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Abstract
Many longitudinal studies of aging collect genetic information only for a sub-sample of participants
of the study. These data also do not include recent findings, new ideas and methodological concepts
developed by distinct groups of researchers. The formal statistical analyses of genetic data ignore
this additional information and therefore cannot utilize the entire research potential of the data. In
this paper, we present a stochastic model for studying such longitudinal data in joint analyses of
genetic and non-genetic sub-samples. The model incorporates several major concepts of aging known
to date and usually studied independently. These include age-specific physiological norms, allostasis
and allostatic load, stochasticity, and decline in stress resistance and adaptive capacity with age. The
approach allows for studying all these concepts in their mutual connection, even if respective
mechanisms are not directly measured in data (which is typical for longitudinal data available to
date). The model takes into account dependence of longitudinal indices and hazard rates on genetic
markers and permits evaluation of all these characteristics for carriers of different alleles (genotypes)
to address questions concerning genetic influence on aging-related characteristics. The method is
based on extracting genetic information from the entire sample of longitudinal data consisting of
genetic and non-genetic sub-samples. Thus it results in a substantial increase in the accuracy of
statistical estimates of genetic parameters compared to methods that use only information from a
genetic sub-sample. Such an increase is achieved without collecting additional genetic data.
Simulation studies illustrate the increase in the accuracy in different scenarios for datasets structurally
similar to the Framingham Heart Study. Possible applications of the model and its further
generalizations are discussed.
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1. Introduction
The influence of genes on aging, health and longevity is mediated by thousands of biological
and physiological variables which are also affected by environmental, behavioral and other
factors. Some of such variables are measured in longitudinal studies of aging, health and
longevity. That is why the data on genetic markers collected for participants of a longitudinal
study are probably most appropriate for evaluating the genetic contribution to the aging-related
decline in the health/well-being status and the life span. Such data, however, often cannot be
collected for all participants of the study. This is because: (i) the large-scale collection of
genetic data is a relatively new business, thus, some individuals, who initially participated in
a longitudinal study, have already died or dropped out of a population; (ii) obtaining genetic
information is still an expensive business and cannot be performed at the same scale as medical
examinations or a sociological survey; (iii) not all individuals who agreed to participate in a
medical examination or to respond to the survey’s questionnaire agree to participate in a genetic
analysis. Thus, the presence of genetic information divide participants of a longitudinal study
into two groups: one (the genetic group) includes those for whom genetic data were also
collected. The other (the non-genetic group) consists of those for whom longitudinal data are
available but genetic information was not collected.

Such a situation when information on covariates essential for analyses of risks is missing for
some sub-sample of individuals (either due to cost limitations or by the study design) is typical
in epidemiological studies. For example, two-stage designs are routinely used in epidemiology
when a disease status (or other general information) is ascertained for a large group of
individuals at the first stage and information on covariates essential for analyses of their relation
to the risk of the disease is collected at the second stage for smaller sub-samples of individuals.
Statistical methods for analyses of such data are well developed for regression models (Breslow
and Cain, 1988; Breslow and Holubkov, 1997a; Breslow and Holubkov, 1997b; Cain and
Breslow, 1988; Scott and Wild, 2001; Scott et al., 2007). One of the main advantages of such
methods is that they use information from the first and second stages to estimate regression
parameters. This can lead to a considerable improvement in the efficiency of estimates
compared to the estimates based on the second stage data alone. Applications of such designs
and methods in genetic epidemiology are also discussed in the literature (e.g., Bureau et al.,
2008; Chatterjee and Chen, 2007).

A traditional way of evaluating effects of genes on individuals’ health/well-being/survival
status is to directly estimate respective hazards (e.g., incidence or mortality rate) for carriers
of a selected allele (genotype). Such practice is completely justified in the absence of data about
other factors and processes affecting these characteristics. The advantage of longitudinal data
for the genetic studies of aging and longevity is in the opportunity to estimate not only direct
genetic effects on morbidity and mortality but also indirect genetic effects mediated by age
trajectories of physiological variables collected in the longitudinal study (which may modulate
mechanisms of aging not directly measured in longitudinal data).

The purpose of this paper is to elaborate a genetic model for studying longitudinal data on
aging, health, and longevity which would permit: 1) joint analyses of genetic and non-genetic
data to make use of all available information and increase the accuracy of estimates compared
to analyses of genetic data alone; 2) evaluation of indirect genetic effects mediated by age
trajectories of physiological variables collected in a longitudinal study; and 3) incorporation
of essential mechanisms of aging-related changes in organisms that are not directly measured
in longitudinal data but can be estimated from individual age trajectories of physiological
indices and data on mortality or morbidity. The stochastic process model (SPM) of human
mortality and aging (Manton and Yashin, 2000; Woodbury and Manton, 1977; Yashin, 1985;
Yashin and Manton, 1997) is the conceptual approach in this study and its extension presented
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in this paper has all three above-mentioned properties. The important feature of the SPM is a
biologically-justified U- or J- shaped risks as functions of respective indices. Such shapes of
the risk functions are observed for different physiological indices (Allison et al., 1997; Boutitie
et al., 2002; Kulminski et al., 2008; Kuzuya et al., 2008; Mazza et al., 2007; Okumiya et al.,
1999; Protogerou et al., 2007; Troiano et al., 1996; Witteman et al., 1994). The original SPM
was recently modified (Yashin et al., 2007b) to include major concepts of aging known to date:
age-specific physiological norms (Lewington et al., 2002; Palatini, 1999; Westin and Heath,
2005), allostasis and allostatic load (Karlamangla et al., 2006; Seeman et al., 2001), the decline
in adaptive capacity with age (homeostenosis) (Lund et al., 2002; Troncale, 1996), the decline
in stress resistance with age (Hall et al., 2000; Ukraintseva and Yashin, 2003; Yashin et al.,
2006), and stochasticity (Goldberger et al., 2002). The one- and two-dimensional versions of
the model were successfully applied to different data sets to reveal complicated interplay
among different components of aging-related changes in humans (Yashin et al., 2007c; Yashin
et al., 2007d; Yashin et al., 2008a). The model presented in section 2 of this paper is a step
forward in analyzing contribution of genes to dynamic regularities in aging-related changes in
a human organism. This model incorporates information on genetic markers collected for a
sub-sample of participants of a longitudinal study and permits evaluation of all above-
mentioned characteristics (age-specific norms, decline in stress resistance, etc.), as well as
respective hazard rates, for carriers and non-carriers of a selected allele (genotype) to address
questions concerning genetic influence on these aging-related characteristics (here we
formulated the model for two types of individuals: carriers and non-carriers of some selected
allele/genotype, however, its extension to the case of many alleles/genotypes is
straightforward). The method is based on extracting genetic information from the entire sample
of longitudinal data consisting of genetic (those with available genetic information) and non-
genetic (those for whom genetic information was not collected) sub-samples. The group of
individuals with genetic data becomes automatically divided into subgroups of carriers and
non-carriers of respective alleles or genotypes. The non-genetic group consists of carriers of
the same genotypes identified in the genetic group and, hence, non-genetic data contain
information about genetic influence on all phenotypes observed in a longitudinal study. We
develop statistical methods for extracting genetic information from the entire sample of
longitudinal data consisting of genetic and non-genetic sub-samples. This joint analysis results
in a substantial increase in the accuracy of statistical estimates of genetic parameters (without
collecting additional genetic data) compared to methods that use only information from a
genetic sub-sample. Simulation studies illustrating the increase in the accuracy in different
scenarios for datasets structurally similar to the Framingham Heart Study (FHS) (Dawber et
al., 1951) are presented in section 3 and in Supplementary Material. The last section
summarizes the results and discusses perspectives of further research in this area.

2. SPM for joint analysis of genetic and non-genetic data from longitudinal
studies
2.1. General model

Yashin et al. (2007b) suggested the stochastic model that includes several major concepts of
aging known to date and that links individual trajectories of physiological or other indices
measured in longitudinal data and mortality or morbidity risks. The model uses several
assumptions in description of the dynamic properties of physiological indices and the function
of the mortality/morbidity risk. It is assumed that the age dynamics of physiological indices is
modeled by a multidimensional stochastic process (with a normally distributed initial value).
This process represents two main components of the age dynamics. The first one corresponds
to the basic regularities of the age-related physiological changes and the second is a stochastic
component summarizing the effects of external and internal disturbances in the dynamics of
the indices. The basic regularities include the notion of allostatic adaptation, i.e., the average
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trajectories of physiological indices which the organisms are forced to follow and which
represent average effects of interplay among factors controlled by the ontogenetic program,
senescence, and long-acting environmental stresses exceeding the limits of the homeostatic
regulation in human organisms. The equation also includes a feedback mechanism which
represents the homeostatic regulation and forces the trajectories of physiological indices to
return to their average levels in case of disturbances (deviations from these levels). The
mortality/morbidity risk is assumed as a quadratic hazard function to capture J- or U-shapes
of the risks considered as a function of risk factors (physiological indices). The notion of
physiological norms of indices is introduced to represent the values of indices with minimal
mortality/morbidity risks at respective ages. Deviations from this norm elevate the mortality/
morbidity risk (compared to the baseline level) and it is assumed that the magnitude of this
elevation is age-dependent (i.e., the magnitude of the U-shape of the risk function changes with
age) representing the decline in stress resistance with age.

In this paper, we extend the Yashin et al. (2007b) model including the dependence of the
dynamics of physiological indices and hazard rates on genetic markers. The description
corresponds to an assumption that a population under study (e.g., participants of a longitudinal
study) is a mixture of carriers and non-carriers of some selected allele (or genotype) with initial
proportions p and 1 − p, respectively. We assume that for some portion of this population
genetic data are collected. Availability of such data allows one to hypothesize that longitudinal
data for carriers and non-carriers of the selected allele (genotype) are represented by the same
model with possibly different (allele- or genotype-specific) parameters describing the
evolution of physiological indices and the shape of the mortality/morbidity rate.

Let a discrete random variable Z (Z = 0, 1; P(Z = 1) = p) characterize the absence (Z = 0) or
presence (Z = 1) of a selected allele (or genotype) in the genome of an individual randomly
selected from a population. Let Yt be a continuously changing random covariate (a vector of
physiological indices). We assume that the evolution of Yt depends on the presence (or absence)
of a selected allele (genotype) in the genome and it may be described by the following stochastic
differential equation with coefficients depending on Z:

(1)

Here Yt (t is age; we omit dependence of the process on Z for conciseness) is a k-dimensional
stochastic process with the initial condition Yt0. We assume that the conditional distribution of
Yt0 given Z (p(Yt0 |Z = z), z = 0, 1) is normal with mean m (z,t0) = mz,0 and variance γ(z,t0) =
γz,0. Wt is a (k-dimensional) vector Wiener process independent of Yt0 and Z. It describes
external disturbances affecting these covariates and incorporates stochasticity into the model.
The strength of disturbances is characterized by the matrix of diffusion coefficients B(Z, t).
The vector-function f1(Z, t) (having the same dimension as Yt) introduces the notion of
allostasis into the model. It describes the age trajectory of a physiological state which
organisms are forced to follow by the process of allostatic adaptation (McEwen and Wingfield,
2003). This function describes average trajectories of physiological indices resulting from a
complicated interplay among factors controlled by the ontogenetic program, senescence, and
long-acting environmental stresses in human organisms and may be referred to as the “mean
allostatic state.” Dependence of this function on Z indicates that mechanisms of allostatic
adaptation may differ for groups of individuals characterized by different values of Z (i.e., in
carriers and non-carriers of a selected allele/genotype). The matrix a(Z, t) describes the
mechanism of decline in adaptive (homeostatic) capacity in an aging organism (see example
in section 2.1 of Yashin et al., 2007b). The elements of this matrix correspond to the rate of
adaptive response to any deviation of physiological indices Yt from f1(Z, t) (i.e., the homeostatic
adaptation of physiological indices Yt to the allostatically prescribed trajectories f1(Z, t)).
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Dependence of this matrix on age captures average age-related changes in the “homeostatic
capacity” of a human organism. Its dependence on Z captures potential differences in adaptive
capacity in carriers and non-carriers of a selected allele/genotype.

Let the mortality rate conditional on Yt and Z be:

(2)

Here the scalar function μ0(Z,t) is the background (baseline) hazard characterizing the residual
mortality rate, which would remain if all covariates Yt follow their optimal trajectories, i.e.,
coincide with the vector-function f(Z, t). Thus, μ0(Z,t) is associated with death from factors
other than those involved in the quadratic term and represented by Yt (i.e., with unmeasured
factors). Its dependence on Z indicates the possibility that the effect of unobserved factors
(which may be of genetic or non-genetic origin) on the mortality risk is different in carriers
and non-carriers of a selected allele/genotype. The function f(Z, t) is introduced to explicitly
associate changes in the “optimal” physiological state with the minimum of hazard at respective
ages. It has a meaning of the age-specific physiological norm corresponding to a minimum risk
of death at specific ages. It may differ from f1(Z, t) since the process of allostatic adaptation
(considered as an organism’s response to persistent disturbances) does not necessarily result
in the optimal physiological state. Thus, the difference between f1(Z, t) and f(Z, t) provides the
measure of the allostatic load. Dependence of f(Z, t) on Z indicates the possibility that carriers
and non-carriers of a specific allele/genotype may have different age-trajectories of
physiological norms. Q(Z, t) is a non-negative-definite symmetric matrix (for all values of Z
and t) of respective dimension (k × k). Its dependence on age is assumed to allow for capturing
the decline in stress resistance. For example, in a one-dimensional case, an increasing pattern
of Q(Z, t) with age (t) indicates that the branches of respective U-shaped risk function are
getting steeper with age. This means that the range of “acceptable” deviations of the respective
risk factor (represented by Yt) from its “optimal” values (represented by f (Z, t)), which result
in a moderate increase in the risk of death, is getting narrower with age. This, in turn, is an
indicator of decline in stress resistance with age. Dependence of Q(Z, t) on Z indicates the
possibility that carriers and non-carriers of a specific allele/genotype differ with respect to the
aging-related decline in stress resistance.

2.2. Likelihood function for data from genetic group

Let the sequence , τi represent the results of ni + 1 measurements of the

process Yt at ages , j = 0…ni, and the life span (which may be censored) related to ith individual
from the genetic group (i.e., for whom information on Z is known). The following likelihood
function can be used to estimate the model parameters for  is the
number of individuals with Z = z, z = 0, 1) individuals from this group:

(3)

The products in (3) are calculated over individuals with respective value of z, z = 0, 1, and the
likelihood for ith individual with Z = z is
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(4)

The hazard rate at age t for ith individual with Z = z, μ̄i(z,t), is given by

(5)

Functions mi (z,t) and γi(z,t) in (4) and (5) are mean and variance of the conditional distribution
P(Yt ≤ y|Z = z, T > t), which satisfy the following ordinary differential equations:

(6)

(7)

at the intervals between the observation times, , with initial
conditions , and γz,0, 0, …, 0, respectively. Thus, the trajectories of mi (z,t)and
γi(z,t) defined by equations (6) and (7) differ for different individuals. Consequently, the
estimates of the chances of death for individuals having different observed values of the
respective covariates will also differ. δi denotes a censoring indicator (1 for died, 0 for

censored),  is the age of the latest

measurement of the physiological index before death/censoring at τi, and  is the

determinant of the matrix , z = 0,1.

2.3. Likelihood function for data from non-genetic group
The non-genetic group is a discrete mixture of carriers and non-carriers of alleles or genotypes
measured in the first (genetic) group. If the genetic subgroup has been randomly selected from
the data, then the proportions of carriers and non-carriers of respective allele (genotype) in
genetic and non-genetic groups are about the same. The likelihood function of longitudinal
data for the non-genetic group is a function constructed for such a heterogeneous population.
Let Nng (t0) be the number of individuals in the non-genetic group. Since the genotypes of
respective individuals are unknown, the likelihood function of these data is

(8)

where  and  are calculated for ith individual from the non-genetic group using (4).
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2.4. Joint analysis of genetic and non-genetic data
One can see that, although the likelihood functions constructed for genetic and non-genetic
data have different structures, they depend on the same parameters (those of functions μ0
(Z,t), Q(Z, t), f(Z, t), f1(Z, t), a(Z, t), and B(Z, t)). This property suggests that the joint analysis
of such data will improve the accuracy of parameter estimates compared to the analysis of data
from the genetic group alone. The likelihood function for genetic and non-genetic data is the
product of the likelihoods constructed for genetic and non-genetic groups:

(9)

where Lg and Lng are given by (3) and (8). Maximizing this likelihood, we will obtain the
parameter estimates that characterize the dynamics of the stochastic process Yt describing the
trajectories of physiological indices and the mortality rates for carriers and non-carriers of
selected allele (genotype). One can also test the hypotheses on differences in respective
parameters in carriers and non-carriers of allele (genotype) estimating the model with equal
parameters for carriers and non-carriers (i.e., some or all functions from the above list do not
depend on Z) and the general model with parameters depending on Z, and comparing these two
models using the likelihood ratio test (see examples in Simulation studies S1 in Supplementary
Material). If such differences are significant, this will indicate the presence of a genetic effect
in respective component of the model (e.g., in age-specific norms). If they are not, then the
respective component can be well modeled by a general “population” function (i.e., not
depending on Z).

3. Results of simulation study: Comparison of accuracy of estimates in joint
analysis of genetic and non-genetic data and in analysis of genetic data alone

We performed a simulation study to check performance of the model in a one-dimensional
case and compare the accuracy of estimates in the joint analysis of genetic and non-genetic
data and in the analysis of genetic data alone. In computer simulations, we used a discrete-time
version of the general model (1)–(2). We assumed that the background mortality μ0(Z,t) in (2)
is the Gompertz hazard μ0(Z,t) = aμ0 (Z)ebμ0(Z)(t−tmin), where tmin = 30. The quadratic hazard
terms, Q(Z, t), the mean allostatic state, f1(Z, t), and the age-dependent norms, f(Z, t), are taken
as linear functions of age: Q(Z,t) = aQ (Z) + bQ (Z)t, f1(Z, t) = af1 (Z) + bf1 (Z)(t − tmin), and f
(Z, t) = af (Z) + bf (Z)(t − tmin). The rates of adaptive regulation, a(Z, t), and the diffusion
coefficients, B(Z, t), are assumed constant: a(Z,t) = aY (Z), and B(Z,t) = σ1(Z). The initial
distribution of Yt0 is normal with the mean f1 (Z,t0) and the variance . The initial proportion
of a hypothetical allele (or genotype) in a population (i.e., P(Z = 1)) is denoted by p. Parameters
to be estimated in this model are: ln aμ0 (Z) (note that we estimated ln aμ0 (Z) instead of aμ0
(Z) because the values of aμ0 (Z) in this study are close to zero, which is typical for human data
and close to the boundary of acceptable values for this parameter), bμ0 (Z), aQ (Z), bQ (Z), aY
(Z), σ0 (Z), σ1(Z), af1 (Z), bf1 (Z), af (Z), bf (Z), for Z = 0, 1, and p. Ages at entry into the study
were simulated as a discrete random variable uniformly distributed over the interval from 30
to 60. The interval between observations of Yt equals two years. The number of observations
(exams) is 25. This structure resembles the Framingham Health Study (FHS) data (Dawber et
al., 1951). We simulated 100 data sets, with 2500 individuals in each sample (which is roughly
comparable with the sex-specific sample sizes in the FHS). We assigned the values of Z (1 and
0) to each individual in the sample with probabilities p and 1 − p and simulated the age-
trajectories of the process Yt (a hypothetical physiological index) and probabilities of death at
discrete time intervals (given by (1) and (2), respectively) using the generator of random
numbers implemented in MATLAB.
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The likelihood maximization was performed using the constrained optimization procedure of
MATLAB’s optimization toolbox (MathWorks Inc., 2008). Restrictions on acceptable ranges
of parameter values are necessary for functions in the mortality risk (2) and the stochastic
equation for the risk factor Yt (1). These restrictions reasonably impose constraints on
parameters of: a) an initial distribution Yt0 (to ensure a negligible probability of values outside
the “acceptable range” for the process Yt, which was arbitrarily taken as the interval from 10
to 100); b) functions f1(Z, t) and f(Z, t) (to ensure that their values are within the acceptable
range for the process Yt for ages 30 to 105); c) the rate of adaptive regulation a(Z, t) (to ensure
that the feedback coefficient in (1) does not become too small or positive and that the
trajectories of Yt tend to f1(Z, t)); d) the background hazard μ0 (Z,t) (to ensure non-negative
values for each age, a non-decreasing age pattern, and trajectories of the hazard rates typical
of human data); and e) the quadratic hazard terms Q(Z, t) (to ensure non-negative values for
each age from 30 to 105).

To evaluate an increase in the accuracy of the estimates in the joint modeling compared to the
methods using data from the genetic sample alone, we used three models. First, we assumed
that genetic information is available only for a subset of 500 individuals and maximized the
likelihood Lg in (3) using only data on 500 individuals. Second, we assumed that genetic
information is available for the entire sample. In this case, the likelihood function Lg in (3) was
maximized using data on all 2500 individuals. Third, we used the joint model (with the
likelihood L in (9)) assuming that genetic information is available only for a subset of 500
individuals (with respective proportions of carriers (p) and non-carriers (1 − p) of a hypothetical
allele or genotype) and the remaining 2000 individuals in a sample constituting the non-genetic
group (for which information on the genotype is unknown). The results of this simulation study
are shown in Table 1 and Figs. 1–2.

Table 1 and Figs. 1–2 show that the joint analysis of genetic and non-genetic data leads to a
substantial increase in the accuracy of estimates. Standard deviations of parameter estimates
are about two to four times larger in case of estimating a genetic sub-sample of 500 individuals
compared to the joint analysis of genetic and non-genetic data. In case of estimating a genetic
sub-sample of 500 individuals, some estimated trajectories of μ0 (Z,t), Q(Z, t) and f(Z, t), for
both carriers (Fig. 1) and non-carriers (Fig. 2) substantially deviated from the “true” ones (those
used for simulation of data). Thus, conclusions based on these estimates would be unreliable.
However, the accuracy of estimates in the joint analysis (which is also based on genetic data
for 500 individuals) is roughly comparable to that obtained in the analysis of genetic data on
all 2500 individuals (i.e., maximizing the likelihood function (3) for the entire sample of 2500).
Thus, a substantial increase in the accuracy of estimates can be achieved without the need of
collecting additional genetic data on 2000 individuals.

Simulation studies S1–S3 in Supplementary Material provide more examples of applications
of the approach in different situations.

4. Discussion
The entire research potential of available longitudinal data remains underused if only a genetic
subset of data is involved in genetic analyses (ignoring the presence of non-genetic data). To
be capable of using such a potential, the genetic model of longitudinal data must be extended
to describe data in the non-genetic subgroup as well. Such an extension can be performed using
methods of heterogeneity analyses (Vaupel and Yashin, 1985), taking into account that the
non-genetic subgroup is a mixture of carriers of the same alleles or genotypes represented in
the genetic group. The benefits of combining genetic and non-genetic data come from the
presence of common parameters describing genetic and non-genetic subsets of these data. Our
analyses show that the approach is capable of producing useful results in analyzing data on
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aging and mortality (Tan et al., 2002; Tan et al., 2001; Yashin et al., 1999; Yashin et al.,
2000). The method is also useful in the analysis of data on longevity and incidence of diseases
collected in longitudinal surveys (Yashin et al., 2007a). The approach assumed simple
parametric models for genotype-specific hazard rates (such as Gompertz, linear, logistic or
quadratic functions of age) and resulted in substantial improvement of the accuracy of statistical
estimates (compared to the analysis of genetic data alone) without an increase in the size of
the genetic sample.

The analyses performed in the papers discussed above do not allow for making conclusions
about dynamic mechanisms generating estimated differences in genotype-specific hazards.
Gaining knowledge about such mechanisms is a challenge to researchers in aging-related
disciplines who still cannot come to conclusion concerning causes and regularities of aging-
related deterioration in health/well-being/survival status in humans. The lack of consensus in
interpretation of the results of experimental studies of aging resulted in the absence of a
comprehensive theory and models describing systemic mechanisms generating longitudinal
data on aging-related processes in humans. Traditionally, only subsets of such data, selected
for studying a specific problem, are analyzed and the available mosaic details and findings on
aging still did not form the entire picture of the regularities of aging-related changes in humans.

The model presented in this paper incorporates several promising concepts having a potential
for describing and explaining substantial portions of aging-related changes in humans (age-
specific physiological norms, allostasis and allostatic load, homeostenosis, decline in stress
resistance with age, and stochasticity). Evidently, since all these variables characterize the same
process of aging they should be mutually dependent. Nevertheless, they lack systemic practical
applications to human data because typically not all such mechanisms (e.g., decline in stress
resistance or allostatic load) are directly measured in longitudinal data available to date.
Consequently, this hampers evaluation of the genetic contribution to the aging-related decline
in the health/well-being status and the life span modulated by these mechanisms. The
unification of these concepts in a comprehensive model of aging, health, and longevity is an
important step towards the development of a systemic methodology in aging research.
Incorporation of genetic information into this model permits evaluation of all these
characteristics for carriers of different alleles (genotypes) to address new questions concerning
genetic influence on the aging-related changes in humans, which were not possible to address
before. For example, one can test the hypotheses about differences in age-trajectories of
physiological norms for carriers and non-carriers of a specific allele/genotype (see examples
in Simulation studies S1 in Supplementary Material). One can evaluate and verify pre-disease
pathways by studying age patterns and components of allostatic load in carriers and non-
carriers of allele/genotype (e.g., a larger difference between functions f1 and f for carriers would
mean larger values of allostatic load in individuals carrying such allele/genotype). Genetic
influence on age-related decline in adaptive capacity can be studied by comparing respective
estimates of a(Z, t) for carriers and non-carriers (e.g., in a one-dimensional case, a faster decline
of the absolute value of this function with age in carriers would indicate that the presence of
such allele/genotype results in a faster decline in adaptive capacity with age). Comparison of
the quadratic hazard terms (Q) for carriers and non-carriers allows for evaluation of genetic
effect on stress resistance associated with deviation of selected physiological index from the
age-specific norm (e.g., in a one-dimensional case, a faster increase of Q with age for carriers
would indicate a faster decline in stress resistance in individuals with such allele/genotype).
Testing hypotheses on differences in baseline hazards in carriers and non-carriers would help
determine if there are any differences in mortality risks related to unobserved factors (i.e., those
not involved in the quadratic term and represented by the respective stochastic process) in such
individuals.
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An important feature of the model is that it is capable of extracting genetic information from
the entire sample of longitudinal data consisting of genetic and non-genetic sub-samples. This
leads to a substantial increase in the accuracy of statistical estimates of genetic parameters
compared to estimates based only on information from a genetic sub-sample and such an
increase is achieved without collecting additional genetic data. Such models can be applied to
analyses of any similar type of “incomplete” data, i.e., for any fixed (time-independent) discrete
variable which is available only for a sub-sample of individuals from the entire data set.

The approach presented in this paper has some limitations. The model assumes that the genetic
group is a random sample from the entire data set. However, in real longitudinal data this
assumption may be violated. For example, only individuals with some specific characteristics
(e.g., those without chronic diseases or disability or only those below some specific age) may
be genotyped according to the design of the study. Similarly, those refusing to provide
biological samples for analyses may have different health or disability status and health-related
variables (resulting in different proportions of carriers of selected alleles or genotypes among
non-responders) than those in the genetic sub-sample. The approaches to include probabilistic
mechanisms generating such data into the model need to be elaborated. Further, longitudinal
data usually consist of individuals from different cohorts. This may complicate analyses of
morbidity and mortality in cases where the genetic structure of subsequent cohorts represented
in the data is not similar (e.g., there is a substantial variation in frequencies of genotypes due
to migration or other reasons). Joint analyses of genetic and non-genetic data that ignore the
presence of such trends in the frequencies of genotypes may introduce bias in the results.
Methods for evaluating such bias and approaches allowing for taking differences in genotypes’
frequencies into account in the analyses of genetic aspects of aging and longevity using
mortality data are described by Yashin et al. (2007a).

Another limitation of the approach presented in the paper (as in any other parametric model)
is that it assumes specific functional forms for equations describing the dynamics of
physiological indices and the mortality/morbidity risk. Although the quadratic form of the
hazard rates as a function of physiological indices is biologically justified by numerous
empirical observations of J- or U-shapes of the risks, in real applications to longitudinal data
the actual functional form of the risk function producing the observations is unknown. Also,
other functions (such as physiological norms or adaptive capacity) cannot be empirically
evaluated from the available data and their specific form is also unknown. Thus, a possible
misspecification of the true mechanism generating the data can lead to biased estimates.
Simulation study S3 in Supplementary Material provides an example of application of the
method in case of a misspecified model with different structure of the equation describing the
mortality risk. In this example, despite the different forms of the equation for the mortality risk
in two models, the function f(Z, t) still has the meaning of the age-dependent norm for the
physiological index represented by the process Yt. That is, it corresponds to the minimal
mortality at respective ages in both the quadratic hazard and Cox models. In this case, the
estimation procedures produced the estimates of respective parameters for the age-dependent
norm f(Z, t) (i.e., estimates of the respective minimum of mortality) close to the actual values
used for simulations despite the misspecification of the model. Additional studies are needed,
however, to evaluate biases due to misspecification of models in other situations. Note also
that the method presented here may be applied not only to the quadratic hazards as in equation
(2). Other functional forms of the mortality rate as a function of physiological indices may be
explored within the approach as well. For example, one can analyze various modifications of
the proportional hazards model (see Simulation study S3 and Yashin et al., 2007c as examples
of such models). Therefore, in applications of the method to longitudinal data it may be
necessary to fit the data using models with different functional forms of the hazard rate and
different functions in equation (1) and compare the models to define the best fitting one.
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In the model presented in this paper, genetic information is included as a dichotomous variable
(the presence/absence of an allele) for simplicity of presentation. In applications to genetic
data, it may be necessary to explore different types of genetic models. For example, one may
assume that aging-related characteristics represented in the equations (e.g., physiological
norms, the decline in adaptive capacity, etc.) are different for different genotypes. Then, the
functions in (1)–(2) are genotype-specific and respective random variable Z has 3 values (say,
0, 1, and 2 for genotypes aa, Aa, and AA). The extension of the estimation procedure to cover
such situations is straightforward. However, it may result in smaller improvements in the power
of statistical analyses due to an increased number of parameters and smaller sizes of (genotype-
specific) genetic sub-samples. Similarly, extensions to analyses of multiple genes may run into
the difficulties related to multiplicity of the parameters, which will reduce the reliability of
estimates. Computational burden may be another limiting factor in analyses of high-
dimensional models (those with a large number of indices represented by the process Yt)
because the estimation procedure requires the solution of differential equations (6)–(7) at each
step of maximization of the likelihood function.

The model presented in this paper assumes that all characteristics related to the process of aging
depend only on age and genotype (e.g., those represented by functions f1(Z, t), f(Z, t), and a
(Z, t)). Other covariates traditionally observed in longitudinal studies (such as socio-
demographic and behavioral factors), as well as unobserved factors, may also influence the
respective trajectories. The model can easily take this into account by explicitly incorporating
observed factors into the parametric specification of respective functions, and estimating
unknown parameters from the data. Another possible extension of the model is to describe the
individual allostatic load and the age-dependent norms as unobserved randomly changing
heterogeneity variables represented by stochastic differential equations.

Hidden heterogeneity in a population may substantially affect the shapes of population
mortality rates (Vaupel and Yashin, 1985). Ignoring effects of such hidden heterogeneity (i.e.,
effects of some unobserved factors of genetic or non-genetic origin that affect mortality risks)
can lead to erroneous conclusions concerning biological regularities of aging-related processes
(Yashin et al., 2008b). Thus, an important generalization of the genetic SPM proposed in this
paper would be to include the effects of hidden heterogeneity. A version of the SPM that takes
the presence of hidden heterogeneity into account was elaborated recently (Yashin et al.,
2008b).

Another direction is to develop and investigate a model describing the joint age-dynamics of
a physiological state (modeled by a continuous process) and health/well-being status
(represented by a discrete variable) in humans. Such a description would allow one to analyze
data that include systems of longitudinal measurements performed under different
observational plans on the same individuals. The introduction of a finite state (discrete)
component for health/well-being state permits investigation of the dynamics of physiological
and other indices considered before and after major health or disability events. It will allow
for evaluating the role of physiological trajectories in the age-related increase in the risks of
developing a disease, disability and death and uncovering pre-disease physiological pathways
and differences in these characteristics among carriers of different genotypes.

Recently, data on genome-wide association studies (GWAS) are becoming available for
participants of large-scale longitudinal surveys, for example the Framingham Heart Study
participants from all three generations (over 9,300 individuals) have been genotyped in a
550,000 SNPs GWAS (the FHS SHARe project:
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v4.p2).
Such data sets contain all information that is needed for application of the approach suggested
in this paper: genetic information (SNPs) available for a part of the sample and a numerous
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physiological variables measured longitudinally for individuals with available genetic
information and for the rest of the sample, i.e., those who were not genotyped in the GWAS,
and the history of morbidity events for all individuals (as the genotyping has been performed
quite recently, there may be few or no mortality events in the genetic sub-sample). Although
applications of the presented approach to routine analyses of entire GWAS data may be
infeasible due to excessive computational burden (let alone the usual multiple comparison
problem of GWAS), it may still prove to be useful for analyses of candidate SNPs and their
connection to various health- and aging-related phenotypes. For example, major genetic
pathways that regulate proliferation, apoptosis, replicative senescence, and autophagy, as well
as genes that govern the interactions among these pathways (that is, SNPs located within/near
the genes belonging to the above pathways) may be plausible candidates for analyses of their
associations with various phenotypes of (healthy) aging within a framework of the presented
model.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Simulation study: Comparison of estimates for carriers of a hypothetical allele (genotype)
obtained in 100 simulated data sets by three methods. Left column: Estimates of age trajectories
(solid grey lines) of logarithm of baseline hazard (ln μ0 (1,t)), quadratic hazard (QH) terms
(Q(1, t)), and age-dependent norms (f(1, t)) calculated using only sub-samples with genetic
information (500 individuals). Middle column: Similar estimates when the entire sample (2500
individuals) contains genetic information. Right column: The estimates calculated using the
joint analysis of genetic (500 individuals) and non-genetic (2000 individuals) data. Respective
“true” trajectories used for simulation of data are shown as dashed black lines; t denotes age.
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Fig. 2.
Simulation study: Comparison of estimates for non-carriers of a hypothetical allele (genotype)
obtained in 100 simulated data sets by three methods. Left column: Estimates of age trajectories
(solid grey lines) of logarithm of baseline hazard (ln μ0 (0,t) ), quadratic hazard (QH) terms
(Q(0, t)), and age-dependent norms (f(0, t)) calculated using only sub-samples with genetic
information (500 individuals). Middle column: Similar estimates when the entire sample (2500
individuals) contains genetic information. Right column: The estimates calculated using the
joint analysis of genetic (500 individuals) and non-genetic (2000 individuals) data. Respective
“true” trajectories used for simulation of data are shown as dashed black lines; t denotes age.
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