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Abstract

Background: Lafora progressive myoclonus epilepsy (Lafora disease; LD) is a fatal autosomal recessive neurodegenerative
disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual specificity phosphatase laforin,
or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others have shown that both proteins form a
functional complex that regulates glycogen synthesis by a novel mechanism involving ubiquitination and proteasomal
degradation of at least two proteins, glycogen synthase and R5/PTG. Since laforin and malin localized at the endoplasmic
reticulum (ER) and their regulatory role likely extend to other proteins unrelated to glycogen metabolism, we postulated
that their absence may also affect the ER-unfolded protein response pathway.

Methodology/Principal Findings: Here, we demonstrate that siRNA silencing of laforin in Hek293 and SH-SY5Y cells
increases their sensitivity to agents triggering ER-stress, which correlates with impairment of the ubiquitin-proteasomal
pathway and increased apoptosis. Consistent with these findings, analysis of tissue samples from a LD patient lacking
laforin, and from a laforin knockout (Epm2a-/-) mouse model of LD, demonstrates constitutive high expression levels of ER-
stress markers BIP/Grp78, CHOP and PDI, among others.

Conclusions/Significance: We demonstrate that, in addition to regulating glycogen synthesis, laforin and malin play a role
protecting cells from ER-stress, likely contributing to the elimination of unfolded proteins. These data suggest that
proteasomal dysfunction and ER-stress play an important role in the pathogenesis of LD, which may offer novel therapeutic
approaches for this fatal neurodegenerative disorder.
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Introduction

Lafora progressive myoclonus epilepsy (LD, OMIM 254780) is

a fatal autosomal recessive neurodegenerative disorder character-

ized by the presence of glycogen-like intracellular inclusions

named Lafora bodies (see [1] and [2] for review). LD initially

manifests during adolescence with generalized tonic-clonic sei-

zures, myoclonus, absences, drop attacks and visual hallucinations.

As the disease proceeds, a rapidly progressive dementia with

apraxia, aphasia and visual loss ensues, leading patients to a

vegetative state and death, usually within the first decade from

onset of the first symptoms ([1] and [2]). Mutations causing LD

have been identified in two genes, EPM2A ([3,4]) and EPM2B

(NHLRC1) [5], although there is evidence for a third locus [6].

EPM2A encodes laforin, a dual specificity phosphatase of 331

amino acids with a functional carbohydrate binding domain at the

N-terminus ([7,8]). EPM2B encodes malin, an E3-ubiquitin ligase

of 395 amino acids with a RING finger domain at the N-terminus

and six NHL domains in the C-terminal region which are involved

in protein-protein interactions ([5,9,10]). We and others have

recently described that laforin interacts physically with malin and

that laforin recruits specific substrates to be ubiquitinated by

malin, targeting them for proteasomal degradation ([9,10,11]). In

fact, it has been described that the laforin-malin complex is

involved in the degradation of the muscle isoform of glycogen

synthase [12], the glycogen debranching enzyme (AGL) [13], and

some glycogen targeting subunits of type 1 protein phosphatase

(PP1), such as R5/PTG ([11,12,14]) and R6 [14]. Recently, an

alternative function of laforin on glycogen homeostasis has been

described ([15,16]). In this case, laforin acts as a phosphatase of

complex carbohydrates and it has been proposed that this function

might be necessary for the maintenance of normal cellular

glycogen ([17,18]). Taken together, these results define the

importance of the laforin-malin complex in regulating glycogen

biosynthesis. This is consistent with the accumulation of glycogen-

like intracellular inclusions (Lafora bodies), as one of the

histological determinants of LD. However, it is still under debate

whether the accumulation of Lafora bodies is the cause of the
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disease or if they are only the result of a previously established

neurodegeneration.

Lafora bodies contain around 90% glucose polymers and 6%

protein ([19,20]). They stain positive for anti-ubiquitin and anti-

advanced glycation end products antibodies [21], which suggest

that they contain misfolded proteins destined for degradation

([9,21]). For this reason, it has been proposed that LD is a disorder

of protein clearance [2]. Consistent with this idea, it has been

described recently that laforin and malin form centrosomal

aggregates when the cells are treated with proteasomal inhibitors,

being these aggregates immunoreactive to ubiquitin, ubiquitin-

conjugating enzymes, proteasomal subunits and chaperones,

demonstrating their aggresome-like properties [22]. It is known

that aggresome formation is a general cell response which occurs

when the capacity of the proteasome is exceeded by the

production of misfolded proteins. These proteins have a strong

tendency to aggregate, which results in an impairment of

proteasomal function since the capacity of the proteolytic

machinery is saturated by non-degradable material [23].

Impairment of proteasomal function leads, among other effects, to

the induction of stress at the endoplasmic reticulum (ER-stress),

probably by the inhibition of ER-associated degradation (ERAD, see

below), which eventually leads to apoptotic cell death [24]. ER

function is highly sensitive to stresses that perturb cellular energy

levels, red-ox status or Ca++ concentration. Such stresses reduce the

folding capacity of the ER, which results in the accumulation and

aggregation of unfolded proteins in the lumen. These events trigger a

signal responsible for the activation of the unfolded protein response

(UPR), resulting in restoration of ER function. In addition, unfolded

proteins are retrotranslocated to the cytosol, polyubiquitinated and

degraded by the proteasome by the ER-associated degradation

(ERAD) pathway. The UPR pathway is characterized by the

activation of two ER-resident kinases (PKR-like ER kinase, PERK;

and the inositol-requiring protein 1, IRE1) and the translocation to

the Golgi apparatus and subsequent cleavage of ATF6, a

transmembrane ER-resident protein with a cytosolic domain with

transcriptional activity. These components induce signaling cascades

that lead to the overexpression of characteristic UPR-mediators, such

as the heat shock protein BIP/Grp78, the protein disulphide

isomerase PDI, the transcriptional factor CHOP (a member of the

C/EBP family of bZIP transcription factors that induce apoptosis)

and the phosphorylated form of the eukaryotic initiation factor 2

alpha (p-EIF2a), among others (see [25,26,27,28], for review).

Since laforin and malin are localized at the ER ([22,29,30]), we

tested whether they were affecting the ER-unfolded protein

response pathway. In this work, we show that under conditions

of laforin depletion, two different human cell lines Hek293 and

SH-SY5Y, increase their sensitivity to agents triggering ER-stress,

and this correlates with impairment of the ubiquitin-proteasomal

pathway and increased apoptosis. Additionally, in both a mouse

Epm2a-/- model and in necropsies from a human LD patient with

mutations in the EPM2A gene, we detected higher levels of ER-

stress markers, indicating that in the absence of laforin, cells were

under permanent conditions of ER-stress, probably due to an

impairment of proteasomal function. These data suggest that

proteasomal dysfunction and ER-stress play an important role in

the pathogenesis of LD.

Results

1.- Lack of laforin enhances cell sensitivity to agents that
induce endoplasmic reticulum stress

To test the possible involvement of laforin in the ER-unfolded

protein response pathway (UPR), we depleted Hek293 cells of

laforin by siRNA silencing. As shown in Fig. 1A (upper panel),

siRNA oligos #2198 and #2108 (see Materials and Methods)

depleted endogenous laforin in Hek293 cells, with oligos #2108

showing higher efficiency. We then checked for the presence of

UPR-markers such as the heat shock protein BIP/Grp78 and the

transcriptional factor CHOP (see Introduction). Under standard

growth conditions, short-term laforin depletion did not increase the

levels of these markers. However, if cells were treated with

thapsigargin, an ER-stress producing agent ([26,27,28]), laforin-

depleted cells accumulated significantly higher levels of BIP/Grp78

and CHOP than control non-depleted cells (see quantification of the

levels of the proteins in the right panel of Fig. 1A). We also measured

the levels of another ER-stress marker involved in oxidative stress,

PDI (protein disulfide isomerase). The levels of this marker also

increased in laforin-depleted cells treated with thapsigargin (Fig. 1A).

These results indicated that laforin prevented the induction of ER-

stress markers upon thapsigargin treatment. Similar results were

obtained upon treatment of the cells with tunicamycin, another ER-

stress producing agent (Fig. 1B).

As proteasome function plays a prominent role in the UPR

pathway ([26,27,28]), we measured the proteasomal activity in

cells depleted or not of laforin and subjected to conditions of ER-

stress (treatment with thapsigargin). As shown in Fig. 1C, depletion

of laforin did not affect the activity of the proteasome when the

cells were growing under standard conditions. Upon thapsigargin

treatment, control (non-depleted) cells showed a clear decrease in

the activity of the proteasome, in agreement with previous reports

([26,27,28]). However, the activity of the proteasome was

significantly lower in cells depleted of laforin (oligo #2108)

(Fig. 1C). These results indicated that under conditions of ER-

stress, loss of laforin impaired proteasomal function. Consistent

with a protective role of laforin on the activity of the proteasome,

overexpression of laforin and malin preserved to some extent the

activity of the proteasome in control cells treated with thapsigargin

(Fig. 1C). Western blot analyses of two different subunits of the

26S proteasome complex indicated that the observed changes in

the activity of the proteasome were not due to differences in

proteasome levels (Fig. 1C, lower panel).

Because LD is a neurological disorder, we sought to replicate

the experiments in a human neuroblastoma cell line (SH-SY5Y).

In addition, we decided to study the effect of long-term laforin

depletion. To this end, we constructed a plasmid expressing a

shRNA based on oligo #2108 (pSUPER-Laf) that was introduced

in SH-SY5Y cells to select stable transfectants. These stable

transfectants were grown in selective media for five days and, as

shown in Fig. 2A, they presented undetectable levels of laforin. We

then measured the amount of BIP/Grp78 under untreated and

ER-stress conditions (induced by thapsigargin). As shown in

Fig. 2A, we found a significant increase in the levels of this marker

in comparison to stable transfectants obtained with an empty

plasmid, but only when the cells were under conditions of ER-

stress (thapsigargin treatment). The higher levels of expression of

BIP/Grp78 in laforin-depleted cells treated with thapsigargin were

confirmed by quantitative real time PCR (Fig. 2C). In addition, we

measured the levels of additional ER-stress markers such as

CHOP and phospho-EIF2alpha. As shown in Fig. 2B, higher

levels of these two markers were found in laforin-depleted cells

treated with thapsigargin. We also measured the activity of the

proteasome in these cells and found a significant decrease in its

activity in SH-SY5Y laforin-depleted cells subjected to conditions

of ER-stress (thapsigargin treatment) (Fig. 2D). Similar results were

obtained in two independent stable transfectants; not shown.

As it has been described that continued conditions of ER-stress

lead to apoptotic cell death ([26,27,28]), we used flow cytometry to

Laforin Protects from ER Stress

PLoS ONE | www.plosone.org 2 June 2009 | Volume 4 | Issue 6 | e5907



Laforin Protects from ER Stress

PLoS ONE | www.plosone.org 3 June 2009 | Volume 4 | Issue 6 | e5907



determine the percentage of apoptotic cells in SH-SY5Y cultures

of laforin-depleted and control non-depleted cells. As shown in

Fig. 2E, there was a significant increase in the percentage of

apoptotic cells in the cultures of laforin-depleted cells in

comparison to control cells but only when the cultures were

subjected to conditions of ER-stress. In agreement with these

results, we observed an increase in the levels of endogenous

activated-caspase 3 in laforin-depleted cells treated with thapsi-

gargin (Fig. 2F). In addition, we determined the sensitivity of

laforin-depleted and control cells to thapsigargin treatment. As it

can be observed in Fig. 2G, laforin-depleted cells were more

sensitive to thapsigargin (IC50, 90 nM) in comparison to control

cells (IC50, 205 nM).

As a whole, these results indicate that cells lacking laforin are

more sensitive to conditions of ER-stress and present an

impairment of the ubiquitin-proteasomal function. This combina-

tion of effects is likely to originate a more severe ER-stress response

which may culminate in increased apoptosis.

2.- Analysis of ER-stress markers in LD patients and in
laforin knockout mice (Epm2a-/-)

To confirm the results obtained with the cell line models (see

above) in laforin knockout (Epm2a-/-) mice, several markers of

ER-stress were analyzed in extracts from different tissues of 9-

month old mice. As expected RT-PCR analysis indicated that the

Epm2a-/- mice, kindly provided by Dr. Delgado-Escueta, lacked

laforin expression because of the described deletion of the EPM2A

gene [21] (not shown), and antibodies against laforin were unable

to detect any band in crude extracts from different tissues of these

animals (Fig. 3). In agreement with data obtained with Hek293

and SH-SY5Y cells, extracts from the liver of Epm2a-/- mice

contained higher levels of BIP/Grp78 and CHOP compared to

age and sex matched C57BL6 control mice (Fig. 3A). In addition,

we also detected higher levels of SOD2 (superoxide dismutase 2),

another ER-stress marker related to oxidative stress (Fig. 3A).

These data indicated that the liver of Epm2a-/- animals, lacking

laforin, was under permanent conditions of ER-stress. In contrast,

analysis of whole brain extracts from these animals failed to detect

differences in the levels of the ER-stress markers between

Epm2a-/- and control animals (Fig. 3B). We also measured the

activity of the proteasome in mouse liver and whole brain extracts.

As shown in Fig. 4A, we observed a significant decrease in the

activity of the proteasome in liver extracts from Epm2a-/- mice in

comparison to liver extracts from control mice. However, we were

not able to observe differences in the activity of the proteasome in

whole brain extracts, which correlated with the absence of

differences in the amount of ER-stress markers in extracts from

this tissue (see above). Western blot analyses of two different

subunits of the 26S proteasome complex in these liver samples

indicated that the observed changes in the activity of the

proteasome were not due to differences in proteasome levels

(Fig. 4B). These results supported the idea that loss of laforin

correlated with induction of ER-stress markers and impaired

proteasomal function, at least in mouse liver.

We also analyzed the levels of different ER-stress markers in a

brain necropsy from an LD patient with mutations in the EPM2A

gene (compound heterozygous with R241Stop and ex1-33bpdel

mutations). Using quantitative real time PCR, we detected higher

levels of mRNAs corresponding to BIP/Grp78 and CHOP, in

comparison to samples obtained from necropsies of an age-

matched control subject (Fig. 5A). In addition, we also detected

higher levels of mRNAs corresponding to SOD2 (superoxide

dismutase 2), PDI (protein disulphide isomerase) and TTAse1

(thioltransferase 1), three ER-markers related to oxidative stress

(Fig. 5A). In agreement with these results, western blot analysis

confirmed the presence of higher levels of BIP/Grp78, PDI and

SOD2 in brain tissue samples from the LD patient (Fig. 5B). The

expression of ER-stress markers (i.e., BIP/Grp78 and CHOP) was

also increased in skeletal muscle samples from the same patient in

comparison to a control subject (Fig. 5C).

All these in vivo data illustrated that in cells lacking laforin there

was an induction of ER-stress markers and impaired proteasomal

function that maintained these cells are under permanent

conditions of ER-stress.

3.- Malin is overexpressed under conditions of ER-stress
As described above, the expression of ER-stress markers is

induced under conditions of ER stress. In agreement with this,

expression of the ER-stress marker BIP/Grp78 was increased in

human neuroblastoma SH-SY5Y cells under conditions of ER-

stress (Fig. 6A). We checked then whether the expression of laforin

was also affected under ER-stress conditions but we did not

observe any change in the expression of the EPM2A gene in these

cells, treated or not with thapsigargin (Fig. 6A). This result was

consistent with the absence of specific ER-stress responsive sites at

the promoter region of the EPM2A gene (not shown). However,

when we analyzed the expression of the gene encoding malin

(EPM2B), the E3-ubiquitin ligase that interacts with laforin to form

a functional complex (see Introduction), we found a significant

increase in the expression of this gene in SH-SY5Y cells treated

with thapsigargin (Fig. 6A). This observation was consistent with

the presence of a putative ATF6 site (position -100/-79 respect to

the ATG) in the promoter of the EPM2B gene (determined by

using the Mat Inspector 7.4 software). Since, as we have described

above, tissues from human and mouse lacking laforin were under

conditions of permanent ER-stress, we therefore, measured the

expression of the EPM2B gene by quantitative real time PCR in

the brain tissue sample of the LD patient and observed a

significant increase in the expression of the EPM2B gene

compared to tissues from normal individuals (Fig. 6B). Based on

these results, we suggest that malin could be considered as a novel

marker of ER dysfunction.

Discussion

Endoplasmic reticulum (ER) is the site where membrane and

secretory proteins are folded and processed (addition of carbohy-

drate moieties, cis-trans isomerization of peptide bonds, arrange-

Figure 1. Lack of laforin enhances cell sensitivity to endoplasmic reticulum stress in Hek293 cells. A) Western-blot analysis of
homogenates from Hek293 cells treated with different siRNA against laforin (#2198 and #2108) or control siRNA (C-). Thirty hours after silencing,
cells were cultured either in presence or absence of 1 mM thapsigargin for 18 h. A representative blot of three independent experiments is shown.
Right panel shows quantification (mean6SEM) of different blots expressed in percentage respect to cells treated with control siRNA (100%). Tubulin
was used as a loading control. B) Similar analysis as in A) but in cells treated with tunicamycin (2 mg/ml, 18 h). C) Proteasome activity was assayed in
Hek293 cells under different treatments as above by using a luminogenic proteasome substrate (succinyl-leucine-leucine-valine-tyrosine-
aminoluciferine) and referred to the values obtained in control cells treated with thapsigargin. The effect of laforin was assayed by either depleting
endogenous laforin (#2108) or by overexpressing laforin and malin (Laf/Mal). Cell extracts (50 mg) were also analyzed by western blotting using
antibodies against two different subunits of the 26S proteasome (anti-S1 and anti-b2) (lower panel).
doi:10.1371/journal.pone.0005907.g001
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Figure 2. Lack of laforin enhances cell sensitivity to endoplasmic reticulum stress in human neuroblastoma SH-SY5Y cells. SH-SY5Y
cells were stably transfected with empty pSuper.neoGFP vector or pSUPER-laforin expressing a shRNA against laforin, as described in Materials and
Methods. A) Stable transfectants were treated with 1 mM thapsigargin for 18 h and analyzed by western-blot using anti-BIP/Grp78, anti-laforin and
anti-tubulin antibodies. B) The expression of additional ER-stress markers such as CHOP and pEIF2a (phospho-EIF2alpha) was analyzed in the stable
transfectants at different times after the treatment with 1 mM thapsigargin (see Supplementary Fig. S1 for time course appearance of different ER-
stress markers); right panel shows quantification (mean6SEM) of different blots expressed as percentage respect to tubulin lebels. C) Quantitative
real time PCR analysis of the expression of BIP/Grp78 in stable transfectants treated with 1 mM thapsigargin for 18 h; expression of target gene was
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normalized using GAPDH as an internal control; data are expressed as fold induction over untreated control (mean6SEM) of four independent
measurements. D) Proteasome activity was measured in extracts from transfectants used in A) treated with 1 mM thapsigargin. E) Growth of control
and laforin depleted transfectants was assessed by flow cytometry as described in Materials and Methods. The percentage of apoptotic cells in the
sub-G1 population was measured in cells treated or not with 1 mM thapsigargin for 18 h. The left panel shows a representative analysis of three
independent experiments of cells treated with thapsigargin; the right panel shows the corresponding mean6SEM. F) Extracts from laforin-depleted
and control cells treated or not with 1 mM thapsigargin for 18 h were analyzed by western-blotting using anti-caspase 3 and anti-activated caspase 3
antibodies; tubulin was used as a loading control. G) Cell sensitivity of laforin depleted and non-depleted cells to thapsigargin treatment. Stable
laforin depleted SH-SY5Y and control cells were cultured in 96-well plates and treated with different amounts of thapsigargin for 24 hr. Then, cell
viability was assessed using the AlamarBlue assay as described in Materials and Methods. Each point represents mean6SEM of three independent
measurements and expresses the percentage of viability respect to the corresponding untreated cells.
doi:10.1371/journal.pone.0005907.g002

Figure 3. Laforin deletion results in increased ER stress in the liver of Epm2a-/- mice. A and B) Western blot analyses of laforin and ER-
stress markers (BIP/Grp78, CHOP, SOD2) in liver (A) and whole brain (B) biopsies of two Epm2a+/+ (A and B) and two Epm2a-/- mice (1 and 2). A
representative blot of four different animals of each type is shown. Right panels show normalized intensities (mean6SEM; n: 4) of different markers
expressed as a percentage with respect to control mice. Tubulin was used as a loading control. * In brain samples, a band of 94 kDa is recognized by
the anti-BIP/Grp78 antibody instead of the corresponding 78 kDa band.
doi:10.1371/journal.pone.0005907.g003
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ment of disulphide bonds, etc.). ER function is highly sensitive to

stresses that perturb cellular energy levels, the red-ox state or

Ca++ concentration. Such stresses reduce the folding capacity of

the ER, which results in the accumulation and aggregation of

unfolded/misfolded proteins. These unfolded proteins accumulate

in the lumen of the ER triggering a signal responsible for the

activation of the unfolded protein response (UPR). In addition,

unfolded proteins are retrotranslocated to the cytosol, polyubiqui-

tinated and degraded by the proteasome by the ER-associated

degradation (ERAD) pathway. UPR and ERAD are highly

coordinated processes: efficient ERAD requires intact UPR and

UPR induction increases ERAD capacity. However, when UPR

and ERAD are impaired, cell viability is markedly decreased

([31,32]). The last steps of the ERAD pathway involve

ubiquitination and proteasomal degradation of unfolded sub-

strates. In mammals, several integral ER-membrane proteins with

E3-ubiquitin ligase activity, such as synoviolin/HsHrd1 and gp78,

play a role in ERAD. In addition, several soluble cytosolic E3-

Figure 4. Proteasome activity in biopsies of Epm2a+/+ and Epm2a-/- mice. A) Proteasome activity was assessed by using the luminogenic
proteasome substrate (succinyl-leucine-leucine-valine-tyrosine-aminoluciferine) in extracts from whole brain and liver of Epm2a+/+ and Epm2a-/-
mice as described in Materials and Methods. Data are presented as luciferase activity (mean6SEM; n: 4), and represent the average of two luciferase
activity determinations for each sample. B) Fifty micrograms of total lysates from liver and whole brain biopsies of two Epm2a+/+ (A and B) and two
Epm2a-/- mice (1 and 2) were analyzed by SDS–PAGE and western blotting using anti-S1 (19S regulatory particle), anti-b2 (20S proteasome) and anti-
tubulin antibodies.
doi:10.1371/journal.pone.0005907.g004

Laforin Protects from ER Stress

PLoS ONE | www.plosone.org 7 June 2009 | Volume 4 | Issue 6 | e5907



ubiquitin ligases, such as parkin and CHIP (carboxy terminus of

the Hsc70-interacting protein), also function in ERAD. All these

E3-ubiquitin ligases ubiquitinate unfolded proteins marking them

for proteasomal degradation. Defects in the function of any of

these E3-ubiquitin ligases results in proteasomal dysfunction and

in the accumulation of specific unfolded proteins, which triggers

Figure 5. Expression of ER-stress markers is increased in brain necropsies of a LD patient. A) Quantitative-real time PCR analysis of ER-
stress markers in brain necropsies from both control and LD patient. Expression of target genes was normalized using GAPDH as an internal control.
Data are expressed as fold induction over control (mean6SEM) of four independent measurements. B) Extracts from brain necropsies from both
control and LD patient were analyzed by western blot using the indicated antibodies. Membranes were probed with anti-tubulin antibodies to ensure
equal protein loading. * non-specific band. C) Quantitative-real time PCR analysis of ER-stress markers in skeletal muscle necropsies from both control
and LD patient. Expression of target genes was normalized using GAPDH as an internal control. Data are expressed as fold induction over control
(mean6SEM) of four independent measurements.
doi:10.1371/journal.pone.0005907.g005
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the UPR ([33,34,35,36]). Similarly, in this work we present

evidence indicating that in the absence of laforin, cells become

more sensitive to agents triggering ER-stress and that this situation

correlates with an impairment of proteasomal function. Converse-

ly, the overexpression of laforin resulted in a partial prevention of

proteasomal dysfunction upon ER-stress conditions. It is worth

pointing out that proteasomal activity is not affected by depletion

of laforin in the two cell lines used in this study, unless cells were

subjected to ER-stress. This could indicate that only when cells are

challenged with ER-stress conditions, the presence of laforin exerts

its protective role, what suggests that the function of laforin, in

combination with its partner malin (E3-ubiquitin ligase), would be

to contribute to the elimination of unfolded proteins upon ER-

stress conditions. In agreement with this hypothesis, it has been

very recently described that the laforin-malin complex suppresses

the cellular toxicity of misfolded proteins by promoting their

degradation through the ubiquitin-proteasome system [37].

Therefore, we suggest that in the absence of a functional

laforin/malin complex more unfolded proteins would accumulate

causing proteasomal dysfunction and aggravating the conditions of

ER-stress. However, liver extracts of Epm2a-/- mice already

presented lower proteasomal activity and higher induction of ER-

stress markers than control mice. We suggest that during the life of

the mice used in this study (9 months), they have been probably

subjected to environmental situations that may have elicited

conditions of ER-stress. The absence of laforin in these animals

would have prevented them from recovering from these

challenges, resulting in the establishment of permanent ER-stress

conditions.

As indicated above, liver cells of Epm2a-/- mice present

constitutive conditions of ER-stress. By analogy, human LD

patients lacking laforin might also present permanent ER-stress

conditions in the liver and other tissues, which may explain some

cases of LD patients in whom liver failure has anticipated the

neurological symptoms [38]. However, brain extracts from

Epm2a-/- mice do not present any detectable alteration in the

regulation of the UPR and proteasomal function. Since we present

evidence that in the brain of a human LD patient there is a clear

induction of ER-stress markers, we suggest that differences

between samples from mouse and human brains may account

for this apparent contradiction. For example, mice and human

may have a distinct progression of the disease [21], (i.e., the disease

could not have been established in the brain of the mice, yet), or

these tissues may have been differentially exposed to ER-stress

conditions.

It is known that prolonged conditions of ER-stress triggers

apoptosis, as a last resort of multicellular organisms to dispense of

dysfunctional cells. Since we present evidence that samples from

the brain of a human LD patient lacking laforin presented

increased levels of ER-stress markers, this suggests that LD cells

may also be more sensitive to apoptosis. In agreement with this

hypothesis we found higher levels of apoptosis in a human

neuroblastoma cell line (SH-SY5Y) depleted of laforin when

subjected to ER-stress conditions. Moreover, it was recently

described that 2-deoxyglucose treatment (causing ER-stress

because of energy deprivation) also induces higher levels of

apoptosis in cells defective of laforin than in normal cells [39]. This

enhanced predisposition to apoptosis could be deleterious for the

central nervous system and could lead to increased neurodegen-

eration.

As described above, the laforin/malin complex has a protective

role in ER-stress. This protective role likely overlaps the role of

other cytosolic E3-ubiquitin ligases involved in ERAD, such as

parkin and CHIP. Defects in the function of parkin and CHIP

results in an impairment of proteasomal function and overexpres-

sion of these proteins results in an amelioration of ER-stress

conditions ([40,41,42]). These are situations that closely resemble

the laforin data reported here. Moreover, malin expression,

similarly to parkin and CHIP, is increased under conditions of ER-

stress. All these results suggest that the laforin/malin complex may

be a novel component of the ERAD pathway. In this sense, the

recent report that indicates that the laforin-malin complex is

involved in the degradation of misfolded proteins [37], would

support this hypothesis. Since parkin and CHIP target a specific

set of unfolded proteins for degradation, further studies would be

needed to determine whether this is also the case for the laforin-

malin complex and to characterize its physiological substrate(s). In

any case, our results indicate that Lafora disease may be

Figure 6. Malin expression is induced under conditions of ER-
stress. A) SH-SY5Y cells were treated or not with 1 mM thapsigargin for
18 h and levels of mRNAs were measured by quantitative-real time PCR.
Expression of target genes was normalized using GAPDH as an internal
control. Data are expressed as fold induction over untreated cells
(mean6SEM) of three independent measurements. B) Quantitative-real
time PCR analysis of EPM2B gene expression in brain necropsies from
both control and LD patient normalized using GAPDH as an internal
control. Data are expressed as fold induction over control (mean6SEM)
of two independent measurements.
doi:10.1371/journal.pone.0005907.g006
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considered as a novel pathology related to ER-stress, which may

offer novel opportunities for therapeutic developments.

Materials and Methods

Ethics statement
All animal care and use procedures used in this study were in

accordance with the guidelines of the Institutional Animal Care

and Use Committee and approved by the Centro de Investiga-

ciones Biológicas (CSIC) ethical review board. Tissues from post-

mortem examination of the LD patient were obtained with explicit

written informed consent for their preservation and future use in

studies like those reported in this work. Written consent was also

given by the control individual to collection and use of tissues in

research. The use of these human tissues in this study was

approved by the Centro de Investigaciones Biologicas (CSIC)

ethical review board.

Cell culture and treatments
Hek293 or SH-SY5Y cells were grown in DMEM containing

25 mmol/l glucose, supplemented with 10% fetal bovine serum

(FBS) or in DMEM:F12 with 15%FBS respectively, with

antibiotics (100 U/ml penicillin, and 100 mg/ml streptomycin) at

37uC in an atmosphere of humidified 5% CO2. When indicated

cells were treated with 1 mM thapsigargin or 2 mg/ml tunicamy-

cin. After treatment, cells were harvested and total cell extracts

were subjected to western blot analysis or proteasome activity

quantification as indicated.

siRNA laforin silencing
Two different siRNA oligonucleotides were designed for laforin

(#2198-sense, 59- GGUAAUAAUUGGUAUUCAGtt-39 and

#2198-antisense 59- CUGAAUACCAAUUAUUACCtc-39) and

(#2108-sense, 59-GGUGGAACAUGUAACCAUCtt-39 and

#2108-antisense, 59- GAUGGUUACAUGUUCCACCtg-39) (Am-

bion. Austin, TX, USA). Cells were treated in parallel with a control

siRNA (Ambion. Austin, TX, USA). Cells were transfected in at a

confluence of 70%. Specific laforin siRNA or negative control siRNA

(100 nM) were mixed with Lipofectamine 2000 (Invitrogen,

Carlsbad, CA. USA) according to manufacturer’s recommendation

and added to the cells. After 3 h 30 min at 37uC, the medium was

changed, and the cells were cultivated as indicated above.

The mammalian expression vector, pSUPER.neo.GFP (Oli-

goengine, Seattle, USA) was used for expression of shRNA

targeting laforin in human neuroblastoma SH-SY5Y cells.

Forward and reverse synthetic 64 nt oligonucleotides containing

sense (19 nt), nt stem-loop and anti-sense (19 nt) nucleotides

corresponding to nucleotides 872–891 of human EPM2A cDNA

(GenBank accession no. NM_005670), were annealed and

subcloned into pSUPER.neo.GFP vector yielding plasmid pSU-

PER-laforin. Empty plasmid and pSUPER-laforin were linearized

by digestion with ScaI and used to transfect cells with

Lipofectamine 2000 (Invitrogen). Selection of drug-resistant

colonies was performed by addition of G418 (600 mg/ml active

concentration) 48 h after transfection; the same amount of the

antibiotic was maintained throughout culture. Resistant clones

were screened by flow cytometry following GFP expression.

Western blot analysis showed that pSUPER.neo.GFP transfectants

had normal laforin levels whereas pSUPER-laforin transfectants

showed substantial laforin depletion.

Apoptosis and cell viability assays
Apoptosis was determined by flow cytometry as the amount of

cells in the sub-G1 peak after propidium iodide staining of ethanol

fixed cells. Briefly, cells were harvested by centrifugation at

2000 6g for 5 min. The pellet was washed once with PBS,

resuspended in 70% EtOH and kept overnight at 4uC. Fixed cells

were pelleted and stained for 30 min at 37uC with 20 mg/ml

propidium iodide in PBS containing 10 mg/ml RNase A. Data

were collected with the FACSCanto system (Becton Dickinson)

and analyzed with FACS DIVA software. Additionally, protein

extracts were analyzed by western-blotting using anti-caspase 3

and anti-activated caspase 3 antibodies (Cell Signaling Technol-

ogy, MA).

Cell viability was determined in SH-SY5Y cells stably

transfected with either pSUPER.neo.GFP or pSUPER-laforin.

1.56104 cells were seeded in 96-well plastic plates the day before

treatment. Cells were treated with thapsigargin at concentration

ranging from 0 to 300 nM and 24 h later, cell viability was

evaluated by using the AlamarBlue oxidation reduction indicator

(Serotec Ltd., Oxford, United Kingdom) following manufacture’s

instructions. Fluorescence measurements were taken at 600 nm

with a Fuji FLA5000 system. The viability of each culture was

calculated as a percentage respect to an untreated control.

Laforin deficient mice (Epm2a-/-)
Laforin deficient Epm2a-/- mice were kindly provided by Dr

Antonio V. Delgado-Escueta [21]. Male C57BL6 wild type and

isogenic Epm2a-/- mice were maintained at the Centro de

Investigaciones Biológicas (CSIC, Madrid) on a LD12:12 cycle

under constant temperature (23uC) with free access to food and

water. Genotypes were determined as described in [21]. Nine-

month-old knockout or control mice of the same age were

sacrificed by cervical dislocation, liver and brain tissues were

dissected and tissue extracts were obtained as described below.

Case report and necropsies
Necropsies of different human tissues, including brain, were

obtained from a laforin-deficient LD patient and a control

individual 24 hours after death. The specimens were stored in

50 ml tubes in phosphate-buffered saline at 4uC during transpor-

tation. Tissue samples were divided into small pieces and frozen at

280uC immediately after arrival at the laboratory. The LD

patient was previously characterized as a compound heterozygote

for the EMP2A mutations R241Stop and ex1-33bpdel.

Obtaining cell extracts and immunodetection
Tissue lysates (from mice and human samples) were prepared by

homogenizing samples with a tissue homogenizer in ice-cold lysis

buffer containing 0.15 M NaCl, 10 mM Tris-HCl pH 7.5,

15 mM EDTA pH 8.0, 0.6 M sucrose, 0.5% NP-40, 50 mM

NaF, 5 mM Na2P2O7, 1 mM PMSF and protease inhibitor

cocktail (Roche). Cell line lysates were obtained by repeated

passage through a 25-gauge needle in ice-cold lysis buffer. Protein

content was determined using the Bradford method (Bio-Rad).

Fifty mg of total protein from the soluble fraction of lysates were

analyzed by SDS-PAGE and western blotting using appropriate

antibodies. Blocking was performed in 5% nonfat milk for 1 h at

room temperature, except for anti-CHOP, anti-S1 and anti-b2 in

which 5% BSA in PBS-T (phosphate buffer saline plus 0.1%

Tween 20) was used. Blots were probed with indicated antibodies

at 1:1000 dilution in TBS-T (50 mM Tris-HCl, 154 mM NaCl,

pH 7.5 plus 0.1% Tween 20) plus 5% nonfat milk. Polyclonal

antibodies against PDI, BIP/Grp78, phospho-EIF2alpha (Ser51)

(Cell Signaling Technology, MA); GADD153/CHOP, SOD2

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, U.S.A.); anti-S1

(19S regulatory particle) and anti-b2 (20S proteasome) (Biomol

Research Labs; Exeter, UK) were used in the analyses. Mouse
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anti-laforin (monoclonal antibody against human laforin) was

described previously [11]. Protein loading was assessed by

reprobing the membrane with an anti-tubulin antibody (Santa

Cruz Biotechnology, Inc) and IRDye 800/700–labelled secondary

antibodies (1:10000) (LI-COR Biosciences, Lincoln, NE). Visual-

ization of protein expression was performed using the LI-COR

Odyssey IR Imaging System.

Proteasome activity quantification
40 mg of soluble protein extracts were incubated with the

Promega Proteasome-Glo Assay Reagent (Promega Bioscience,

Madison, WI) for 10 minutes. The chymotrypsin-like proteasome

activity was detected as the relative light unit (RLU) generated

from the cleaved substrate in the reagent. Luminescence generated

from each reaction condition was detected with a Wallac 1420

VICTOR luminometer.

Quantitative real-time PCR
Dissected brain biopsies were frozen in liquid nitrogen and stored

at –80uC. Thawed tissue was homogenized in 2 ml TRIPURE

reagent (Roche Diagnostics, Manheim, Germany) and total RNA

was isolated according to the manufacturer’s instructions. The

integrity of total RNA was verified by electrophoresis through

denaturing agarose gels. First strand cDNA was synthesized from

1 mg of total RNA using random hexamer and expand reverse

transcriptase (Roche Diagnostics, Manheim, Germany). cDNA was

used as a template for real-time PCR. PCR primers and fluorogenic

TaqMan probe sets for each gene were designed using Universal

probe library Service (Roche Molecular Biochemicals) to meet all

TaqMan design guidelines. Probes were synthesized with a reporter

dye 6-carboxyfluorescein (6-FAM) covalently linked at the 59 end

and a quencher dye 6-carboxy-tetramethyl-rhodamine (TAMRA)

was linked to the 39 end of the probe. See Table 1 for primer and

probe sequences. Each PCR was carried out in a final volume of

25 ml of PCR Master Mix (Applied Biosystems), containing 200 nM

of each primer and 40 nM of specific fluorescent probe. The cycle

conditions were 20 s at 95uC for initial denaturing, followed by 35

cycles of 95uC for 3 s and 60uC for 30 s in the 7500 Fast Real-time

PCR system (Applied biosystems). GAPDH was used as an internal

standard. Each reaction was done in duplicate from at least three

independent experiments. The relative amount of each mRNA was

calculated using the second derivative comparative Ct method.

Statistical analyses
Values are given as means6SEM of three independent

experiments. Differences between groups were analyzed by two-

tailed student’s t-tests. The significance has been considered at *

p,0.05, ** p,0.01 and *** p,0.001, as indicated in each case.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0005907.s001 (8.28 MB TIF)
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