to form

unsigned boundaries, and thus should be invariant to contrast

polarity [17]. In addition, such a convergence of activity coheres

with current models of hierarchical feedforward processing of

binocular input of disparity sensitive cells in primary visual cortex

[18]. V1 complex cells pool activity of two equally oriented V1 simple

cells of opposite polarity. Thus, complex cell activity is invariant to

contrast polarity which resembles response properties of real

complex cells. The output signals of model complex cells

subsequently undergo a centre-surround inhibition that is

realized by a lateral divisive inhibition mechanism. In the

literature, this divisive type of lateral inhibition is also termed

shunting inhibition [19]. This mechanism leads to a competition of cell

activities within a neighborhood that is defined over the spatial and

orientation domain. High activity of multiple orientations leads to a

suppression of overall cell activity whereas activity in a single

orientation channel leaves cell activity relatively unchanged. As a

consequence, responses in areas with undirected structure such as

textured or noisy areas are weakened by this operation. On the

other hand, responses in areas with directed structures, such as

edges and lines are strengthened by this operation. Such a stage of

divisive inhibition has been previously proposed to account for non-

linear effects in contrast and motion responses of V1 cells

[20,21,22]. In the next step of the hierarchical processing scheme

two different populations of cells receive forward projections from

V1 complex cells. The first population of model cells resembles

long-range lateral connections found in V1 [23,24]. These long-

range connections are modeled by V1 bipole cells which consist of

two additively connected elongated Gaussian subfields. The spatial

layout of the filter is similar to the bipole filter as first proposed by

[17]. The spatial weighting function is narrowly tuned to the

preferred orientation, reflecting the highly significant anisotropies

of long-range fibers in visual cortex [25]. Here, we parameterize the

length of a V1 bipole cell about 2 times the size of the RF of a

complex cell. The second population receiving input from complex

cells are V1 end-stop cells. End-stop cells respond to edges or lines that

terminate within their RF. This includes also corners or junctions

where more than one contour ends at the same place. However, at

positions along contours or at X-junction configurations, end-stop

cells do not respond. Such types of cells have been first observed in

cat striate cortex [26]. More recently, evidence for end-stop cell

properties of V1 neurons was found in several physiological studies

[27,28,29]. In our model, end-stop cells are modeled by an

elongated excitatory subfield and an inhibitory isotropic

counterpart [30]. Our model end-stop cells are direction sensitive

and are therefore modeled for a set of directions between 0 and 360

degrees. Activities of end-stop cells corresponding to opposite

directions are additively combined in order to achieve direction

invariance. Finally, at the output of model area V1 activities from

V1 bipole and V1 end-stop cells are merged and normalized by a

centre-surround inhibition stage before they are forwarded to

model area V2.

Model area V2. Visual area V2 is the next stage in the

hierarchy of processing stages along the ventral stream. Several

physiological studies on macaque monkeys have shown that cells

in V2 respond to luminance contrasts as well as to illusory

contours [8,31]. In contrast to complex cells in V1 they respond

much stronger if the luminance contrast is continuous, and less if

gaps are between inducers, thus resembling functional properties

of contour neurons in V2. Moreover, they respond to moderately

complex patterns such as angle stimuli [32]. However, the precise

functional role of area V2 remains unclear. In our model, we

employ V2 bipole cells with elongated sub-fields which are

collinearly arranged and centered at the reference position. The

sub-fields sample the input activations generated by V1 bipole cells

and V1 end-stop cells. Responses of the individual sub-fields are

multiplicatively combined [33] such that the net effect of the

contrast feature integration leads to an AND-gate of the individual

sub-field activations. Thus, activity from both sub-fields of an

integration cell is necessary to generate cell activity. This non-

linear connection has the effect that activity can emerge between

two or more like-oriented contour-fragments or line ends at

positions where no initial luminance contrast is present which is

indicative for the presence of an illusory contour. At the same

time, activity of a V2 bipole cell at an isolated contour termination

would be zero as one subfield does not receive any input. V2

bipole cells are additively combined with perpendicular oriented

V1 end-stop cells. This has the effect that V2 bipole cells can

integrate activity of end-stop cells along line terminations that are

linearly arranged, which leads to the impression of an illusory

Surface-Related Features
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contour. Such a mechanism of ortho-grouping has been proposed

earlier by Heitger and colleagues [8].
Recurrent V1-V2 feedforward-feedback interaction. In

our model, lower area V1 and area V2 interact in two directions,

that is feedforward and feedback. Feedforward interaction is

realized by feeding bottom-up input activation from model V1 to

V2 and was described in detail in the last sub-section. On the other

hand, feedback interaction is realized by top-down modulatory

feedback connections that deliver signals from model V2 to V1.

The recurrent loop is closed at the feedback re-entry point in V1

where initial feedforward complex cell responses and V2 bipole

cell responses are multiplicatively combined (Figure 3). In order to

allow feeding input signals to be propagated, even in the case that

no feedback signals exist, the feedback signal is biased by a

constant unit value. This bias introduces an asymmetry for the

roles of forward signals and feedback processing. Feedforward

signals act as drivers of the hierarchical processing scheme,

whereas feedback signals generate an enhancing gain factor which

cannot on its own generate any activity at positions where no

initial feeding input responses are present. This realizes a variant

of the no-strong loop hypothesis [34] to avoid uncontrolled

behavior of the overall model dynamics and to limit the amount of

inhibition necessary to achieve a stable network performance.

Several physiological studies support the view that, e.g., feedback

from higher visual areas is not capable of driving cells in lower

areas, but modulates their activity [12,15]. It is important to

mention that modulatory feedback in a recurrent loop only works

correctly in combination with a suitable inhibition mechanism.

Otherwise, the feedback signal would lead to uncontrolled growth

of model cell activities. Thus, both mechanisms, the modulatory

V2 R V1 feedback interaction and the subsequent shunting lateral

inhibition work in combination in order to enhance distributed

contour and junction representations in model V1 and V2 which

mutually support each other considering a larger spatial context.

At the same time, mainly through the action of the divisive

inhibition mechanism, the overall activity in a pool of cells is kept

within a maximum bound which stabilizes the network behavior

and prevents the energy from getting too excited. In addition,

those feeding activities that receive no amplification via feedback

signals will be less energetic in the subsequent competition stage.

Consequently, their activities will be finally reduced, which realizes

the function of biased competition which has been proposed in the

context of modulation in attention effects [35].

Read-out and interpretation of model activities
From the distributed representation of cell responses in both

model areas V1 and V2 several retinotopic maps can be extracted

that signal perceptually relevant contour configurations. If not

mentioned otherwise, these maps are extracted by computing at

each position the mean activity of all orientation responses. An

alternative method for reading out salience values was suggested

by Li [36], who choose to extract at each position the maximum

activity over all orientations. In the following, we describe in detail

how saliency maps for specific image structures, namely corners

and junctions can be extracted by combining activities from

different model cells pools. In this paper, we define saliency maps

as 2d maps that encode at each position the likelihood that a

specific structure is present. A more broad discussion on the

concept of salience and salience maps can be found in [37]. In

Figure 4 the structural configurations are sketched to present an

overview of the output as signaled by the different orientation

sensitive mechanisms of the proposed model. This summary

indicates how the different visual structures of surface shape

outlines and their ordinal depth structure might be selectively

encoded neurally through the concert of responses generated by

different (model) cell types. The conclusions are two-fold. First, it is

indicated that the presence of, e.g., a T-junction (which most often

coheres with an opaque surface occlusion [1]) is uniquely indicated

by the response pattern of V1 and V2 cells at one spatial location.

The T-junction is represented by an end-stop cell response at the

end of the T-stem, V1 bipole cell responses in the orientations of

both the T-stem (signaled by one active sub-field) and the roof, and

finally a V2 bipole cell response in the orientation of the roof of the

T (representing the occluding boundary). Second, we argue in

favor that no explicit detectors are needed to represent those local

2D structures. Figure 4 indicates that the explicit representation of

different junction types necessitates a rich catalogue of cells with

rather specific wiring patterns. Below we propose specific read-out

mechanisms in order to visualize the information we suggest is

important for surface-related analysis of the input structure.

Contours/Illusory contours. Contours are basic image

structures which are important for the segmentation of surfaces

by generating a likelihood representation of the locations and

orientations of the shape outline boundaries. Furthermore,

contours mark the border between two adjacent surfaces and

play a major role in the process of figure-ground segregation and

border-ownership [37,38,39]. In our model, contour saliency is

encoded in the response of V1 bipole cells. The contour saliency

map can be extracted by summing activity of orientation selective

bipole cells pools in V1. Illusory contours are a form of visual

illusion where contours are perceived without a luminance change

across the contour. Classical examples are the Kanizsa figure [40]

where an illusory square is induced by four flanking pac-man

symbols or the Varin figure [41] where linearly arranged line-ends

mark the borders of the illusory square (Figure 5). There is

evidence that illusory contours are represented by V2 neurons

[31]. In our model, illusory contours are signaled by activity of V2

bipole cells.

T-junctions. A T-junction is formed when a contour

terminates at a differently oriented continuous contour. T-

junctions most often provide local evidence for occlusions as

they frequently occur when a surface contour is occluded by

another opaque surface in front. At the point where the bounding

contour of the occluded surface intersects with the bounding

contour of the occluding surface a T-junctions is formed in the

image which is dependent on the position of the viewpoint. It has

been suggested by Rubin [1] that T-junctions play a central role in

monocular depth perception, surface completion, and contour

Figure 3. Our model simulates cells of two areas in the visual cortex, visual areas V1 and V2. Each model (sub-) area is designed with
respect to a basic building block scheme (bottom, left). The scheme consists of three subsequent steps, namely filtering, modulation and centre-
surround inhibition. This scheme is applied three times in our model architecture (left), corresponding to upper and lower area V1 and area V2. In this
model, modulatory input (provided by feedback from area V2) is only used in lower area V1. Otherwise the default modulatory input is set to 1 (which
leaves the signal unchanged). The lower part of area V1 is modelled by simple and complex cells for initial contrast extraction. Note, that each cell
pool consists of 12 oriented filters equally distributed between 0u and 180u. The upper part of V1 is modelled by end-stop and bipole cells which both
receive input from lower V1. The additively combined signals are further passed to area V2 where long-range lateral connections are modelled by V2
bipole cells. Note, that ‘‘N’’ stands for a multiplicative connection of filter subfields as employed in V2 whereas ‘‘#’’ stands for an additive connection
as employed in V1. Finally output of area V2 is used as feedback signal which closes the recurrent loop between areas V1 and V2.
doi:10.1371/journal.pone.0005909.g003
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matching. To read-out T-junction signals we multiplicatively

combine activities of V2 bipole cells with V1 end-stop cells. More

precisely, we use a pairwise combination of orientation specific V2

bipole cell activities and orientation specific V1 end-stop cell

activities. Pairs of cells that correspond to same orientations are

not considered. The multiplicative operation realizes an AND-

gate, implying that both cell populations have to be active in order

to signal the presence of T-junctions. A saliency map that signals

the presence of T-junctions is then extracted by summing over the

orientation domain. In general, this map represents the priority of

the gathered evidence in favor of the particular scene feature.

L-Junctions. L-junctions, also termed V-junctions or corners,

are formed by two contour segments which terminate in the same

projected location. We extract corner signals in a similar way than

T-junctions signals. Instead of combining V1 end-stop activities

with V2 bipole activities we multiplicatively combine activities of

differently oriented V1 end-stop cells among each other (Figure 6).

A combined orientation invariant corner saliency signal is then

Figure 4. Response properties of different model cell populations for different structural configurations together with their most
likely interpretation (cue type). Numbers denote the modality of the response distribution across cell pools located at the position marked with a
red dot for each structure. A bar means that the cell population is not responsive for this structure. Note, that each structure has a specific neural
response profile across different model cell populations which can be used to extract separate saliency maps. For a better understanding, we
sketched the configuration of filters together with the underlying structure. Remember, that V2 bipole sub-fields are connected multiplicatively
(signalled by a ‘‘N’’), leading to zero activity of the whole bipole cell if input from one sub-field is missing (symbolized by red crosses). On the other
hand, V1 bipole sub-fields are additively connected (signalled by a ‘‘#’’) which has the effect that input from one sub-field is sufficient to create
activity.
doi:10.1371/journal.pone.0005909.g004

Figure 5. Stimuli used in our experiments that show illusory contours effects. In both, the Kanizsa shape and the five-line Varin shape,
observers have the impression of seeing a white square which is partly formed by illusory contours. There is strong evidence that illusory contours are
induced by horizontally and vertically arrange line-endings (A) or by collinearly arranged luminance contrasts (B).
doi:10.1371/journal.pone.0005909.g005
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extracted by integrating over all combinations. Corners are

important cues for shape perception as they mark keypoints of

the boundary contour. Importantly, an L-junction can also result

from two occluding surfaces, assuming that one of the surfaces is

partly formed by illusory contours [1]. Under such circumstances,

an L-junction feature would as well suggest for occlusions. We

shall show that our model initially detects an L-junction in this

case, but over time when groupings could be established, then

these types turn into perceptual T-junctions (irrespectively whether

the boundaries are formed by physical luminance contrasts or by

illusory contours). The perceptual representation of T-junctions in

turn signals the presence of an occluding surface which is

consistent with the impression that human observers report

when they are confronted with illusory figures, such as Kanizsa

squares [40].

X-junctions. X-junctions configurations appear at positions

where two contours intersect. In scenes with overlapping surfaces,

this pattern is created when an occluding surface has transparent

material properties leading to a visibility of the occluded surface

region through the surface at the occluded surface contour.

Therefore, in the transparent occlusion situation, a T-junction

turns into an X-junction. In our model, X-junctions are read-out

by multiplicatively combining activities of pairs of differently

oriented V2 bipole cells (Figure 6). The saliency map is obtained

by summing over the orientation domain. Again, the multiplicative

connection acts like an AND-gate which extracts only those V2

bipole responses that have a bimodal activity distribution in the

orientation domain.

Y- and W-junctions. Y- and W-junctions are strong cues for

3D-corners induced by surface intersections of 3D objects which

cut in a single location. For instance, a cube produces a Y-junction

at the position where the corners of three visible surfaces meet.

The same corner observed from another viewpoint turns into a W-

junction. Notably, in rare cases, such junctions can be also

produced by occluding 2D surfaces when a contour of an occluded

surface meets a shape-based L-junction of an occluding surface.

However, this can be seen as an ‘accidental’ and rather unstable

configuration since even small changes in viewpoint would lead to

vanishing of such occlusion-based junctions. Since the perception

of 3D objects is not our primary focus in this contribution, we do

not take Y- and W-junctions into further consideration.

Competition between junction signals. In order to

suppress ambiguous activations for more than one junction type

at the same place, junction signals compete with each other

through lateral inhibition (Figure 7). If one junction type is

activated the other junction signals in a local neighborhood are

weakened. Finally, all junction activities are passed through a non-

linear saturation function in order to have the same range for all

activity signals. Note, that although we use a similar inhibition

scheme than for the model activities we do not claim that this kind

of competition has a biological counterpart. This is just a necessary

operation to disambiguate feature signals and has no biological

relevance.

Results

In this section we present results of the model simulations in

order to demonstrate the computational capabilities of the

proposed model. We begin by presenting model results from the

various neural cell pools that are simulated in the model. We also

show how recurrent feedforward-feedback interaction helps to

enhance and stabilize the initial responses of cells. Then we show

that various feature maps can be extracted from the distributed

cell activities suggesting that this representation is capable of

Figure 6. Extraction of junction signals. The figure depicts how
local activity from model cells is combined to obtain specific junction
maps. To extract a T-junction signal orientation specific V2 bipole cell
activities are combined pairwisely with orientation specific V1 end-stop
cell activities. Pairs of cells that correspond to same orientations are not
considered (diagonal marked with ‘‘X’’). The combination of cell
activities is done multiplicatively such that both cells have to be active
in order to produce a response. This can be represented in a map where
each entry corresponds to a specific T-junction configuration. X-, and L-
junction maps are extracted similarly except that pairwise combination
is based on V2 bipole cells (X-junctions) and V1 end-stop cells (L
junctions). To summarize, the maps represent information about local
image structure with respect to different junction types. Note, that end-
stop cells are only indicated for one direction in the figure. However,
end-stop cell responses of both directions that correspond to one
orientation are additively combined for the extraction of junction maps.
doi:10.1371/journal.pone.0005909.g006

Surface-Related Features

PLoS ONE | www.plosone.org 8 June 2009 | Volume 4 | Issue 6 | e5909



providing cues that are perceptually relevant for fundamental

visual processes such as occlusion detection.

Robustness to noise
In a first simulation an artificially created image of a noisy square

is employed to demonstrate the robustness of the model against

noise perturbations. The image was created such that the standard

deviation of the additive Gaussian noise equals the luminance

difference of the square against the background (so-called 100%

noise). Figure 8 shows that initial complex cell responses are strongly

disrupted resulting from the additive noise pattern. However,

recurrent feedforward-feedback iterations lead to a significant

reduction of noise responses and at the same time to a strengthening

of contour and contour-termination signals corresponding to V1

bipole and V1 end-stop cell activities, respectively. Note that the

long-range interaction stage does not lead to activities beyond

contour terminations at the corners of the square which would

mistakenly lead to turn L-junctions into X-junction.

Extraction of junction configurations
In a second simulation, we used a noise-free image of four

occluding transparent and opaque squares as input for the model

(Figure 9a). The stimulus includes all three types of junction

configurations and is therefore a good example to demonstrate the

capabilities of the model at a glance.

Initial feedforward responses from simple and complex cells

shown in Figure 9b and Figure 9c demonstrate that these

responses are not invariant to luminance contrast. Furthermore,

they are not robust against noise (Figure 8). The results described

in the following correspond to model activities after four recurrent

feedforward-feedback cycles where model activities tended to

converge to a stable state. The upper sub-area of model V1 is

represented by bipole cells and end-stop cells. End-stop cells

respond at positions where contours meet (e.g. T-, and L-

junctions) or at positions where a contour ends (Figure 4).

However, they do not respond at X-junction configurations as can

be observed in Figure 9e. Model V1 bipole cells are responsive for

contours. They connect short like-oriented fragments and equalize

contrast changes along the contour. At contour endings their

activity is reduced (not shown) since they have additively

connected subfield (one subfield is still activated, see Figure 4).

The additive combination of V1 bipole and perpendicular

oriented end-stop cells compensates for the reduction effect at

corners or T-junctions. Figure 9d show that contour activity is not

reduced at corners or T-junctions. The combined bipole end end-

stop activities from model area V1 are further processed by V2

bipole cells which are as well responsive for contours. However, as

a result of their multiplicatively connected subfield these cells do

not respond at contour endings. Consequently, V2 cell responses

are zero at T- and L-junctions, but not at X-junctions (Figure 9D,

Figure 4).

In Figure 10, T-,L-, and X-junction maps were extracted and

visualized based on converged model activities. In each map, the

presence of the specific feature is signaled by patches of high

Figure 7. Competition between junction signals. Junction signals can locally compete with each other to avoid ambiguous signals. In addition,
centre-surround inhibition helps to suppress multiple junctions in a small neighbourhood which could be induced by fine texture or noise.
doi:10.1371/journal.pone.0005909.g007
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Figure 8. Robustness to noise. A square stimulus that has been corrupted with high amplitude Gaussian noise was used as model input (A). Initial
complex cells responses are strongly influenced by the noise pattern (B). Recurrent feedforward-feedback processing significantly reduce activity of
noise-induced responses of V1 bipole cells (C) and end-stop cells (D) (illustrated are responses after 0, 1, and 3 cycles of feedback). At the same time,
surface contours and corners are enhanced over time.
doi:10.1371/journal.pone.0005909.g008
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activity. In order to prevent multiple features to be active at the

same position, all signals undergo a competition stage where

multiple signals in a local neighborhood compete with each other.

The output of this stage is presented in Figure 10c which is a

combined map that represents different features, signaled by color.

Finally, from this map, position and type of junctions are extracted

by local maximum selection (Figure 10e).

Processing of illusory contours
In a third simulation, we show the capabilities of the model to

uncover illusory contours in scenes. As input we used two different

versions of the Kanizsa square [40](Figure 5). The first image leads

to the impression of an illusory square where the corners occlude

black circles. The second image gives the impression of a white

square in front of concentric circles. In both cases, only parts of the

square are formed by luminance contrast. However, human

observers mentally see the square as a coherent object. Our model

results demonstrate that the invisible contour parts are uncovered

by V2 bipole cell responses. Moreover, we show that subsequent

recurrent feedforward-feedback cycles help to close large gaps

between like-oriented contour elements or along linearly arrange

contour endings (Figure 11, Figure 12).

Importantly, this has a strong influence on the junction type that

is signaled by the model responses. In Figure 11, initial model

responses suggest for L-junctions, which is in accordance with the

physical luminance contrasts. But, after some recurrent iterations,

V2 bipole cells close the gaps between contour elements which

leads to a different, more global interpretation: the L-junctions

Figure 9. Model responses based on artificial input stimulus of overlapping squares. The stimulus (A) includes two different occlusion
conditions: two overlapping opaque surfaces that produce T-junctions and two overlapping transparent surfaces which generate X-junctions.
Furthermore, several L-junctions are visible at the corners of the squares. Model activities are summed over the orientation domain for all stages of
our model. We show initial V1 simple and complex cell responses (B, C), combined V1 bipole/end-stop cell responses (D), end-stop activity (E), and V2
bipole cell activity (F) after 4 recurrent feedforward-feedback cycles. For clarification, the labels (A)–(F) correspond also to labels (A) – (F) in Figure 3.
Note that end-stop cells do not respond to X-junction configurations and that V2 bipole cells do not respond at L-junctions (cp. Table 1). Note also,
that responses in (D) – (F) are invariant against image contrast.
doi:10.1371/journal.pone.0005909.g009

Surface-Related Features

PLoS ONE | www.plosone.org 11 June 2009 | Volume 4 | Issue 6 | e5909



along the illusory contour turn into T-junctions. The emergence of

T-junctions in turn supports the perceptual interpretation of

occlusions.

A similar effect can be observed in Figure 12 where line endings

initially produce no junction signals. After a few feedforward-

feedback cycles, however, the emerging illusory contour responses

of V2 bipole cells lead to T-junction signals along the contour.

Processing of real-world data
In order to examine how the model performs for real-world

camera images we used an image taken from a desk scene where

several papers and a transparent foil are arranged such that they

partly occlude each other (Figure 13). Model activities and the

extracted feature map demonstrate that the model is also capable

of dealing with real-world images. Note, that one of the papers has

a very low contrast ratio with respect to the background.

Nevertheless, the model performs excellent in finding the contour

and the respective junctions. This also underlines that the model is

invariant to contrast changes and thus also stable against changes

of illumination conditions.

Quantitative evaluation and comparison
In this section, we evaluate our model by comparing our

recurrent junction detection scheme with results obtained by

simply switching the recurrent feedback cycle off, which reduces

the model to an ordinary feedforward model. Moreover, we

compare our results to a standard computer vision corner

detection scheme based on the Harris corner detector [4]. In a

comparative study of different corner detection schemes, the

Harris corner detector provides the best results among five corner

detectors [42]. As input for our comparison, we use corner test

image adapted from Smith and Brady [5] that poses several

challenges such as, e.g., low contrast regions, smooth luminance

gradients, or obtuse and acute angles. Moreover, all types of

junctions (L, T and X) considered are represented in the test image

together with information about their exact position (ground truth

Figure 10. Saliency maps for different junction types. The junction maps (A), (B), and (D) were extracted from model activities presented in
Figure 9. Bright regions indicate positions where the ensemble of model activities suggests for the presence of the respective junction type (L-, T-, X-
junction). A combined feature likelihood map(C) incorporates all features, colour coded. Blue signals the presence of X-junctions, red signals T-
junctions and green signals the presence of L-junctions. Moreover, position and type of detected features is visualized in (E) (based on maximum
likelihood selection).
doi:10.1371/journal.pone.0005909.g010
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Figure 11. Recurrent processing of illusory contours. A Kanizsa figure is used as input for the model. V2 bipole cell activities and T-/L-junction
signals are illustrated initially (no recurrent processing), after one recurrent cycle and after 3 recurrent cycles. The combined feature map show
individual likelihoods colour coded. Local maxima of the feature map are used to detect junction positions. Illusory contours are signalled by V2
bipole cell activities and are completed over time. Note, that as a result of the completion process of illusory contours, L-junctions signals turn into T-
junction signals over time.
doi:10.1371/journal.pone.0005909.g011
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Figure 12. Recurrent processing of illusory contours formed by line ends. An alternative version of the Kanizsa figure is used where line
ends lead to the impression of an illusory white square. Model responses are visualized according to Figure 8. Note, that illusory contours signalled by
V2 bipole responses develop over time. Note also, that over time this leads to the development of T-junction signals (red) which suggest for the
presence of an occluding surface.
doi:10.1371/journal.pone.0005909.g012
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information). Since the Harris corner detector is not able to

discriminate between different junction types, our comparison is

only based on the detection performance, irrespective of the

junction category. To measure the performance of the different

schemes we use receiver operator characteristic (ROC) curves.

This method is frequently used to evaluate true positive rate or hit

rate and the false positive rate of a binary classifier system as its

discrimination threshold is varied. Here, we use the junction

feature map as input for the ROC analysis. Figure 14 shows the

resulting ROC curves extracted from junction feature map given

the test image as input. It is clearly visible that the ROC curve

computed from the recurrent model responses lies well above the

Harris corner detector curve and the initial feedforeward model

curve. This suggest for a significantly better detection performance

of our recurrent model compared to feedforward processing-based

junction detection schemes.

Simulations with dynamic input stimuli
We particularly designed this experiment to demonstrate a

model prediction, namely, that feedback leads to a brief

persistence of object and material appearance. This is usually

unnoticed when the scene does not change at all. If, however,

appearances of surface material change during recurrent interac-

tion (while keeping the shape registered) the apparent surface

property should stay more prolonged depending on whether it is

transparent and changes into opaque or whether it is opaque and

smoothly changes into transparent. Due to the action of

modulatory feedback activation the registered boundary and

junction activations continue to enhance the configuration

signaled from previous input features for a short period of time.

This appearance history (or memory in the processing architec-

ture) is known as hysteresis effect.

Here, we used temporal sequences of two occluding squares

where the opacity of the topmost square was linearly altered

between 100% opacity and 90% opacity, thus making the

occluded region increasingly more visible (invisible). The input

sequence consists of 10 frames static input (opaque) followed by 10

frames linear change from 100% to 90% opacity followed by 10

frames static input (transparent, 90% opacity). The sequence was

presented as described above (opaque-transparent) and in reverse

temporal order (transparent-opaque). To investigate the hysteresis

effect of feedback we presented both sequences to the full model

(with feedback connection enabled) and to a restricted version of

the model with feedback connections disabled. In the full model,

feedback processing time is equal to stimulus presentation time,

i.e., one feedback cycle is performed per stimulus time frame. In

the restricted model, we switch all feedback connection off which

constrains the model to perform only feedforward processing.

Throughout the simulation, model activities indicating T- and

X- junctions are extracted at positions where occluding contours of

both squares intersect each other (Figure 15). The results

generated by the full model show that feedback leads to a

sequence directional hysteresis effect by temporally locking the

prediction of a junction type (T- or X-junction). Moreover, initial

ambiguities induced by predictions for different junction types are

resolved by top-down feedback during the first few iterations. In

contrast, when the model is restricted to feedforward processing no

hysteresis effect can be observed, i.e., the model activities are equal

for both input sequences, namely opaque-transparent and

transparent-opaque transitions. Furthermore, no disambiguation

between different junction type predictions takes place.

Figure 13. Model activities of V1 and V2 cell pool (right, first row) resulting from a real-world scene image that includes occluding
opaque and transparent surfaces. A feature map was extracted from model activities, revealing position and type (colour coded) of junction
configurations (right, second row).
doi:10.1371/journal.pone.0005909.g013
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Discussion

In this section we begin by summarizing our main findings.

Then, we compare our model with other proposed models that are

related to our work. Moreover, we show that all core mechanisms

employed in our model are biological plausible. We also discuss

how junction signals that are extracted from our neural

representation could be used by other cortical areas to solve

visual tasks such as depth ordering, figure-ground segregation or

motion correspondence finding. Finally, we briefly discuss some

examples where our model fails to produce accurate results.

Summary of findings
We presented a recurrent model of V1-V2 contour processing

utilizing long-range interactions in combination with short-range

lateral inhibition which as been adapted from [33]. We have shown

quantitatively and qualitatively that recurrent combination of

contextual features substantially enhances the initial estimates of

local contrast.

We have also shown that the model V2 cells are capable of

generating illusory contour groupings which strongly influence the

interpretation of different junction type estimates of local contrast.

In addition, we demonstrated that cell activities represented in

both model areas can be combined and extracted to robustly

signal three different sorts of junctions (L-,T-, and X-junctions).

These junctions provide important cues for fundamental visual

processes such as surface completion and figure-ground segrega-

tion [1,39,43]. Furthermore, our model predicts a hysteresis effect

between opaque-transparent and transparent-opaque transitions

which could be experimentally validated in a psychophysical

experiment. Finally, we have demonstrated in a quantitative

analysis that our model responses outperform a state-of-the-art

computer vision corner detection scheme.

Related work
A number of different models have been proposed for contour

integration. A comprehensive review can be found in [44]. Our

contour integration model which utilizes interaction of feedfor-

ward and feedback, in particular modulatory feedback, has been

applied successfully to a number of different tasks of visual

processing such as optical flow estimation [45], texture processing

[46], selective attention [47], cortico-thalamic enhancement [48],

and linking synchronization [49].

Figure 14. Evaluation of extracted junction signals on synthetic test image. A synthetic test image (A) reproduced from Smith and Brady
(1997) was used to evaluate and compare extracted junction signals against a computational scheme (structure tensor) for corner detection proposed
by Harris and Stephens (1988). The extracted junction saliency is visualized in a feature likelihood map (B) and detected junction positions/types are
superimposed on input image (C). ROC curves are computed from structure tensor results (dashed), initial model responses (dotted) and from
converged model responses after 4 recurrent cycles (solid) (D). Abscissa denotes the false alarm rate, and the ordinate denotes the hit rate. Note, that
for better visibility the abscissa has been scaled to [0, 0.1].
doi:10.1371/journal.pone.0005909.g014
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One of the first computational models in the context of contour

grouping that incorporate principles of long-range interactions and

interlaminar recurrent processing has been proposed by Grossberg

and colleagues [17] by introducing the Boundary Contour System

(BCS). A more recent version of the BCS focuses more on the

intercortical processing between areas V1 and V2 [50]. Grossberg

and coworkers propose that V2 is mainly a slightly modified

version of V1 operating at a coarser scale. Thus, they suggest that

both areas, V1 and V2 share the same functional properties.

Unlike them, we argue that V1 and V2 have different functional

roles, e.g., corner selective cells occur in V1, bipole cells

responding to illusory contours occur in V2. A more fundamental

difference in the model of Grossberg and colleagues is that they

use additive feedback connections with the effect that new activity

can be generated in model area V1 at positions where initial

bottom-up signals are zero. To compensate for this, they have to

incorporate thresholds which lead to more complex balancing

processes. However, we use modulatory feedback connections,

which implies that initial bottom-up activity is required to generate

activity. Thus, in our model, illusory contours characterized by

zero luminance contrast can only be signaled in V2, but not in V1.

This is consistent with electrophysical studies of Peterhans and von

der Heydt [51] who concluded that illusory contour cells are

virtually absent in V1. Concurrently, there is strong evidence for

illusory contour selective cells in V2 [9]. A recurrent model of V1-

V2 interactions based on modulatory feedback was first proposed

by Neumann and Sepp [33].

Mundhenk and Itti [52] presented a multi-scale model for

contour integration that is motivated by mechanisms in early

visual cortex (V1). Similar to our model, the authors try to extract

saliency values from contour representations. Individual contour

saliency maps from different scales are combined by weighted

Figure 15. Hysteresis effect induced by feedback. The figure illustrates T- and X-junction activities extracted from the model based on
temporal input sequences of two occluding squares where the topmost square changes material appearance from opaque (100% opacity) to
transparent (90% opacity) (blue lines) over time. Furthermore the sequence was presented in reverse temporal order leading to a change of material
appearance back from transparent to opaque (red lines). Activities were extracted at positions indicated by the red dot on the stimulus. Illustrated are
results based on model simulations with feedback (top row) and without feedback connections (bottom row). Gray shaded areas indicate periods
where stimulus properties linearly change. The results demonstrate that feedback leads to a hysteresis effect by temporary locking the prediction for
a junction type (T- or X-junction). Without feedback the hysteresis effect disappears and both input sequences produce exactly the same results (only
red curve is visible). Furthermore, the results demonstrate that feedback helps to disambiguate initial junction signals by amplifying the most likely
prediction and suppressing weak predictions over the first few iterations.
doi:10.1371/journal.pone.0005909.g015
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averaging. Differences to our model are that they do no

incorporate feedback mechanisms and that they do not consider

illusory contour extraction as they do not model V2 neurons.

Interestingly, only few computational models of contour

grouping address the computation and representation of corners

and junctions. The model proposed by Heitger et al. [8] is closely

related to our model because they use several elements that we

incorporated into our model (e.g. complex cells, end-stop and

bipole operators). A key element of their model is the concept of

ortho- and para-grouping to generate illusory contour representa-

tions. Ortho grouping applies to terminations of the background,

which tend to be orthogonal to the occluding contour. Para

grouping applies to discontinuities of the foreground and is used to

interpolate the contour in the direction of termination. However, a

major shortcoming of their model is that it relies on a purely

feedforward scheme which would presumably produce erroneous

results when given a degraded input image (e.g. by noisy or low

contrast). This also contrasts with the findings of several authors

[1,12,15,37,53] that feedback and recurrent interactions play an

important role in visual processing for figure-ground segregation.

The model of Hansen and Neumann [54] is also closely related

to our model since it is based on the same biological principles

such as modulatory feedback and long-range interactions for the

extraction of corners and junctions. However, the model is

restricted to interlaminar interactions in V1 to explain contrast

detection and subsequent enhancement effects. Our model, on the

other hand, incorporates several extensions. First, our model takes

illusory contours into account by additionally modeling area V2.

Second, we show that our neuronal representation is further

processed to extract different junction types such as L, T- and X-

junctions which are perceptually important features that provide

basic cues for global scene interpretations.

Recently, a recurrent model for surface-based depth processing

was proposed by Thielscher and Neumann [30]. In their proposed

model, depth information derived from monocular cues is

propagated along surface contours using local recurrent interac-

tions to obtain a globally consistent depth sorting of overlapping

surfaces. The model differs in several aspects from our model. In

contrast to our model, they use additional recurrent interactions in

V2 to propagate border-ownership information derived from

detected T-junctions along contours. This propagated information

enables them to obtain a globally consistent interpretation of depth

relations between surfaces. Unlike this approach to monocular

depth segregation, we focused on the extraction and perceptual

interpretation of junction configurations.

In summary, variations of mechanisms employed in our model

can be found in several other models of visual processing. But only

few of them have concerned for combined boundary extraction and

junction extraction as well as their distinction. Unlike previous

proposals which treat localized junction configurations as 2D image

features [4,5], we link them to mechanisms of apparent surface

segregation. As a consequence, we demonstrate how junctions can

change their perceptual representation depending on the scene

context and the spatial configuration of boundary fragments.

Biological Plausibility
Our model architecture is inspired by biological mechanisms

and is based on neural representations of early visual cortex. We

now put individual model components into a physiological or

psychophysical context and discuss for their plausibility.

Biological plausibility of model components. In the

initial stages of our model we simulate V1 simple and complex

cells [7]. Model V1 bipole cells are inspired by horizontal long-

range connections that link patches of neurons of similar

orientation preference [23,25]. Consistently, model V1 bipole

cells pool activities of appropriately aligned complex cells from the

lower part of model area V1 (Figure 3) which resembles

intracortical layer 4 of area V1. Evidence for nonlocal

integration also comes from psychophysical experiments for

contrast detection [55] and contour integration [56].

Additionally, we model end-stop cells that selectively respond to

contour terminations. The existence of V1 neurons reacting to

end-stop configurations has been confirmed by several

electrophysiological studies [26,57,58]. As a consequence, end-

stop cells were also modeled by several authors in the context of

contour integration [30,51,59].

In model area V2, we employ modified bipole cells with

nonlinear response properties. As V2 neurons have larger

receptive fields than V1 neurons, our bipole filters employed in

model area V2 have a larger extent that those used in the upper

part of model area V1 (Figure 3). Evidence for contour selective

cells in V2 comes from von der Heydt [9] where the authors

probed V2 neurons with illusory-bar stimuli. They selectively

respond to coherent arrangements having both fragments of an

illusory bar intact. If one fragment is missing, the cell response

drops to spontaneous activity [51]. To be consistent with these

findings we modeled V2 bipole cells with multiplicatively

connected sub-fields which leads to similar effects than those

reported by von der Heydt.

Evidence for representation of junctions and corners in

visual cortex. Although it seems obvious that junctions play a

crucial role in several perceptual processes [1] only little evidence

was found that specific cells in the visual cortex are particularly

responsive to junction features.

Several studies suggest the presence of a neural organization in

V1 that may represent a mechanism for detecting local orientation

discontinuity [60,61,62]. Their results indicate a facilitory

interaction between elements of V1 circuitry representing

markedly different orientations in contradiction to the common

believe that functional connectivity is only seen between cells of

like orientation [63]. However, it is still unclear to what extent this

selectivity is used for junction processing.

In a study by Kobatake and Tanaka [64] critical features for the

activation of cells reaching from V2, V4 up to posterior

inferotemporal cortex (IT) were determined. V2 cells were found

to react to stimuli such as concentric rings or tapered bars. Cells

that respond selectively to junction-like features like crosses were

only found in V4 and posterior IT.

More recently, two studies [32,65] report on cells in monkey

visual area V2 that seem to explicitly encode combinations of

orientations as represented by junctions or corners. Thus, such V2

neurons may provide important underpinnings for the analysis of

surfaces [2]. In a straightforward model approach it was shown

that these V2 neurons may simply sum the responses from

orientation selective V1 neurons [66]. However, the fact that only

little evidence exists for junction selective cells in V2 could also

motivate the hypothesis that junctions are not explicitly encoded

by specific cells in V2 but higher visual areas such as V4 or IT link

responses from cell types selective for lower-level features, such as

complex, end-stop, and bipole cells. Thus, the extraction of

junction signals from combinations of model cell responses,

described as read-out process in our model, follows the idea

mentioned above, that, e.g., V4 cells could pool signals from

several cortical areas, particularly from V1 and V2. Notably, we

do not claim that junction signals are encoded by V4 or IT

neurons, but we demonstrate that our model performs well

assuming that junctions are processed from distributed activities of

neurons at early cortical stages.
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Model predictions for psychophysical experiments. Our

model incorporates recurrent feedback processing from higher to

lower stages. This leads to temporal model dynamics depending

on bottom-up feedforward signal and top-down feedback signal.

Without a change of the input signal (e.g., static input) model

activities tend to converge after a few iterations. However, when

the input signal temporally changes this leads to a conflict between

bottom-up and top-down signals. Thus, the system acts like a

short-term memory maintaining the actual state for a few time

steps. Consistently, if the material appearance changes from

opaque to transparent over time one would expect that the

perception of the apparent stimulus is more prolonged in time.

From this it follows that our model simulations predict a

perceptual hysteresis effect for discrimination between opaque-

transparent and transparent-opaque transitions induced by a top-

down feedback mechanism. Such a hysteresis effects has been

already observed psychophysically for motion direction

disambiguation (leftward motion vs. rightward motion) [67].

Since both motion and form processing are based on the same

neural principles we expect that the predicted hysteresis effect can

also be measured psychophysically. Therefore, we are currently

planning to investigate experimentally whether our model

predictions are validated or not.

The role of junctions in visual perception
Our core model integrates like-oriented contrasts to simulate the

process of contour perception in the visual system. When contours

of different orientation meet at the same place non-collinear

orientation combinations, namely junctions, are formed. The

formation of junctions provides important cues, e.g., for the

occurrence of occlusions and transparencies. Occlusions occur in

almost every real word scene, and thus, surface completion is a

fundamental visual process. In the following, we discuss the

individual role of some basic junction types that can be extracted

by our model.

Transparency. It has been suggested that the perception of

transparency is triggered by X-junctions formed by junctions of

contours of the transparent and opaque regions at the overlapping

area [68]. However, the presence of X-junctions is necessary but

not sufficient to elicit a strong transparency effect. In addition, the

luminance contrast around the X-junction must follow the two

rules: (1) the direction of luminance contrast across an opaque

border cannot change in the transparent region; (2) the luminance

difference across an opaque border must be reduced in the

transparent region [69,70]. A violation of these rules strongly

diminishes the perception of transparency.

Wolfe and collaborators [71] explored in a series of visual search

experiments which cues are relevant to guide attention in a search

for opaque targets among transparent distracters or vice versa.

One of the experiments showed that performance is impaired

when X-junctions are removed from transparent items. Another

experiment showed that efficient search is still possible if X-

junctions are merely occluded (i.e. an occluding bar is used that

disrupts the X configurations). In summary, these findings show

that indeed X-junctions play an important role in the perception

of transparencies, but there seem to be many other factors that

play an additional role for transparency perception. Nevertheless,

our proposed architecture facilitates the perceptual interpretation

of X-junction as proposed by Wolfe and colleagues.

Occlusion. When an opaque surface occludes another

surface of different luminance a T-junction is formed at the

position where the boundary contours intersect each other. If the

surface in front has the same luminance than the background the

T-junctions collapses to an L-junction. We have shown that our

model initially detects such configurations as L-junctions. After a

short period of time, when contours are completed over gaps, such

L-junctions are recognized by the model as T-junctions.This is

consistent with the more context driven interpretation, as observed

by Rubin [1]. Rubin investigated in psychophysical experiments

how local occlusion cues, such as T-junctions and more global

occlusion cues, specifically relatability and surface similarity, play a

role in the emergence of amodal surface completion and illusory

contour perception. Two contour fragments are relatable when they

can be connected with a smooth contour without inflection points

[71]. Rubin proposes that local T-junction cues can initiate

completion processes and that relatability plays a part at later

stages.

Interestingly, in rare cases, T-junctions can also support the

perception of X-junctions [72]. In their psychophysical experi-

ments, the T-junctions were perceived as having an additional

illusory contour leading to the perception of an X-junction (termed

‘‘implicit X-junction’’). This special case shows that T-junctions do

not always lead to the perception of occluding opaque surfaces but

can itself be altered in the more global context when prototypical

surface patches are formed which may lead to a reinterpretation of

local features.

Figure-ground segregation. Separating figure from

background is one of the most important tasks in vision. Figure

and ground information in an image can be represented by

assigning ownership of the border between two surfaces. The

figure which occludes parts of the background leads to specific

boundary configurations, in particular T-junction configurations

which can help in the assignment of figure and background. In

more detail, the stem of the ‘‘T’’ is formed by the boundary

contour of the background surface while the top of the ‘‘T’’

corresponds to the boundary contour of the figure. Motivated by

physiological evidence for cells that are selective for border-

ownership information [37] some models were proposed where

cues signaled by T-junctions are used to generate consistent

representations of layered surfaces [30,38]. This underlines the

importance of T-junction cues for the visual system.

Motion perception. Junctions do not only play a role in static

scenes, they are also important in the context of motion perception.

An object’s motion cannot be determined from a single local

measurement on its contour which is commonly known as the

aperture problem [73]. However, at positions where multiple

oriented contrasts (i.e. two-dimensional features, such as corners

and junctions) are present the ambiguity can be resolved and further

be propagated along object contours to get a more global motion

percept [74]. Thus, tracking of two-dimensional features over time

is a fundamental task in the analysis of motion signals.

In a study by Pack et al. [75] it is suggested that end-stopped V1

neurons could provide local measures of two-dimensional feature

correspondences in motion by responding preferentially to moving

line endings. However, the results of Gue et al. [76] contrast with

the suggestion that end-stop neurons can determine global motion

directions. They propose that lateral and feedback connections

play a critical role in V1 motion information integration. But still,

it remains unclear whether cortical neurons represent object

motion by selectively responding to two-dimensional features such

as junctions and corners. On the other hand, motion of specific

junction configurations, in particular T- and X-junctions generates

erroneous motion trajectories. As shown in Figure 16, if edge

motion from two bars moving in opposite horizontal directions is

combined, the resulting intersection of constraints is in an

incorrect vertical direction [77]. Thus, static form cues such as

detected T-junctions could be selectively discounted in the process

of motion interpretation [78].
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Limitations of the model
Although we have shown that our model is able to produce

results that are in line with several empirical findings, there are

also some shortcomings of the model. For instance, consider a

Kanizsa figure such as illustrated in Figure 17 where the gaps

between contour elements are so large that the V2 bipole filter

cannot bridge the gap. In this case the model would fail to produce

an illusory contour signal in V2. Nevertheless, human observes still

have a weak impression of seeing an illusory triangle. We suggest

that higher visual areas such as V4 also play a role in illusory

contour processing. Evidence comes, e.g., from Pasupathy [79]

who found responses to contour features in macaque area V4.

Another restriction of the model is that it does not account for

different image scales. Consequently, the model focuses on fine

details and suppresses coarse structures. However, the model could

be provided with a pyramid of differently scaled version of the

same input image. This would correspond to simply replicating the

model at multiple scales. An alternative approach would be to

employ scaled versions of Gabor wavelet filters in the input stage.

Finally, our model does not explain how occlusion-based junctions

can be distinguished from texture-based junctions. In this model,

we only used stimuli that have homogenous surface reflectance

properties. Thus, contours are interpreted as surface borders by

the model. In natural scenes, surfaces are often textured due to

surface material properties which would also lead to junctions

signals and thus to ambiguities in the interpretation. However,

such ambiguities could be solved in higher visual area such as V4

[80] which are not in the scope of this paper. In addition, stereo

information can also help to correctly identify occlusion-based

junctions.

Figure 16. Dynamic stimulus where two occluding bars move in
opposite direction. Tracking of L-junctions (green) leads to correct
motion estimates of the two bars while tracking of T-junctions leads to
erronous motion estimates. Thus, the visual system might use form
information, e.g., surface-based occlusion cues to selectively discount
local motion estimates for moving T-junctions.
doi:10.1371/journal.pone.0005909.g016

Figure 17. Stimuli where the model fails to produce illusory contour activations. Distances between the starting points of the contours are
too large to be bridged by a V2 bipole cell.
doi:10.1371/journal.pone.0005909.g017

Table 1. Modulatory effect of feedback (FB) signal on
feedforward (FF) signal.

FF FB
new activity after FF–FB
combination modulatory effect

ON ON / FF?(1+FB) +

ON OFF = FF 0

OFF ON 0 0

OFF OFF 0 0

‘ON’ means activity present and ‘OFF’ means no activity present. Modulation (+)
of feedforward activity takes only place when both signals, feedback and
feedforward are present (ON). Otherwise, feedforward activity remains
unchanged (0).
doi:10.1371/journal.pone.0005909.t001
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Supporting Information

Appendix S1 Model equations describing the processing at

individual model stages.

Found at: doi:10.1371/journal.pone.0005909.s001 (0.22 MB

DOC)
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