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ABSTRACT

Traditional methods for analyzing population structure, such as the Structure program, ignore the
influence of the effect of allele mutations between the ancestral and current alleles of genetic markers, which
can dramatically influence the accuracy of the structural estimation of current populations. Studying these
effects can also reveal additional information about population evolution such as the divergence time and
migration history of admixed populations. We propose mStruct, an admixture of population-specific
mixtures of inheritance models that addresses the task of structure inference and mutation estimation jointly
through a hierarchical Bayesian framework, and a variational algorithm for inference. We validated our
method on synthetic data and used it to analyze the Human Genome Diversity Project–Centre d’Etude du
Polymorphisme Humain (HGDP–CEPH) cell line panel of microsatellites and HGDP single-nucleotide
polymorphism (SNP) data. A comparison of the structural maps of world populations estimated by mStruct
and Structure is presented, and we also report potentially interesting mutation patterns in world populations
estimated by mStruct.

THE deluge of genomic polymorphism data, such as
the genomewide multilocus genotype profiles of

variablenumbersof tandem repeats (i.e.,microsatellites)
and single-nucleotide polymorphisms (SNPs), has fu-
eled the long-standing interest in analyzing patterns of
genetic variations to reconstruct the ancestral structures
of modern human populations. Genetic ancestral in-
formation can shed light on the evolutionary history and
migrations of modern populations (Bowcock et al. 1994;
Rosenberg et al. 2002; Conrad et al. 2006). It also
providesguidelines formoreaccurateassociationstudies
(Roeder et al. 1998) and is useful for many other
population genetics problems (Queller et al. 1993;
Hammer et al. 1998; Templeton 2002).

Various methods have been proposed for stratifying
population structures on the basis of multilocus geno-
type information from a set of individuals. For example,
Pritchard et al. (2000) proposed a model-based ap-
proach implemented in the program Structure, which
uses a statistical methodology known as the allele-
frequency admixture model to stratify population struc-
tures. This model, and admixture models in general
arising in genetic and other contexts (Blei et al. 2003),
belongs to a more general class of hierarchical Bayesian
models known as the mixed membership models (Erosheva

et al. 2004). Such a model postulates that an empirical
multiple-instance sample, such as the ensemble of

genetic markers of an individual, is made up of either
independently and identically distributed (iid) instan-
tiations (Pritchard et al. 2000) or spatially coupled
(Falush et al. 2003) instantiations, from multiple
population-specific fixed-dimensional multinomial dis-
tributions of marker alleles [known as allele-frequency
profiles, AP (Falush et al. 2003)]. Under this assumption,
the admixture model identifies each ancestral popula-
tion by a specific AP (that defines a unique vector of
allele frequencies of each marker in each ancestral
population) and displays the fraction of contributions
from each AP in a modern individual genome as an
admixing vector (also known as an ancestral proportion vector
or structure vector) in a structural map over the population
sample in question. Figure 1 shows an example of a
structural map of four modern populations inferred
from a portion of the HapMap multipopulation data set
by Structure. In this population structural map, the
admixing vector underlying each individual is repre-
sented as a thin vertical line of unit length and multiple
colors, with the height of each color reflecting the
fraction of the individual’s genome originated from a
certain ancestral population denoted by that color and
formally represented by a unique AP. This method has
been applied to the Human Genome Diversity Project–
Centre d’Etude du Polymorphisme Humain (HGDP–
CEPH) Human Genome Diversity Cell Line Panel in
Rosenberg et al. (2002) and many other studies, and has
unraveled interesting patterns in the genetic structures
of the world population. However, even though Struc-
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ture was originally built on a genetic admixture model,
in reality the structural patterns derived by Structure in
various studies often turn out to be distinct clusters
among the study populations (e.g., Figure 1), which has
led many to think of it as a clustering program rather than
a tool for uncovering genetic admixing as it was supposed
to do. The design limitation of the Structure model
behind this issue motivated us to develop a new approach
in this article to analyze admixed genetic samples.

A recent extension of Structure, known as Structur-
ama (Pella and Masuda 2006; Huelsenbeck and
Andolfatto 2007), relaxes the finite dimensional
assumption on ancestral populations in the admixture
model by employing a Dirichlet process prior over the
ancestral allele-frequency profiles. This allows auto-
matic estimation of the maximum a posteriori probable
number of ancestral populations. This extension is a
useful improvement since it eliminates the need for
manual selection of the number of ancestral popula-
tions. Anderson and Thompson (2002) address the
problem of classifying species hybrids into categories,
using a model-based Bayesian clustering approach
implemented in the NewHybrid program. While this
problem is not exactly identical to the problem of
stratifying the structure of highly admixed populations,
it is useful for structural analysis of populations that were
recently admixed. The BAPS program (Corander et al.
2003) also uses a Bayesian approach to find the best
partition of a set of individuals into subpopulations on
the basis of genotypes. Parallel to the aforementioned
model-based approaches for genomic structural analy-
sis, direct algebraic eigen-decomposition and dimen-
sionality reduction methods, such as the Eigensoft
program (Patterson et al. 2006) based on principal
components analysis (PCA), offer an alternative ap-
proach to explore and visualize the ancestral composi-
tion of modern populations and facilitate formal
statistical tests for significance of population differenti-
ation. However, unlike the model-based methods such as
Structure, where each inferred ancestral population
bears a concrete genetic meaning as a population-
specific allele-frequency profile, the eigenvectors com-
puted by Eigensoft represent the mutually orthogonal
directions in an abstract low-dimensional ancestral
space, in which population samples can be embedded
and visualized; these eigenvectors can be understood as
mathematical surrogates of independent genetic sour-

ces underlying a population sample, but lack a concrete
interpretation under a generative genetic inheritance
model (from here on, we use the term ‘‘inheritance
model’’ to describe the process by which a descendant
allele is derived from an ancestral allele). Analyses based
on Eigensoft are usually limited to two-dimensional
ancestral spaces, offering limited power in stratifying
highly admixed populations.

This progress notwithstanding, an important aspect
of population admixing that is largely missing in the
existing methods is the effect of allele mutations
between the ancestral and current alleles of genetic
markers, which can dramatically influence the accuracy
of the structural estimation of current populations. It
can also reveal additional information about popula-
tion evolution, such as the relative divergence time and
migration history of admixed populations.

Consider, for example, the Structure model. Since an
AP merely represents the frequency of alleles in an
ancestral population rather than the actual allelic
content or haplotypes of the alleles themselves, the
admixture models developed so far on the basis of APs
do not model genetic changes due to mutations from
the ancestral alleles. Indeed, a serious pitfall of the
model underlying Structure, as pointed out in Excoffier

and Hamilton (2003), is that there is no mutation
model for modern individual alleles with respect to
hypothetical common prototypes in the ancestral pop-
ulations. That means every unique allele in the modern
population is assumed to have a distinct ancestral
proportion, rather than allowing the possibility of it
just being a descendant of some common ancestral
allele that can also give rise to other closely related alleles
at the same locus of other individuals in the modern
population. Thus, while Structure aims to provide
ancestry information for each individual and each locus,
there is no explicit representation of the ‘‘ancestors’’ as a
physical set of ‘‘founding alleles.’’ Therefore, the in-
ferred population structural map emphasizes revealing
the contributions of abstract population-specific ances-
tral proportion profiles, which does not necessarily
reflect individual diversity or the extent of genetic
changes with respect to the founders. Due to this
limitation, Structure does not enable inference of the
founding genetic patterns, the age of the founding
alleles, or the population divergence time (Excoffier

and Hamilton 2003).
The lack of an appropriate allele mutation model in a

structural inference program can also compromise our
ability to reliably assess the amount or level of genetic
admixing in different populations. The Structure
model, like several other related models (Blei et al.
2003), is based on the fundamental assumption of the
presence of genetic admixing among multiple founding
populations. However, as we shall see later, on real
population data such as the HGDP–CEPH panel, it
produces results that favor clustering individuals into

Figure 1.—Population structural map inferred by Struc-
ture on HapMap data consisting of four populations.
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predominantly one allele-frequency profile or another,
thus leading us to conclude that there was little or no
admixing between the ancestral human populations. We
believe that this occurs due to the absence of a mutation
model in Structure. While a partitioning of individuals
would be desirable for clustering them into groups, it
does not offer enough biological insight into the inter-
mixing of the populations.

In this article, we present mStruct (which stands for
Structure under mutations), based on a new model: an
admixture of population-specific mixtures of inheri-
tance models (AdMim). Statistically, AdMim is an
admixture of mixture models, which represents each ances-
tral population as a mixture of ancestral alleles each with
its own inheritance process and each modern individual
as an ‘‘ancestry vector’’ (or structure vector) that reflects
membership proportions of the ancestral populations.
As we explain shortly, mStruct facilitates estimation of
both the structural map of populations and the muta-
tion parameters of either SNP or microsatellite alleles
under various contexts. A new variational inference
algorithm, which is much faster than the MCMC
algorithm used for Structure, was developed for estimat-
ing the structure vectors and other genetic parameters
of interest. We compare our method with Structure on
simulated genotype data and on the microsatellite and
SNP genotype data of world populations (Rosenberg

et al. 2002; Conrad et al. 2006). Our results using
microsatellite data reveal the presence of significant
levels of genetic admixing among the founding popula-
tions underlying the HGDP–CEPH cell line panel, as
well as consequences of expansion of humans out of
Africa. Our results suggest that the inability of Structure
to model mutations during genetic admixing could have
caused it to detect correct clustering but very low levels
of genetic admixing in each modern population in the
HGDP–CEPH data. We also report interesting visual-
izations of genetic divergence in world populations
revealed by the mutation patterns estimated by mStruct.
The mStruct software has been implemented in C11

and is available for download at http://www.sailing.cs.cmu.
edu/mstruct.html.

THE STATISTICAL MODEL

The mStruct model differs from the Structure model
in two main aspects: the representation of ancestral
populations and the generative process for sampling a
modern individual from the ancestral populations. In
this section we describe in detail the statistical un-
derpinning of these two aspects.

Representation of Populations

To reveal the genetic composition of each modern
individual in terms of contributions from hypothetical
ancestral populations via statistical inference on multi-

locus genotype data, one must first choose an appropri-
ate representation of ancestral populations. We begin
with a brief description of the commonly used represen-
tation adopted by Structure, followed by a new represen-
tation we propose that allows mutations to be captured.

Population-specific allele-frequency profiles: Since
all markers that are used for population structure
stratification are polymorphic in nature, it is not
surprising that the most intuitive representation of an
ancestral population is a set of frequency vectors for all
alleles observed at all the loci. Specifically, we can
represent an ancestral population k by a unique set of
population-specific multinomial distributions bk [ f~bk

i ;
i ¼ 1 : Ig, where ~b

k

i ¼ ½bk
i;1; . . . ;bk

i;L9i
� is the vector of

multinomial parameters, also known as an AP (Falush

et al. 2003), of the allele distribution at locus i in
ancestral population k; L9i denotes the total number of
observed marker alleles at locus i; and I denotes the total
number of marker loci. This representation, known as
population-specific allele-frequency profiles, is used by the
program Structure.

Population-specific mixtures of ancestral alleles: An
AP does not enable us to model the possibility of
mutations; i.e., there is no way of representing a situation
where two observed alleles might have been derived
from a single ancestral allele by two different mutations.
This possibility can be represented by a genetically more
realistic statistical model known as the population-specific
mixture of ancestral alleles (MAA). For each locus i, an MAA
for ancestral population k is a set Qk

i [ fmk
i ; d

k
i ;
~b

k

i g
consisting of three components: (1) a set of ancestral
(or founder) alleles mk

i [ fmk
i;1; . . . ;mk

i;Li
g, which can

differ from their descendant alleles in the modern
population; (2) a mutation parameter di

k associated with
the locus, which can be further generalized to be allele-
specific if necessary; and (3) an AP ~b

k

i , which now
represents the frequencies of the ancestral alleles. Here
Li denotes the total number of ancestral alleles at loci i,
which is different from L9i in the previous section, which
denotes the total number of observed alleles at loci i. By
explicitly associating a mutation model with an ancestral
population, we can now capture mutation events as de-
scribed above. It is important to note that the mutation
parameter d is not the mutation rate commonly referred
to in the literature. As we shall see later, it is a measure of
the variability of a locus that can be described approx-
imately as the combined effect of the per-generation
mutation rate and the age of the population.

An MAA is strictly more expressive than an AP,
because the incorporation of a mutation model helps
to capture details about the population structure that an
AP cannot; and the MAA reduces to the AP when the
mutation rates (and hence the mutation parameters)
become zero and the founders are identical to their
descendants. MAA is also arguably more realistic be-
cause it allows mutation rates (and mutation parame-
ters) to be different for different founder alleles even
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within the same ancestral population, as is commonly
the case with many genetic markers. For example, the
mutation rates for microsatellite alleles are believed to
be dependent on their length (number of repeats). As
we shall show shortly, with an MAA, one can examine the
mutation parameters corresponding to each ancestral
population via Bayesian inference from genotype data;
this might enable us to infer the age of alleles and also
estimate population divergence times subject to a
calibration constant.

Let i 2 {1, . . . , I} index the position of a locus in the
study genome, n 2 {1, . . . , N} index an individual in the
study population, and e 2 {0, 1} index the two possible
parental origins of an allele (in this study we do not
require strict phase information of the two alleles, so the
index e is used merely to indicate ploidy of the data).
Under an MAA specific to an ancestral population k, the
correspondence between a marker allele Xi;ne

and a
founder mk

i;l 2 mk
i is not directly observable. For each

allele founder mk
i;l, we associate with it an inheritance

model p(� j mk
i;l , dk

i;l ) from which descendants can be
sampled. Then, given specifications of the ancestral
population from which Xi;ne

is derived, which is denoted
by hidden indicator variable Zi;ne

, the conditional
distribution of Xi;ne

under an MAA follows a mixture of
population-specific inheritance models:

Pðxi;ne
¼ l9 j zi;ne

¼ kÞ ¼
XL

l¼1

bk
i;l Pðxi;ne

jmk
i;l ; d

k
i;lÞ: ð1Þ

Comparing to the counterpart of this function under
AP, Pðxi;ne

¼ l9 j zi;ne
¼ kÞ ¼ bk

i;l9, we can see that the
latter cannot explicitly model allele diversities in terms
of molecular evolution from the founders.

A New Admixture Model for Population Structure

Admixtures are useful for modeling objects (e.g.,
human beings), each comprising multiple instances of
some attributes (e.g., marker alleles), each of which
comes from a (possibly different) source distribution
Pk(� j Qk), according to an individual-specific admixing
vector (a.k.a. structure vector) ~u. The structure vector
represents the normalized contribution from each of
the source distributions {Pk; k ¼ 1:K} to the object in
question. For a single data set, all the structure vectors
are assumed to be samples from an underlying structure
prior with parameter a. For example, for every individ-
ual, the alleles at all loci may be inherited from founders
in different ancestral populations, each represented by a
unique distribution of founding alleles and the way they
can be inherited. Formally, this scenario can be captured
in the following generative process:

1. For each individual n, draw the admixing vector~un �
Pð� j aÞ, where P(� j a) is a prechosen structure prior.

2. For each marker allele xi;ne
2 xn :

2.1, draw the latent ancestral-population-origin indicator
zi;ne
� Multinomialð� j ~unÞ;

2.2, draw the allele xi;ne
j zi;ne

¼ k � Pkð� j Q
k
i Þ.

As discussed in the previous section, an ancestral
population can be represented either as an AP or as an
MAA. These two different representations lead to two
different probability distributions for Pk(� j Qk) in the
last sampling step above and thereby to two different
admixtures of very different characteristics.

The Structure model by PRITCHARD et al. (2000): In
Structure, the ancestral populations are represented by
a set of population-specific APs. Thus the distribution
Pk(� jQk) from which an observed allele can be sampled is
a multinomial distribution defined by the frequencies of
all observed alleles in the ancestral population; i.e.,
xi;ne
j zi;ne

¼ k � Multinomialð� j ~bk

i Þ. Using this proba-
bility distribution in the general admixture scheme
outlined above, we can see that Structure essentially
implements an admixture of population-specific allele-
frequency profiles (Adaf) model. But a serious pitfall of
using such a model, as pointed out in Excoffier and
Hamilton (2003), is that there is no mutation model
for individual alleles with respect to the common
prototypes; i.e., every unique allele measurement at a
particular locus is assumed to correspond to a unique
ancestral allele, rather than allowing the possibility of it
just being derived from some common ancestral allele at
that locus as a result of a mutation.

Our model: We propose to represent each ancestral
population by a set of population-specific MAAs. Recall
that in an MAA for each locus we define a finite set of
founders with prototypical alleles mk

i [ fmk
i;1; . . . ;mk

i;Li
g

that can be different from the alleles observed in a
modern population; each founder is associated with a
unique frequency bk

i;l and a unique (if desired) muta-
tion model from the prototype allele parameterized by
rate dk

i;l . Under this representation, now the distribution
Pk(� jQi

k) from which an observed allele can be sampled
becomes a mixture of inheritance models, each defined
on a specific founder; and the ensuing sampling module
that can be plugged into the general admixture scheme
outlined above (to replace step 2.2) becomes a two-step
generative process: (step 2.2a) draw the latent founder
indicator ci;ne

j zi;ne
¼ k � Multinomialð� j ~bk

i Þ; and
(step 2.2b) draw the allele xi;ne

j ci;ne
¼ l ; zi;ne

¼
k � Pmð� j mk

i;l ; d
k
i;lÞ, where Pm() is a mutation model

that can be flexibly defined on the basis of whether the
genetic markers are microsatellites or single-nucleotide
polymorphisms. We call this model AdMim. Figure 2A
shows a graphical model representation of the overall
generative scheme for AdMim, in comparison with the
Adaf model underlying Structure. From Figure 2, we can
clearly see that mStruct is an extended Structure model
that allows copying errors.

For simplicity of presentation, in the model described
above, we assume that for a particular individual, the
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genetic markers at each locus are conditionally iid
samples from a set of population-specific fixed-dimen-
sional mixture of inheritance models and that the set of
founder alleles (but not their frequencies) at a partic-
ular locus is the same for all ancestral populations (i.e.,
mk

i [ mi). We also assume that the mutation parameters
for each population at any locus are independent of the
alleles at that locus (i.e., dk

i;l [ dk
i ). Also, our model

assumes Hardy–Weinberg equilibrium within popula-
tions. The simplifying assumptions of unlinked loci and no
linkage disequilibrium between loci within populations can be
easily removed by incorporating Markovian dependen-
cies over ancestral indicators Zi;ne

and Zi11;ne
of adjacent

loci and over other parameters such as the allele
frequencies ~b

k

i in exactly the same way as in Structure.
We can also introduce Markovian dependencies over
mutation parameters at adjacent loci, which might be
desirable to better reflect the dynamics of molecular

evolution in the genome. We defer such extensions to a
future article.

Mutation model

As described above, our model is applicable to almost
all kinds of genetic markers by plugging in an appro-
priate allele mutation model (i.e., inheritance model)
Pm(). We now discuss mutation models for microsatel-
lites and SNPs.

Microsatellite mutation model: Microsatellites are a
class of tandem-repeat loci that involve a DNA unit that
is 1–4 bp in length. Microsatellite DNA has significantly
high mutation rates as compared to other DNA, with
mutation rates as high as 10�3 or 10�4 (Kelly et al. 1991;
Henderson and Petes 1992). The large amount of
variations present in microsatellite DNA makes it ideal
for differentiating founder patterns between closely
related populations. Microsatellite loci have been used
before DNA fingerprinting (Queller et al. 1993),
before linkage analysis (Dietrich et al. 1992), and in
the reconstruction of human phylogeny (Bowcock et al.
1994). By applying theoretical models of microsatellite
evolution to data, questions such as time of divergence
of two populations can be attempted to be addressed
(Pisani et al. 2004; Zhivotovsky et al. 2004).

The choice of a suitable microsatellite mutation
model is important, for both computational and in-
terpretation purposes. Below we discuss the mutation
model that we use and the biological interpretation of
the parameters of the mutation model. We begin with a
stepwise mutation model for microsatellites widely used
in forensic analysis (Valdes et al. 1993; Lin et al. 2006).

This model defines a conditional distribution of a
progeny allele b given its progenitor allele a, both of
which take continuous values

pðb j aÞ ¼ 1

2
jð1� dÞdjb�aj�1; ð2Þ

where j is the mutation rate (probability of any
mutation), and d is the factor by which mutation
decreases as distance between the two alleles increases.
Although this mutation distribution is not stationary
(i.e., it does not ensure allele frequencies to be constant
over the generations), it is commonly used in forensic
inference due to its simplicity. To some degree d can be
regarded as a parameter that controls the probability of
unit-distance mutation, as can be seen from the follow-
ing identity: p(b 1 1 j a)/p(b j a) ¼ d.

In practice, the alleles for almost all microsatellites
are represented by discrete counts. The two-parameter
stepwise mutation model described above complicates
the inference procedure. We propose a discrete micro-
satellite mutation model that is a simplification of
Equation 2, but captures its main idea. We posit that
P(b j a) } djb�aj. Since b 2 [1, ‘), the normalization
constant of this distribution is

Figure 2.—Graphical models: the circles represent ran-
dom variables and diamonds represent hyperparameters.
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X‘

b¼1

Pðb j aÞ ¼
Xa

b¼1

da�b 1
X‘

b¼a11

db�a

¼ 1� da

1� d
1

d

1� d

¼ 1 1 d� da

1� d
;

which gives the mutation model as

Pðb j aÞ ¼ 1� d

1� da 1 d
djb�aj : ð3Þ

We can interpret d as a variance parameter, the factor
by which probability drops as a function of the distance
between the mutated version b of the allele a. Figure 3
shows the discrete probability density function (pdf) for
various values of d.

Determination of founder set at each locus: According to
our model assumptions, there can be a different
number of founder alleles at each locus. This number
is typically smaller than the number of alleles observed
at each marker since the founder alleles are ‘‘ancestral.’’
To estimate the appropriate number and allele states of
founders, we fit finite mixtures (of fixed size, corre-
sponding to the desired number of ancestral alleles) of
microsatellite mutation models over all the measure-
ments at a particular marker for all individuals. We use
the Bayesian information criterion (BIC) (Schwarz

1978) to determine the best number and states of
founder alleles to use at each locus, since information
criteria tend to favor a smaller number of founder
alleles that fit the observed data well.

For each locus, we fit many different finite-sized
mixtures of mutation distributions, with the size varying
from 1 to the number of observed alleles at the locus. For
each mixture size, the likelihood is optimized and a BIC
value is computed. The number of founder alleles is
chosen to be the size of the mixture that has the best
(minimum) BIC value. We can do this as a pre-process-
ing step before the actual inference or estimation
procedures. This is possible since we assumed that the
set of founder alleles at each locus was the same for all
populations.

Choice of mutation prior: In our model, the d parameter,
as explained above, is a population-specific parameter

that controls the probability of stepwise mutations.
Being a parameter that controls the variance of the
mutation distribution, there is a possibility that infer-
ence on the model will encourage higher values of d to
improve the log-likelihood, in the absence of any prior
distribution on d. To avoid this situation, and to allow
more meaningful and realistic results to emerge from
the inference process, we impose on d a beta prior
that is biased toward smaller values of d. The beta prior
is a fixed one and is not among the parameters we
estimate.

SNP mutation model: SNPs represent the largest class
of individual differences in DNA. In general, there is a
well-defined correlation between the age of the muta-
tion producing a SNP allele and the frequency of the
allele. For SNPs, we use a simple pointwise mutation
model, rather than more complex block models. Thus,
the observations in SNP data are only binary (0/1) in
nature. So, given the observed allele b, we say that the
probability of it being derived from the founder allele a
is given by

Pðb j aÞ ¼ dI½b¼a�3 ð1� dÞI½b 6¼a�; a; b 2 f0; 1g: ð4Þ

In this case, the mutation parameter d is the probability
that the observed allele is not identical to the founder
allele, but derived from it due to a mutation.

INFERENCE AND PARAMETER ESTIMATION

For notational convenience, we ignore the diploid
nature of observations in the analysis that follows. With
the understanding that the analysis is carried out for
an arbitrary nth individual, we drop the subscript n.
Also, we overload the indicator variables zi and ci to be
both arrays with only one element equal to 1 and the rest
equal to 0, as well as scalars with a value equal to the
index at which the array forms have 1’s. In other words,
zi 2 {1, . . . , K} or zi [ [zi,1, . . . , zi,K], where zi;k ¼ I½zi ¼ k�,
and I½�� denotes an indicator function that equals to
1 when the predicate argument is true and 0 otherwise.
A similar overloading is also assumed for the ci variables.
For generalization across different types of markers,
we use f ðxi j mi;ci

; di;zi
Þ to denote P(xi j ci, zi, mi, di).

Different mutation models can be used in AdMim by
varying the form of the function f ().

The joint probability distribution of the data and the
relevant variables under the AdMim model can then be
written as

P ðx; z; c; ~u ja; b; m; dÞ

¼ pð~u jaÞ
YI

i¼1

Pðzi j~uÞPðci j zi ;~b
k¼1:K
i Þ

3 Pðxi j ci ; zi ; mi ; dk¼1:K
i Þ:

The marginal likelihood of the data can be computed
by summing/integrating out the latent variables:

Figure 3.—Discretepdffortwovaluesofmutationparameter.
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P ðx ja;b;m; dÞ

¼ Gð
P

K
k¼1 akÞQ

K
k¼1 GðakÞ

ð YK
k¼1

u
ak�1
k

 !
. . .

3
YI

i¼1

XK

k¼1

YK
k¼1

u
zi;k

k

 !XI

i¼1

YK
k¼1

YLi

l¼1

ðbk
i;lÞci;l zi;k . . .

3 Pðxi jmi;l ; d
k
i Þci;l zi;k d~u:

However, a closed-form solution to this summation/
integration is not possible, and indeed exact inference
on hidden variables such as the structure vector ~u and
estimation of model parameters such as the mutation
rates d under AdMim is intractable. Pritchard et al.
(2000) presented an MCMC algorithm for approximate
inference for their admixture model underlying Struc-
ture. While it is straightforward to implement a similar
MCMC scheme for AdMim, we choose to apply a
computationally more efficient approximate inference
method known as variational inference ( Jordan et al.
1999).

Variational inference: We use a mean-field approxi-
mation for performing inference on the model. This
approximation method approximates an intractable
joint posterior p() of all the hidden variables in
the model by a product of marginal distributions
qðÞ ¼

Q
qiðÞ, each over only a single hidden variable.

The optimal parameterization of qi() for each variable is
obtained by minimizing the Kullback–Leibler diver-
gence between the variational approximation q and
the true joint posterior p. Using results from the
generalized mean field theory (Xing et al. 2003), we
can write the variational distributions of the latent
variables in AdMim as follows:
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ak�11

P
I

i¼1
hzi;ki

k

qðciÞ}
YL
l¼1

YK
k¼1

ðbk
i;l f ðxi jmi;l ; d

k
i ÞÞhzi;ki
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k
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:

In the distributions above, the ‘‘h�i’’ are used to indicate
the expected values of the enclosed random variables. A
close inspection of the above formulas reveals that
these variational distributions have the form qð~uÞ �
Dirichletðg1; . . . ; gK Þ, q(zi) � Multinomial(ri,1, . . . ,
ri,K), and q(ci)�Multinomial(ji,1, . . . , ji,L), respectively,
of which the parameters gk, ri,k and ji,l are given by the
equations
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and they have the properties hlogðukÞi ¼ cðgkÞ �
cð
P

k gkÞ, hzi;ki ¼ ri,k, and hci;l i ¼ ji,l, which suggest that
they can be computed via fixed point iterations. [The
digamma function c() used above is the first derivative
of the logarithm of the gamma function G().] It can be
shown that this iteration will converge to a local
optimum, similar to what happens in an EM algorithm.
Empirically, a near global optimum can be obtained by
multiple random restarts of the fixed point iteration.
Typically, such a mean-field variational inference con-
verges much faster than sampling (Xing et al. 2003).
Upon convergence, we can easily compute an estimate
of the structure vector~u for each individual from qð~uÞ.

Parameter estimation: The parameters of our model
are the centroids m, the mutation parameters d, the
ancestral allele frequency distributions b, and the
Dirichlet hyperparameter that is the prior on ancestral
populations, a. For the hyperparameter estimation, we
perform empirical Bayes estimation using the varia-
tional expectation maximization algorithm described in
Blei et al. (2003). The variational inference described in
the previous section provides us with a tractable lower
bound on the log-likelihood as a function of the current
values of the hyperparameters. We can thus maximize it
with respect to the hyperparameters. If we alternately
carry out variational inference with fixed hyperpara-
meters, followed by a maximization of the lower bound
with respect to the hyperparameters for fixed values of
the variational parameters, we can get an empirical
Bayes estimate of the hyperparameters. The derivation,
details of which we do not show here, leads to the
following iterative algorithm:

1. E-step: For each individual, find the optimizing values
of the variational parameters (gn, rn, jn; n 2 1, . . . , N)
using the variational updates described above.

2. M-step: Maximize the resulting variational lower
bound on the likelihood with respect to the model
parameters, namely a, b, m, d.

The two steps are repeated until the lower bound on
the log-likelihood converges. The details of estimation
of each hyperparameter are included in the appendix.

EXPERIMENTS AND RESULTS

We validated our model on synthetic microsatellite
data sets simulated using a coalescent model to assess
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the performance of mStruct in terms of the accuracy
and consistency of the estimated structure vectors and
to test the correctness of the inference and estimation
algorithms we developed. We also conducted empirical
analysis using mStruct of two real data sets: the HGDP–
CEPH cell line panel of microsatellite loci and the
HGDP SNP data, in comparison with the Structure
program (version 2.2).

Validations on coalescent simulations: To verify the
correctness of the empirical admixture estimations based
on mStruct when the truth is known, we first simulated a
multitude of admixture population data sets, using
coalescent techniques described in Hudson (1990),
under various user-specified admixing scenarios. Specif-
ically, following Hudson (R. Hudson, personal commu-
nications), without loss of generality we simulated
genealogy trees for two discrete populations of effective
size 2N, which were assumed to have split from a single
ancestral population, also of size 2N, at a time N
generations in the past. We assumed that there was no
migration between the populations after the split. These
two discrete populations were joined together to form a
single random-mating population. (A simulation of
multiple-population admixing is possible, but tedious,
and thus omitted here for simplicity.) After a single
generation of random mating, samples were collected
from the resulting population. Individuals, therefore,
have i parents from population 1 and 2 � i parents from
population 2 with probability

�
2
i

�
=4. Every locus was

simulated independently. Microsatellite mutation was
modeled by a simple stepwise mutation process. The
mutation parameter 4Nm was varied over data points, with
three discrete values, {8, 16, 32}, being used. Since the
expected number of mutations within the populations is
given by 2Nm, the values chosen are representative of the
diversity observed in real data (Pritchard et al. 2000).

For each individual, we stored the fractional contri-
bution of population 1 to its genome. For each data set,
we also stored the fractional contribution of population
1 to the entire population. To ensure that each
population was well represented in the admixed pop-
ulation, only data sets that had roughly equal contribu-
tion from both populations were accepted (the
contribution of population 1 to the resulting popula-
tion was required to be in [50� 0.01, 50 1 0.01]%). For
each data point in the graph, 10 data sets were simulated
using the same parameter settings for the mutation
parameter. Each data set had 60 individuals from the
admixed population measured at 100 loci. For each data
set, 10 runs of each software (i.e., mStruct and Struc-
ture) were used to determine the run with best likeli-
hood. The statistics used in the result were computed
only on the run with the best likelihood.

We used the simulated data sets to carry out three
analyses. First, we study the ability of both softwares to
recover the contribution of population 1 (denoted as h)
to the resulting admixed population. Next, we study

how well each software is able to recover the proportion
of ancestry in population 1 for each individual. Finally,
we consider the problem of model selection—i.e.,
choosing the number of ancestral populations to pro-
vide an appropriate representation of the data.

Recovering the contribution of population 1 to the resulting
population: We evaluated the accuracy of the estimated h

under three different conditions, one for each value of
the magnitude of the mutation parameter described
above. The greater the magnitude is, the more difficult
the estimation of admixing coefficient h, because more
discrepancy would exist between the ancestral alleles
and the simulated population alleles. As a measure of
error, we used the absolute difference between the
true value htrue and the inferred value hinfer. The results
shown in Figure 4A denote the means and quartiles of
the result statistics. From Figure 4A, we can see that
as the magnitude of the mutation parameter increases,
the error for Structure increases. However, for mStruct,
there is no significant effect of the mutation parameter
on the error. mStruct also performs better than Struc-
ture over all the data points.

Recovering the contribution of population 1 to the ancestry
of an individual: We used the same data from the earlier
experiment for this analysis. In this case, we used the
mean of the absolute difference between the true and
inferred values of the proportion of ancestry of individ-
uals in population 1 as the measure of error. Figure 4B
shows the results of this analysis. The results follow a
similar trend as in the earlier experiment. For Structure,
an increase in the mutation parameter causes as in-
crease in the error, but there is no significant effect of
the mutation parameter on the error for mStruct. We
show the results for a particular data set with mutation
parameter 4Nm ¼ 32 in Figure 5. Figure 5A shows the
true ancestry proportion map for the sample. It shows
that around half the individuals are admixed. Figure 5,
B and C, shows the ancestry proportion maps inferred
by Structure and mStruct, respectively. We can see that
the ancestry structure recovered by mStruct is very close
to the true ancestry proportions. The recovery of
ancestry proportions by Structure is not very close to
the truth in this case.

Model selection—choice of K: As in Structure, our model
is defined for a particular value of K, the number of
ancestral populations. In general, it is not always clear
what value of K must be chosen to interpret the data
appropriately. We performed an experiment on the
simulated data to determine the most appropriate
number of ancestral populations for the data. In this
case, only a single data set was used with the mutation
parameter 4Nm set to 16. For each value of K from 1 to 5,
we performed 10 runs of mStruct on the data and chose
the run with the best likelihood for model selection. To
choose the best value of K, we used the BIC (Schwarz

1978) (that we previously used to decide the optimal
number of ancestral alleles at each locus). The preferred
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model is the one that has the minimum value of the BIC.
Table 1 shows the BIC values for the values of K. From
Table 1, we can see that the model with K ¼ 2 ancestral
populations is correctly chosen as the optimal model.

Empirical analysis of real data sets: The HGDP–
CEPH cell line panel (Cann et al. 2002; Cavalli-Sforza

2005) used in Rosenberg et al. (2002) contains geno-
type information from 1056 indviduals from 52 pop-
ulations at 377 autosomal microsatellite loci, along with
geographical and population labels. The HGDP SNP
data (Conrad et al. 2006) contain the SNP genotypes at
2834 loci of 927 unrelated individuals that overlap with
the HGDP–CEPH data. To make results for both types of
data comparable, we chose the set of only those
individuals present in both data sets. As in Rosenberg

et al. (2002), the choice of the total number of ancestral
populations can be left to the user; we tried K ranging
from 2 to 5, and we applied the BIC to decide the Bayes
optimal number of ancestral populations within this
range to be K ¼ 4. Below, we present the structural
analysis under four ancestral populations.

Structural map from the HGDP–CEPH data: We com-
pare the structural maps inferred from the micro-
satellite data using mStruct and Structure in Figure 6.
The most obvious difference between the maps pro-
duced by both programs is the degree of admixing that
the individuals in the program are assigned. Structure
assigns each geographical population to a distinct
ancestral allele-frequency profile. This assignment is
very useful for partitioning individuals into separate
clusters. However, in doing so, it is unable to capture the
genetic structural relationships between individuals. It
offers no insights into the admixture history of pop-
ulations, as mStruct does. In contrast, the structure map
produced by mStruct from microsatellite data suggests
that all populations share a common ancestral popula-
tion as a unique extra component (represented by the
magenta color in Figure 6) that characterizes their
particular regional genotypes. A structure map, charac-
terized thus by an underlying commonality in a part of
the genetic ancestry, together with regional differences,
clearly reveals the expansion of humans out of Africa

Figure 4.—Recovery of individual- and population-level admixture parameters.

Figure 5.—A comparison of the true and inferred ancestry proportions for a single example. (A) The true ancestry proportions
for the sample. (B) The ancestry proportions inferred by Structure. (C) The ancestry proportions inferred by mStruct.
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(Hammer et al. 1998; Templeton 2002). It is in this
regard that Structure and mStruct are significantly
different.

Both structure maps show that individuals having a
similar population label (at regional, national, or
continental levels) have similar admixture proportions.
The similarity is least if two individuals come from
different continents and most if two individuals are
from the same region. We can therefore represent each
regional population by the average of the admixture
proportions of all individuals from the region. We
computed the Euclidean distance between all pairs of
the 52 regional populations and constructed a neigh-
bor-joining tree from the distance matrices. Figure 7, A
and B, shows the neighbor-joining trees constructed for
Structure and mStruct. It is important to note that the
distance measure used is not known to be a true
measure of evolutionary distance. These trees have
been constructed from a single instance of the distance
matrix and have not been bootstrapped. Despite this, we
can see that the mStruct tree agrees quite well with
previously constructed phylogenetic trees for human
populations (Bowcock et al. 1994). The phylogeny
from mStruct appears to be more interpretable than
that from Structure. In Figure 7B, we can see a tighter
cluster for the African populations and that American
populations diverged after Asian and European popu-
lations diverged, rather than before.

Analysis of the mutation spectra: Now we report a
preliminary analysis of the evolutionary dynamics re-
flected by the estimated mutation spectra of different
ancestral populations (denoted ‘‘am-spectrum’’) and of

different modern geographical populations (denoted
‘‘gm-spectrum’’), which is not possible by Structure. For
the am-spectrum (Figure 8A), we compute the mean
mutation rates over all loci and founding alleles for each
ancestral population as estimated by mStruct. We
estimate the gm-spectrum (Figure 8B) as follows: for
every individual, a mutation parameter is computed as
the per-locus number of observed alleles that are
attributed to mutations, weighted by the mutation
parameters corresponding to the ancestral allele chosen
for that locus. This can be computed by observing the
population indicator (Z) and the allele indicator (C) for
each locus of the individual. We then compute the
population mutation parameters by averaging mutation
parameters of all individuals having the same geo-
graphical label.

As shown in the gm-spectrum in Figure 8B, the
mutation parameters for African populations are in-
deed higher than those of other modern populations.
Since the mutation parameter reflects effects of muta-
tion rate and population age, this indicates that they
diverged earlier, a common hypothesis of human
migration. Other trends in the gm-spectra also reveal
interesting insights. We computed the empirical muta-
tion parameters for each of the 52 subpopulations
present in the data as we did for each continent. Since
each population has an associated latitude and longi-
tude, this allows us to set up a function that maps a
geographical latitude/longitude coordinate to an em-
pirical mutation parameter. Figure 9 shows the contour
plot of this function. The mutation parameter d in our
model is a measure of variability (a combination of per
generation mutation rate and age of the population).
Thus, the contour plots shows us how the amount of
variability changes across the world. We can see that the
maximum variation is in Africa. There is a decrease in
variation as we move away from central Africa. We can
also see that the South American tribes have the least
amount of accumulated variation. This is in qualitative
agreement with the ages of different populations as
predicted by the ‘‘Out of Africa’’ hypothesis of human
migration.

Structural map from the HGDP SNP data: Figure 10
shows the structural maps produced by mStruct and
Structure for the HGDP SNP data. We can see that the
two population maps are nearly identical, which signals

TABLE 1

Model selection for simulated data: BIC values
for K from 1 to 5

K BIC

1 6.91 3 104

2 6.87 3 104

3 6.99 3 104

4 7.12 3 104

5 7.26 3 104

The model having a smaller BIC value (K¼ 2 in this case) is
preferred (numbers in boldface type).

Figure 6.—Ancestry structure
maps inferred from the microsa-
tellite portion of the HGDP data
set, using mStruct and Structure
with four ancestral populations.
The colors represent different an-
cestral populations.
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Figure 7.—Neighbor-joining trees constructed using mStruct and Structure for the 52 regional populations in the HGDP mi-
crosatellite data. (A) Tree constructed using Structure. (B) Tree constructed using mStruct.
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an inconsistency between the microsatellite and SNP
mStruct results for the human data. However, there are
some important caveats that must be taken into consid-
eration. In our analysis, we consider a simplistic Ber-
noulli-like model of SNP mutation. While richer
mutation models could potentially reduce this difficulty,
there is a more significant difficulty with the analysis of
SNP data. The biallelic nature of SNP markers makes it
difficult to draw any inferences about the correct
number of ancestral alleles at a locus. For microsatel-
lites, this problem is considerably easier due to their
multiallelic nature. As a result, mStruct is unable to
obtain more information about evolutionary history
from SNP markers than Structure does. As we explained
earlier, mStruct is an extension of Structure that finds
signals about mutations present in the data. So in the
event that mStruct is unable to find any extra mutation
information from the data, it is quite reasonable to expect
its output to be nearly the same as that of Structure.

Model selection: As with all probabilistic models, we
face a trade-off between model complexity and the log-
likelihood value that the model achieves. In our case,
complexity is controlled by the number of ancestral
populations we pick, K. Unlike nonparametric or

infinite-dimensional models (Dirichlet processes,
etc.), for models of fixed dimension, it is not clear in
general as to what value of K gives us the best balance
between model complexity and log-likelihood. In such
cases, different information criteria are often used to
determine the optimal model complexity. To determine
what number of ancestral populations fit the HGDP
SNP and microsatellite data best, we computed BIC
scores for K¼ 2–5 for both kinds of data separately. The
results are shown in Figure 11. From the BIC curves for
both SNP and microsatellite data, we can see that the
curves suggest K ¼ 4 as the best fit for the data.

DISCUSSION

The task of estimating the genetic contributions of
ancestral populations, i.e., structural map estimation, in
each modern individual, is an important problem in
population genetics. Due to the relatively high rates of
mutation in markers such as microsatellites and SNPs,
multilocus genotype data usually harbor a large amount
of variations, which allows differentiation even between
populations that have close evolutionary relationships.

Figure 8.—Am-spectrum and
Gm-spectrum inferred from the
microsatellite portion of the
HGDP data set, using mStruct
with four ancestral populations.
The colors represent different an-
cestral populations.

Figure 9.—Contour
map of the empirical muta-
tion parameters over the
world map.
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However, to our knowledge, none of the existing methods
is able to take advantage of this property to compare how
marker mutation rates vary with population and locus,
while at the same time exploiting such information for
population structural estimation. Traditionally, popula-
tion structure estimation and mutation spectrum estima-
tion have been performed as separate tasks.

We have developed mStruct, which allows estima-
tion of genetic contributions of ancestral populations
in each modern individual in light of both popula-
tion admixture and allele mutation. The variational
inference algorithm that we developed allows tractable
approximate inference on the model. The ancestral
proportions of each individual enable representing
population structure in a way that is visually easy to
interpret, as well as amenable to further computational
analysis.

The statistical modeling differences between mStruct
and Structure provide an interesting insight into the
possible reasons that lead to mStruct inferring higher
levels of admixture than Structure. In Structure’s
representation of population, every microsatellite allele
is considered to be a separate element of the popula-
tion, even though they might be very similar. In the
inheritance model representation, such alleles are
considered to be possibly derived from a single ancestral
allele. This can lead to detection of extra similarity
among individuals possessing these alleles. This is
probably the main reason that the inferred levels of
admixture are higher in mStruct than in Structure.

Another parameter that would also affect inferred
levels of admixture is the d-parameter that determines
the variance of the mutation distributions. Higher
values of d (tending to 1) lead to significantly higher
levels of inferred admixture. If a strong prior is not used,
the d-values tend toward 1 in the initial few steps of the
variational EM algorithm. This seems to happen due to
the initial imprecise assignments for the z and c in-
dicator variables. However, the region of high d-values is
a region of low log-likelihood in the parameter space
and the EM quickly finds a local optimum that is
undesirable due to the low log-likelihood of that region
of the parameter space.

In conjunction with geographical location, the in-
ferred ancestry proportions could be used to detect
migrations, subpopulations, etc. Moreover, the ability to

estimate population- and locus-specific mutation pa-
rameters also allows us to substantiate evolutionary
dynamics claims on the basis of high/low mutation
parameters in certain geographical populations or on
the basis of high/low mutation parameters at certain
loci in the genome. While the estimates of mutation
parameters that mStruct provides are not on an absolute
scale, the comparison of their relative magnitudes is
certainly informative.

The mutation model we currently use is a computa-
tionally simple one. However, it lacks the ability to
distinguish between the effects of per generation muta-
tion rate and the age of the population. Under the
stepwise mutation model, we can model inheritance by
using a more complex but powerful model, using Bessel
functions (Felsenstein 2004). This form would allow
separate inference of the per generation mutation rate
as well as the age of the population.

As of now, a number of possible extensions remain to
the methodology we presented so far. It would be
instructive to see the impact of allowing linked loci as
in Falush et al. (2003). We have not yet addressed the
issue of the most suitable choice of mutation process,
but instead have chosen one that is reasonable and
computationally tractable. It would also be interesting
to combine mStruct with the nonparametric Bayesian
models based on the Dirichlet processes as in programs
such as Spectrum (Sohn and Xing 2007) and Structur-
ama (Huelsenbeck and Andolfatto 2007).

Figure 10.—Ancestry structure
maps inferred from the SNP por-
tion of the HGDP data set, using
mStruct and Structure with four
ancestral populations.

Figure 11.—Model selection with BIC score for the HGDP
data with mStruct on SNP and microsatellite data.
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In summary, current population stratification meth-
ods such as Structure ignore the effects of allele
mutations, which are a significant factor in shaping
allele diversity in microsatellites in human populations.
In doing so, they are restricted to clustering human
genetic data rather than being able to identify admixing
of populations. Clustering is useful for population
stratification, but a more accurate representation of
events such as genome variations might cast more
light on population evolutionary history. By incorpo-
rating the effect of allele mutations, the mStruct
approach developed in this article represents such an
attempt to gain more insight into the fine structures
of genetic admixing of populations and their diver-
gence times.
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APPENDIX: DETAILS OF HYPERPARAMETER ESTIMATION

Bayes estimates of hyperparameters: Denote the original set of hyperparameters by

H ¼ fa;b;m; dg ðA1Þ

and the variational parameters for the nth individual by

Vn ¼ fgn; rn; jng: ðA2Þ

The variational lower bound to the log-likelihood for the nth individual is given by

LnðH; VnÞ ¼ Eq ½log pðxn;~un; z:;n; c:;n; HÞ� � Eq ½log qð~un; z:;n; c:;n; H; VnÞ�: ðA3Þ

The subscripts indicate the nth individual. In the analysis below, we use z.,n to denote {z1,n, . . . , zI,n} and c.,n to represent
{c1,n, . . . , cI,n}. As described earlier, we partition the variational approximation as

qð~un; z:;n; c:;n; H; VÞ ¼ qð~unÞ
YI

i¼1

qðzi;nÞqðci;nÞ: ðA4Þ

So we can expand Equation 7 as

LnðH; ViÞ ¼ Eq ½log pð~un; aÞ�1 Eq ½log pðz:;n j~unÞ�1 Eq ½log pðc:;n j z:;nÞ�
1 Eq ½log pðxn j c:;n; z:;n; bÞ� � Eq ½log qð~unÞ� � Eq ½log qðz:; nÞ� � Eq ½log qðc:; nÞ�: ðA5Þ

The lower bound to the total data log-likelihood is

LðH; VÞ ¼
XN
n¼1

LnðH; VnÞ;

which, on substituting from Equation A5, becomes

LðH; VÞ ¼
XN
n¼1

Eq ½log pð~un; aÞ�1
XN
n¼1

Eq ½log pðz:;n j~unÞ�

1
XN
n¼1

Eq ½log pðc:;n j z:;nÞ�1
XN
n¼1

Eq ½log pðxn j c:;n; z:;n; bÞ�

�
XN
n¼1

Eq ½log qð~unÞ� �
XN
n¼1

Eq ½log qðz:;nÞ�

�
XN
n¼1

Eq ½log qðc:;nÞ�: ðA6Þ

To compute Eq ½log pð~un; aÞ� and Eq ½log qð~unÞ�, we use the properties of a Dirichlet distribution, which is an exponential
family distribution. If u � Dir(a), then the exponential family representation of p(u; a) is given by

pðu; aÞ ¼ exp
XK

k¼1

ðak � 1Þ log uk

 !
1 log G

XK

k¼1

ak

 !
�
XK

k¼1

log GðakÞ
" #

: ðA7Þ

So the natural parameter of the Dirichlet is hk ¼ ak � 1 and the sufficient statistic is T(uk) ¼ log uk. The log
normalization factor is

PK
k¼1 log G(ak)� log G(

PK
k¼1 ak). For an exponential distribution, the derivative of the log

normalization factor with respect to the natural parameter is equal to the expected value of the sufficient statistic.
Using this fact, we get
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E½log uk ; a� ¼ cðakÞ � c
X

k

ak

 !
; ðA8Þ

where c is the digamma function, the first derivative of the log gamma function. The remaining expectation terms in
Equation A6 are expectations of multinomial parameters and hence are easy to calculate.

Simplifying each term in Equation A6, we get

LðH; VÞ ¼ N log G
XK

k¼1

ak

 !
� N

XK

k¼1

log GðakÞ1
XN
n¼1

XK

k¼1

ðak � 1Þ cðgn;kÞ � c
XK

k¼1

gn;k

 !" #

1
XN
n¼1

XI

i¼1

XK

k¼1

rn;i;k cðgn;kÞ � c
XK

k¼1

gn;k

 !" #

1
XN
n¼1

XI

i¼1

XK

k¼1

XLi

l¼1

jn;i;l rn;i;k log bk
il

1
XN
n¼1

XI

i¼1

XK

k¼1

XLi

l¼1

jn;i;l rn;i;k log ð1� dk
i Þ1 jxi;n � mi;l jlog dk

i � log ð1 1 dk
i � ðdk

i Þmi;l Þ
h i

�
XN
n¼1

log G
XK

k¼1

gn;k

 !
�
XK

k¼1

log Gðgn;kÞ1
XK

k¼1

ðgn;k � 1Þ cðgn;kÞ � c
XK

k¼1

gn;k

 !" #" #

�
XN
n¼1

XI

i¼1

XLi

l¼1

jn;i;l log jn;i;l

�
XN
n¼1

XI

i¼1

XK

k¼1

rn;i;k log rn;i;k : ðA9Þ

Each line in Equation A9 corresponds to an expectation term in Equation A6. In the following sections, we briefly
describe how the maximum-likelihood estimates of the hyperparameters were obtained from the variational lower
bound.

Estimating ancestral allele frequency profiles b: Since b is a table of probability distributions, the values of its
elements are constrained by the equality

PLi

l¼1 bk
i;l ¼ 1 for all combinations of {i, k}. So to find the optimal values of b

satisfying this constraint while maximizing the variational lower bound, we introduce Lagrange multipliers ni,k. The
new objective function to maximize is then given by

LnewðH; VÞ ¼ LðH; VÞ1
XI

i¼1

XK

k¼1

ni;k

XLi

l¼1

bk
i;l � 1

 !
: ðA10Þ

Maximizing this objective function gives

bk
i;l ¼

P
N
n¼1 jn;i;l rn;i;kPLi

l¼1

P
N
n¼1 jn

n;i;l rn;i;k

: ðA11Þ

We use a uniform Dirichlet prior l on each multinomial~b
k

i . Under this prior, it is not difficult to show that the estimate
of bk

i;l changes to

bk
i;l ¼

l 1
P

N
n¼1 jn

i;l r
n
i;k

l 3 Li 1
PLi

l¼1

P
N
n¼1 jn

i;l r
n
i;k

: ðA12Þ

Estimating the Dirichlet prior on populations a: For estimating a we use the method described in Minka (2003).
This gives a Newton–Raphson iteration for a that does not involve inversion of the Hessian and hence is reasonably
fast. The log-likelihood terms involving a are
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LðH; VÞ ¼ N log G
XK

k¼1

ak

 !
� N

XK

k¼1

log GðakÞ1
XN
n¼1

XK

k¼1

ðak � 1Þ cðgn;kÞ � c
XK

k¼1

gn;k

 !" #
: ðA13Þ

The gradient of the log-likelihood with respect to ak is given by

gk ¼
dLðH; VÞ

dak
¼ N c

XK

k¼1

ak

 !
� N cðakÞ1

XN
n¼1

cðgn;kÞ � c
XK

k¼1

gn;k

 !" #
; ðA14Þ

where the digamma function used above is the first derivative of the logarithm of the gamma function.
The second derivatives, which form the Hessian, can be computed as

dLðH; VÞ
d2ak

¼ N c9
XK

k¼1

ak

 !
� N c9ðakÞ ðA15Þ

dLðH; VÞ
dakaj

¼ N c9
XK

k¼1

ak

 !
ðk 6¼ jÞ; ðA16Þ

where c9, the trigamma function, is the derivative of the digamma function. The Hessian can then be written as

H ¼ Q 1 11Tz ðA17Þ

qj ;k ¼ �N c9ðakÞdðj � kÞ ðA18Þ

z ¼ N c9
XK

k¼1

ak

 !
; ðA19Þ

where Q is a K 3 K matrix with elements qj,k. As we can see from the definition, Q is a diagonal matrix. The Newton
update equation we have is

anew ¼ aold � ðH�1gÞ: ðA20Þ

The inverse of the Hessian can be computed using the Sherman–Morris formula to be

H�1 ¼ Q�1 � Q�111TQ�1

1=z 1 1TQ�11
: ðA21Þ

Therefore, we have that the update term is

ðH�1gÞk ¼
gk � b

qk;k
; ðA22Þ

where

b ¼
P

K
k¼1 gk=qk;k

1=z 1
P

K
k¼1 1=qk;k

:

So the update equation for ak is

anew
k ¼ aold

k �
gk � b

qk;k
: ðA23Þ

Estimating the ancestral alleles m and the mutation parameters d: For finding the optimal values of m and d, we use
simple gradient ascent with line search. m-values are actually discrete variables; however, as an approximation, we
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assume them to be continuous in the optimization and round off the result to the nearest integer. The gradient of the
variational lower bound with respect to mi,l is given by

@L

@mi;l

¼
XN
n¼1

XK

k¼1

jn;i;l rn;i;klog ðdk
i Þ signðxn;i � mi;lÞ1

ðdk
i Þmi;l

1 1 dk
i � ðdk

i Þmi;l

� �
: ðA24Þ

The gradient with respect to di
k is given by

@L

@dk
i

¼
XN
n¼1

XLi

l¼1

jn;i;l rn;i;k

jxn;i � mi;l j
dk

i

� 1

1� dk
i

�
1� mi;lðdk

i Þmi;l�1

1 1 dk
i � ðdk

i Þmi;l

� �
: ðA25Þ

Since the values of d are constrained to be in [0, 1], we use the logit transformation to create a mapping from [0, 1] to
R. This gives us the equations

si;k ¼ log
dk

i

1� dk
i

� �
dk

i ¼ sigmoidðsi;kÞ

@L

@si;k
¼ @L

@dk
i

@dk
i

@si;k

¼ @L

@dk
i

3 dk
i ð1� dk

i Þ:

We can then perform gradient ascent on each m and d separately and repeat this a number of times, to obtain values
that increase the lower bound. To constrain values of the mutation parameter d to allow meaningful interpretation, we
use a b prior on it with a small expected value (�0.1). We denote the prior as b(z1, z2).

While the gradient methods developed are useful for small data sets, they are inefficient on larger data sets and
increase the time required for estimation. Hence we look at a couple of small approximations that help speed up the
hyperparameter estimation. A careful look at the results that have been produced indicates that once the founder
alleles have been picked initially by fitting a mixture of mutation distributions individually at each locus, the later
gradient descent on m makes only very minor changes in their values, if any at all. So, to improve the speed of the
algorithm, we do not perform gradient descent on the founder alleles m but fix them after initialization. We show
below an approximation for estimating the mutation parameter d.

For the estimation of the mutation parameter d, the only relevant term in the likelihood lower bound is
the term

Lðdk
i Þ ¼

XN
n¼1

XLi

l¼1

jn;i;l rn;i;k 3 log f ðxn;i ; mi;l ; d
k
i Þ

1
ðdk

i Þz1�1ð1� dk
i Þz2�1

Bðz1; z2Þ
1 ðterms not involving dk

i Þ:

ðA26Þ

And for the mutation distribution, we use the discrete distribution whose pdf is

f ðx jm; dÞ ¼ ð1� dÞdjx�mj

1 1 d� dm : ðA27Þ

Approximation: We assume d to be small in Equation A27. So we can ignore the term exponential in m in the
denominator, reducing it to only (1 1 d). The expansion of (1 1 d)�1 is given by

1

1 1 d
¼ 1� d 1 d2 � d3 1 . . . ðA28Þ

$ 1� d: ðA29Þ

This gives us a lower bound to the mutation distribution of
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flbðx jm; dÞ ¼ ð1� dÞ2djx�mj: ðA30Þ

It is not hard to show that using this form for the mutation distribution allows a closed-form maximum-likelihood
estimate for d. This approximation gives us a lower bound to the likelihood that is not as tight as the variational lower
bound. However, it offers a significant improvement in time complexity due to the existence of a closed-form solution,
thus avoiding the need for slow gradient-based methods. Under this approximation, the maximum-likelihood
estimate of dk

i for the microsatellite mutation model is given by

dk
i ¼

z1 1
P

N
n¼1

PLi
l¼1 j n; i; lrn;i;k jxn;i � mi;l j

z2 1
P

N
n¼1

PLi
l¼1 jn;i;l rn;i;kð2 1 jxn;i � mi;l j Þ

: ðA31Þ

mStruct: Structure Under Mutations 593


