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Abstract
We report the largest and most comprehensive comparison of protein structural alignment methods.
Specifically, we evaluate six publicly available structure alignment programs: SSAP, STRUCTAL,
DALI, LSQMAN, CE and SSM by aligning all 8,581,970 protein structure pairs in a test set of 2930
protein domains specially selected from CATH v.2.4 to ensure sequence diversity.

We consider an alignment good if it matches many residues, and the two substructures are
geometrically similar. Even with this definition, evaluating structural alignment methods is not
straightforward. At first, we compared the rates of true and false positives using receiver operating
characteristic (ROC) curves with the CATH classification taken as a gold standard. This proved
unsatisfactory in that the quality of the alignments is not taken into account: sometimes a method
that finds less good alignments scores better than a method that finds better alignments. We correct
this intrinsic limitation by using four different geometric match measures (SI, MI, SAS, and GSAS)
to evaluate the quality of each structural alignment. With this improved analysis we show that there
is a wide variation in the performance of different methods; the main reason for this is that it can be
difficult to find a good structural alignment between two proteins even when such an alignment
exists.

We find that STRUCTAL and SSM perform best, followed by LSQMAN and CE. Our focus on the
intrinsic quality of each alignment allows us to propose a new method, called “Best-of-All” that
combines the best results of all methods. Many commonly used methods miss 10–50% of the good
Best-of-All alignments.

By putting existing structural alignments into proper perspective, our study allows better comparison
of protein structures. By highlighting limitations of existing methods, it will spur the further
development of better structural alignment methods. This will have significant biological
implications now that structural comparison has come to play a central role in the analysis of
experimental work on protein structure, protein function and protein evolution.
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Introduction
The problem of aligning, or establishing a correspondence between, residues of two protein
structures is fundamental in computational structural biology. In 1960, Perutz et al.1 showed,
using structural alignment, that myoglobin and hemoglobin have similar structures even though
their sequences differ. Functionally these two proteins are similar and are involved with the
storage and transport of oxygen, respectively. Since then, researchers have continued to look
for structural similarity in hope of detecting shared functionality. Because structural similarity
is conserved more than sequence similarity, it can be used as a more powerful “telescope” to
look back to earlier evolutionary history.

Structural alignment is carried out between two known structures, and is typically based on
the Euclidean distance between corresponding residues, instead of the distance between amino
acid “types” used in sequence alignment. Structural alignment methods are useful for
organizing and classifying known structures.2,3 Furthermore, for a newly determined
structure, fast methods that correctly identify known structures that align with it are
indispensable. Lastly, structural alignment methods provide the gold standard for sequence
alignment.4,5 Consequently, many methods for protein structure alignment have been
developed, including those described by Taylor & Orengo,6 Subbiah et al.,7 Holm & Sander,
8 Holm & Park,9 Kleywegt,10 Shindyalov & Bourne,11 Kedem et al.,12 Yang & Honig,13
Krissinel & Henrick14,44 and those cited in a review by Koehl.15

Many studies compare sequence alignment methods.5,16,17 Given a separable scoring
function, the optimal sequence alignment can always be found using dynamic programming.
18 Unfortunately, it is not easy to find the parameters of a scoring function that best captures
the similarity between amino acid residues. This has led to many studies of substitution matrices
that produce biologically meaningful sequence alignments.19,20 A common task of sequence
alignment techniques is to scan existing databases of protein sequences in hope of detecting
homologs of a newly found protein sequence. The exponential growth in the size of these
sequence databases has led to the development of popular programs, such as BLAST21 or
FASTA22 that employ faster heuristics yet find sub-optimal alignments. A large body of
literature compares the performances of these heuristic sequence alignment methods. To
address the underlying difficulty in identifying the best of many sub-optimal sequence
alignments, many of these studies use structure similarity as a gold standard. For example,
Brenner et al.17 use the hierarchical protein classification SCOP,23 which is based on
structural and sequence similarity, as their gold standard for comparing sequence alignment
programs. Others5,24,25 also evaluate sequence alignment programs using structural
alignment.

When aligning two structures, the situation is reversed: while it is harder to find the optimal
alignment, judging which is best among several alignments of a pair of structures is easy.
Finding the optimal structural alignment is harder because the rotation and translation of one
of the two structures with respect to the other must be found in addition to the alignment itself.
Although an approximate optimal solution can be computed,26 it is expensive and all methods
available to-date are heuristic. Similarity in structural alignment is geometric and captured by
the cRMS deviation of the aligned atoms (generally the CA atoms). Other properties of
structural alignments that are likely to be significant are the number of matched residues, and
the number and length of alignment gaps. Clearly, better alignments match more residues, have
fewer gaps and are more similar (of lower cRMS). Since these alignment properties are not
independent (shortening the alignment or introducing many gaps can decrease the cRMS
deviation), researchers have devised alignment scores that attempt to balance these values. In
this study, we use SAS,7 SI,27 MI27 and GSAS, which is our variant of SAS that penalizes
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gaps. Deciding which alignment is the most geometrically similar is an easier question than
evaluating if an alignment is biologically significant.28,29

Previous evaluations of structural alignment methods use the CATH2 or SCOP23
classifications as a gold standard, and verify that pairs of structures that are classified the same
are similar, whereas all other structure pairs are not. Novotny et al.30 assessed the performance
of structural alignment methods, as part of their evaluation of structural alignment (or fold
comparison) servers. Their study uses CATH as the gold standard, and queries the servers’
databases using approximately 70 query structures. Sierk & Pearson29 compare receiver
operating characteristic (ROC) curves31 to evaluate the success of different methods in
detecting domains of the same homology or topology, as defined by CATH; they test one query
in each of 86 families. Using SCOP as the standard, Leplae & Hubbard32 built a web-server
that evaluates structural alignment methods by comparing their ROC curves. Descriptions of
structural alignment methods sometimes include evaluations of the methods. For example,
Gerstein & Levitt33 evaluated STRUCTAL using SCOP; Shindyalov & Bourne3 compared
CE to DALI; Shapiro & Brutlag34 evaluated FoldMiner, VAST and CE by comparing their
ROC curves, using SCOP.

In this study we conduct a large-scale computer experiment to compare protein structural
alignment methods. We consider a set of 2930 sequence diverse domains from CATH v.2.42
and align all pairs of structures. The methods we test are (listed chronologically): (1) SSAP,
6 (2) STRUCTAL,7,33 (3) DALI,8,9 (4) LSQMAN,10 (5) CE,11 and (6) SSM.14 Each
alignment has a significance (or native) score assigned by the program that found it and four
geometric match measures (SAS, SI, MI, GSAS). We first evaluate the above methods by
comparing the ROC curves based on their native score, and the four geometric match measures.
We take the view that structural alignment methods are, in effect, optimizers of the geometric
match measures, and create a better optimizer, the “Best-of-All” method, which takes the best
alignment found by all methods. Using this approach, we evaluate the performance of the
programs by directly comparing the geometric match measures of their alignments. We also
elaborate on problems in assuming the lack of structural similarity between structures that are
classified differently by the gold standard. We end by taking another look at hard cases, i.e.
ones where only one of the methods succeeds, and analyzing the behavior of the different
methods on the four CATH classes (“Mainly α”, “Mainly β”, “Mixed α/β”, “Few Secondary
Structure”). The total computer time used in this experiment is over 20,000 hours on a 2.8 GHz
processor.

Our main conclusion is that structural alignment methods should be evaluated by comparing
the alignments they find. We show that ROC curves are of limited value and that their ranking
of the methods is not consistent with the ranking implied by the quality of the alignments the
methods find. We also highlight the problems inherent in comparing similarity of pairs of
objects based on a hierarchical classification (namely a tree) of those objects: a classification
attempts to group objects that share some property but does not guarantee that pairs of objects
in different classes are indeed different. We find that the objective geometric match measures
provide more relevant information than the native scores given by each particular method. Of
the different measures we use, GSAS and SAS perform best in separating good alignments
from less good ones. We consider the set of the pairs that are in the same CATH fold class as
well as the set of all pairs and find that certain structural alignment methods consistently
outperform other methods. More specifically we find that the Best-of-All method (i.e. a
combination of all six methods under study) finds the best results, followed by STRUCTAL
and SSM. Finally, we identify a set of structurally similar pairs that are found only by a single
method, providing a useful test set that will allow structural alignment methods to be improved.

Kolodny et al. Page 3

J Mol Biol. Author manuscript; available in PMC 2009 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
We compare six structural alignment methods by aligning all 4,290,985 pairs in a set of 2930
sequence-diverse CATH v.2.42 domains (2930×2929/2 pairs as (i,j) and (j,i) are treated once).
These methods are implemented in the following programs: (1) SSAP,6 (2) STRUCTAL,7,
33 (3) DALI using DaliLite (v.1.8),8,9 (4) LSQMAN,10 (5) CE,11 and (6) SSM.14 The set of
structures†, includes 769 fold classes. The programs output the alignment native score, the
number of residues matched, and the cRMS deviation. We count the number of gaps in both
structures by inspecting the alignment, which is available for all programs except for the
standalone version of SSM. Based on these data, we calculate the geometric match measures
SI, MI, and SAS for all methods and calculate GSAS for all methods except SSM. Using the
geometric match measures we create a seventh method denoted Best-of-All, which returns the
best alignment found by all the other methods.

Comparison of methods using ROC curves
We first evaluate the methods (i.e. the six individual programs mentioned above, and the Best-
of-All method) by comparing their ROC curves.31 CATH serves as the gold standard: a pair
of structures is defined as “positive” (or similar) if both structures have the same CAT
classification and “negative” (or not similar) otherwise. For varying thresholds, all pairs below
the threshold are assumed positive, and all above it negative: the pairs that agree with the
standard are called true positives (TP) while those that do not are false positives (FP). We sort
the alignments either by their geometric match measures or by the native scores of the
programs. A method that best agrees with the gold standard will have the uppermost curve, or
equivalently, the one with the largest area under it. It can be argued that we are more concerned
with comparing the agreement of the methods with CATH when the percentage of FPs is low.
We do this by plotting the x-axis of the ROC curve in log scale, that is, log10 of fraction of FPs
against the fraction of TPs.

Figure 1(a) shows the ROC curves of all the methods; we sort the alignments either by their
native score (broken lines) or by the SAS geometric match measure (continuous lines). Figure
1(b) shows the same ROC curves with log10 (fraction of FP) versus fraction of TPs. Table 1
lists values quantifying these ROC curves: the area under the curve and the number of TPs
when the fraction of FPs is 1% (numbering 42,910).

When sorting the alignments by their SAS measure, the ROC curve analysis suggests that
DALI, CE, STRUCTAL, and SSM are the strongest methods. When sorting the alignments by
their native scores, the methods DALI and STRUCTAL are strongest. At low false positives
rates (Figure 1(b)), DALI, CE, SSAP and STRUCTAL do well. It is somewhat surprising that
the programs CE, SSM, LSQMAN and SSAP do much better when using the geometric
measure than when using their own native score. DALI performs similarly when using the two
measures, but the geometric score does better in the lower FP rates. STRUCTAL also performs
similarly using these two measures, although the STRUCTAL native score, which was
specifically designed to be better than the SAS measure,33 does increase the area under the
ROC curve from 0.93 to 0.94. Clearly, a program can be successful in finding good alignments
and less successful in evaluating them. Another surprising result is that the Best-of-All method
does not perform better, in terms of its ROC curve, than the individual methods.

Figure 1(c) and (d) shows the plot of the average SAS measure of the TPs and the FPs below
increasing thresholds against the fraction of TPs. This compares directly the quality of the
alignments found by different methods in equally sized sets of pairs. Here, successful methods

†http://csb.stanford.edu/~rachel/comparison/subset_list_web
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find alignments with lower SAS values, represented by curves that are shifted to the left. The
average SAS of the TPs is lower than the average SAS of the FPs. As expected from a list
sorted by increasing SAS values, this difference is small and subtle in the parts of the curve
corresponding to a low TP fraction. The Best-of-All method finds the best alignments, followed
by STRUCTAL and SSM. Surprisingly, the ranking of the structural alignment methods based
on their average SAS values differs from that implied by their ROC curves. For example, DALI
and CE have almost identical ROC curves ranking them similarly, yet their SAS curves show
that CE finds consistently better alignments. Another example is SSAP that performs well by
its ROC curve, while its average SAS curve suggests otherwise. This means that the best
alignments found by SSAP, although generally not as good as those found by other methods,
often correspond to proteins in the same CATH fold class. Clearly, a particular method can
seem to be as, or more, successful than another method based on its ROC curve, while the
actual alignments it finds are inferior.

We have also plotted the same figures when sorting the alignments by their SI, MI and GSAS
measures (data not shown, but available online†). In general the relative performance of the
methods is similar when judged by the average values of the four geometric match measures.
When examining the curves of average values of SI, MI, and GSAS, we see that similarly to
Figure 1(c) and (d) the implied ranking of the methods is different from that suggested by the
methods’ ROC curves.

Comparing the methods directly using geometric match measures
We calculate the four geometric match measures (SI, MI, SAS, and GSAS) for all alignments
found by all the methods. In all four measures, better alignments correspond to lower values.
Using these data, we calculate the cumulative distributions of the geometric measures, over
the set of 104,309 structure pairs, that have the same CAT classification (the CAT–CAT set)
and over the set of all structure pairs (the full set). In both cases, we normalize to 100% the
total number of pairs in the set.

Figure 2 shows the cumulative distributions of the geometric match measures. Here, better
performance corresponds to finding more alignments (greater values along the y-axis) with
better geometric match measures (lower values along the x-axis). In the case of GSAS, SAS,
and SI, we focus on good alignments: the cutoff value is 5 Å in all three cases. Even though
all programs were given the same set of pairs, the maximum value on each curve varies, since
there are many alignments of match measure greater than 5 Å that are not shown. For each
method, Table 1 lists, for both the CAT–CAT set and full set, the number of pairs for which
good alignments are found (expressed as a percentage of pairs in the set).

We see that the Best-of-All method finds the greatest number of good alignments, both in the
CAT–CAT set and the full set, for all four geometric measures; the second best performer is
STRUCTAL in both sets and for all geometric measures; the third best performer is SSM
(except when using GSAS). Among the programs compared, SSAP performs the worst. When
using GSAS, a version of SAS that penalizes alignment gaps, the relative performance is
flipped in two cases: CE versus DALI and CE versus LSQMAN. This implies that CE finds
less fragmented alignments than those found by DALI and LSQMAN. We also see that
LSQMAN finds more highly similar alignments, and less moderately similar alignments, than
all other methods except STRUCTAL.

When using the similarity cutoff value 5 Å, even the best methods find good alignments for
no more than 80% of the CAT–CAT pairs. At the same threshold level, there are good

†http://csb.stanford.edu/~rachel/comparison/
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alignments for about 10% of all pairs, even though the CAT–CAT pairs account for only 2.5%
of these pairs. This shows that there is a significant amount of structural similarity between
structures in different fold classes. An alignment’s GSAS measure will generally be larger than
its SAS measure because we reduce the denominator (Nmat) by the number of gaps; for this
reason the percentage of pairs below the 5 Å threshold is smaller for GSAS than for SAS.
Similarly, the relative size of the values of SI and SAS depends on how the typical length of
the shorter structure relates to the value 100. We see that the percentage of pairs below the 5
Å threshold is greater for SI than SAS, implying that the typical length of the shorter structure
is less than 100 (we estimate 70 residues). This means that SAS is generally larger than SI.

Analysis of the good alignments found by the Best-of-All method
Table 2 lists the proportional contribution of each of the methods to the Best-of-All method,
when considering good alignments. In all cases, STRUCTAL is the leading contributor,
contributing more than 50%. SSM is the second largest contributor, with more than 15%,
followed by LSQMAN with over 7%. SSAP, DALI and CE contribute less to the combined
effort; if one of the top contributors were to be omitted these methods could contribute more.

For each pair of structures we find the best structural alignment, as determined by its GSAS,
SAS or SI value. This set of structure pairs is partitioned into four sets: (1) pairs that agree on
the three CATH classifiers: Classification/Architecture/Topology (the CAT set), (2) pairs that
agree only on the first two classifiers (the CA set), (3) pairs that agree only on the first classifier
(the C set) and (4) others. In Figure 3 we plot, for several threshold values of the geometric
similarity measures (less than 2.5 Å, 3 Å, …, 5 Å), the number of alignments found at that
level of similarity (upper panel) as well as the percentage of each of the four sets found at that
level (lower panel). The rightmost panels show the same analysis for the subset of long
alignments (more than 50 residues matched). The threshold values we consider describe
structural alignments that vary from highly similar (less than 2.5 Å) to moderately similar (less
than 5 Å).

Figure 3 shows that there are many cases of very similar structure pairs that are in different
CAT classes; in some cases they are even in different C classes. For example, with a GSAS
threshold of 5 Å, less than 40% of the pairs of proteins found are in the same CATclass, even
when considering only the long alignments (more than 50 residues matched). Note, that at this
level of similarity, only 80% of all the pairs of proteins with the same CAT classification are
detected by any of the programs (see Figure 2). For both GSAS and SAS, the fraction of the
alignments for which both structures are in the same CAT class is biggest for the highly similar
pairs (less than 2.5 Å), and lowest for the moderately similar pairs (less than 5 Å). This expected
behavior is even more pronounced when we consider only long alignments. Figure 3 also shows
that the number of good alignments is greatly reduced (by more than a factor of 2) when
restricting our attention to long alignments.

Challenging alignments
For each protein structure alignment method Table 3 lists the total number of pairs of proteins
that only the particular method was able to identify as structurally similar. We include only
those pairs of structures for which one of the methods found a good alignment (SAS less than
4 Å and more than 35 residues matched), and all other programs found only bad alignments
(SAS greater than 6 Å for any length of match). These alignments are by definition challenging
for all programs but the successful one. We also present in Table 3 a breakdown of these cases
according to the C classification of the structures aligned. The complete list of these pairs,
along with the best cRMS, the alignment length and the SAS values for all the programs is
available online†. STRUCTAL contributes the largest number of alignments, followed by
LSQMAN and SSM. For all three methods, a significant number of the contributed pairs
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corresponds to similarities between a “Mainly α” protein and a “Mixed α/β” protein. In the
case of STRUCTAL, there is also a significant number of pairs involving a “Mainly β” protein
and a “Mixed α/β” protein.

Table 4 compares the relative success of the methods in detecting alignments of pairs that we
know are similar. Here, we consider six test sets of similar structure pairs, and use the Best-
of-All method to find the pairs in each test set. A set of similar pairs is parameterized by: (1)
an upper bound on the SAS value, (2) a lower bound on the alignment length Nmat and (3) a
lower bound on the percent of overlap between the aligned residues and the shorter structure
in the pair. The first column lists the parameters for each of the test sets when using Best-of-
All, as well as their respective sizes. The test set sizes vary significantly, ranging from 20,000
to 350,000. We then use the methods to find sets of well-aligned pairs. We hold the methods
to lower standards than those used to select the test sets: we relax the bounds for good
alignments: the upper SAS bound is increased, and the lower bounds of the alignment length
and overlap (when applicable) are decreased. Table 4 lists the percentage of the missed good
alignments in the test set for each of the methods. In all cases, STRUCTAL, CE and SSM miss
fewest alignments.

Analysis of the performance of the methods on different CATH classes
Figure 4 compares the relative success of each structural alignment method on CAT pairs in
the four classes of protein structure (level C of CATH hierarchy). This is done for alignments
with SAS values between 2.5 Å and 5 Å. We see, that α–α pairs, and α–β pairs are over-
represented when the match is good (SAS value less than 3.5 Å), and, consequently, the β–β
pairs are under-represented. When the match is less good (SAS value between 4 Å and 5 Å)
each method behaves as expected finding different classes of pairs with a frequency that is
proportional to the fraction of the pairs in the entire CAT set (shown by the horizontal lines in
each panel). Most methods behave similarly in that at a particular SAS value, they detect similar
percentages in each of the four classes. Such common behavior is unexpected, as the methods
do not necessarily find the same pairs or even similar numbers of pairs. The LSQMAN method
is unusual in that it finds more β–β pairs when the match is good (low SAS value) and
consequently under-represents α + β pairs. Most of the pairs in CAT are Mixed α/β pairs (71%),
followed by Mainly β pairs (23.5%), Mainly α pairs (6.2%) and Few Secondary Structures
(0.45%). The fact that most methods detect relatively few β–β pairs of high match quality may
mean that matches between β proteins are less good possibly due to the greater deformability
of β strands.

Running times
Table 5 lists the total amount of central processor unit time (CPU hours) used to compute all
the structural alignments for each of the programs. All programs were run under the Linux
operating system (RedHat 7.3) on a cluster of dual 2.8 MHz Intel Xeon processor machines,
each with one Gigabyte of memory. SSM is the fastest method, followed by LSQMAN; SSAP
and DALI are the slowest methods.

Discussion
Reservations about ROC curves

In our opinion, the number of disadvantages of using the ROC curves methodology for
comparing structural alignment methods exceeds the number of potential advantages. ROC
curves seem like a reasonable way to compare structural alignment methods because each curve

†http://csb.stanford.edu/~rachel/comparison/table_3_web
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evaluates a method with respect to an agreed gold standard (in the case of this study,
CATH2); moreover, the methods’ self-evaluation (i.e. their native scores) can be used without
needing any additional geometric match measure. The gold standard, however, is based on a
classification, rather than a direct reflection of a similarity measure. For use in a ROC curve,
the CATH classification must be converted to a binary similarity measure and this only allows
two levels of similarity: “similar” if in the same C, A and T class, and “not similar” if not in
the same C, A, and T class. Clearly, the scale of structural similarity is far richer, and this binary
view introduces a great deal of “noise”. For example, a pair of structures with the same C and
A classifiers and another pair with completely different classifiers will both be treated as
unrelated structure pairs. More generally, there is a significant amount of similarity between
structures that have a different CAT classification; this phenomenon was also observed by
Harrison et al.35 and by Kihara & Skolnick.36 However, the ROC curve analysis ignores, and
even penalizes, methods that find these similarities.

As pointed out earlier,17,29 the creators of CATH use information from some of the structural
alignment methods; this implies that some of the methods under study are influencing the
evaluation procedure. In this regard, it is of particular interest that two methods seem to agree
best with the CATH classification but do not produce the best geometric matches. Another
interesting detail is that one of these methods, SSAP, which was developed by some of those
involved in defining the CATH classification, scores very badly when using its native score
but does much better when using the SAS geometric match measure. The other method that
seems to have influenced the CATH classification is DALI, the most commonly used alignment
program, which has been available for many years through its web server.

When comparing two methods, there are cases in which one of the methods performs better
and the ROC curve analysis fails to detect it. This can happen when one of the methods
consistently finds better alignments, yet both methods order the alignments similarly. Since
ROC curves use only the order of the alignments, the performance of these two methods will
appear similar. Indeed, when comparing the ROC curves of DALI and CE using SAS to sort
the alignments, we observe this phenomenon. Another example of this is that there are methods
that perform well by the ROC curve criteria (i.e. the order of their alignments is consistent with
the gold standard), yet find relatively poor alignments as evidenced by their geometric match
measures. Lastly, although the Best-of-All method finds the best alignments by definition, its
ROC curve suggests that it is a poor performer.

Structural alignment as a geometric optimization problem
Here we suggest treating structural alignment as an optimization problem in which alignments
with the best geometric match measure are sought. This leads naturally to a definition of a
combined effort, or the Best-of-All method. It also suggests a methodology for comparing
methods: given several different structural alignments of the same pair of structures, it is easy
to evaluate which is best based on the geometric properties of these alignments. Equivalently,
when a particular method aligns two structures in such a way that it lines up many residues
with a small cRMS deviation, the alignment itself serves as proof of its significance; it cannot
be considered as an error or a false positive. A method can only fail to find good alignments
that are known to exist.

In this study, we evaluate the quality of the alignments found by the different methods using
four different geometric match measures. These match measures, both those previously
proposed (SAS, SI and MI) and that suggested here (GSAS), attempt to balance properties of
good alignments: cRMS or geometric similarity, Nmat the length of the alignment, the fraction
of the shorter structure matched, and number of gaps. Different alignment methods seem to
emphasize these same measures, although they may balance the values differently. Clearly,
other geometric match measures, which balance these (and possibly additional) values
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differently, could be used thus changing the definition of a good alignment. For these measures,
one could compare the ROC curves of the methods, and even better, compare the overall quality
of the alignments directly. For example, one could use SASn=cRMS(100/Nmat)n, a version of
SAS that favors longer alignments even at the cost of higher cRMS values. Since different
methods have different strengths, shifting the emphasis may alter the evaluation. For most of
the different match measures we studied, including SASn, the results were generally similar
in that: (a) Best-of-All is better than any of the individual methods; (b) STRUCTAL and SSM
produce better alignments. When we use SAS4 (i.e. dramatically emphasizing longer match
length), we find that the order is different, and SSAP produces the best alignments.

The main observation of this work is that different alignments of a pair of structures found by
different programs can be compared directly and evaluated using geometric match measures.
This direct comparison also applies to a set of alignments. Overall quality can be measured
via cumulative distributions of the quality of alignments of sets of protein pairs. This also
suggests a way to examine cases in which one method succeeds while others fail.

Restricting the evaluation to the alignments
We believe that the principal quality of a structural alignment method is finding a good
alignment. Thus, an evaluation of alignment methods should focus on the quality of the
alignments. Most notably, the evaluation should not depend on the scoring of the alignments
that the programs provide. Indeed, we show that most methods (apart from DALI and
STRUCTAL) are better in finding alignments than in scoring them, or equivalently, do not
distinguish good alignments from bad ones. This is consistent with the findings of Sierk &
Pearson29 that many alignment programs greatly overstate the significance of structural
alignments. Similarly, comparing all-against-all structures in a selected set avoids the pitfall
of coupling the evaluation of the alignment programs and the database of structures used by a
server. Since Novotny et al.30 evaluate the aligners and the databases simultaneously, it is hard
to directly compare our results with theirs. Furthermore, using servers rather than the
standalone versions can give misleading results in terms of the time performance of the
programs, as it depends on many extraneous factors (e.g. the network and server loads and the
servers hardware).

Direct comparison of structural alignment methods
Our analysis shows that the combined, Best-of-All, method finds the best alignments. Among
existing methods STRUCTAL finds the best alignments. The second best method is SSM, but
due to a limitation in the program’s output, we could not evaluate if the alignments found by
the latter have many or few gaps. In terms of speed, SSM is the fastest method, followed by
LSQMAN. Clearly, the computing time for the Best-of-All method is the sum of computing
time of all the methods it uses. When designing a combined structural alignment method, such
as Best-of-All, STRUCTAL, SSM and LSQMAN are important contributors, both in terms of
quantity, i.e. percent of contribution, and quality, i.e. they excel in finding difficult alignments.

Sierk & Pearson29 evaluate (among others) CE, DALI and LSQMAN; Novotny et al.30 also
evaluate SSM. The ranking by Novotny et al. is different from ours; we believe that there are
two reasons for this difference: (1) our experiment is significantly larger, and (2) we focus on
the structural alignment methods, while their evaluation also depends on the server’s database
of structures. Our results confirm the observation by Sierk & Pearson that when considering
only the ROC curves and using CATH as a gold standard, DALI appears to be the best
performer. We also confirm the observation by Shindyalov & Bourne3 that CE produces
alignments with fewer gaps compared to DALI.
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In Methods, we summarize the main features of the six methods used here. It is notable that
three of the methods, SSAP, DALI and CE, find correspondences by matching features in the
distance matrices of each structure. This approach was first introduced in SSAP.6 The other
three methods, STRUCTAL, LSQMAN and SSM all start with an alignment, superimpose the
structures, deduce a new alignment from the superposition and iterate. This approach was first
introduced by Satow et al.43 in the context of antibody structural alignment. Neither approach
is guaranteed to converge to the best structural alignment. It has been shown26 that exhaustive
exploration of the space of rigid body transformations guarantees finding all optimal
(approximate) alignments in polynomial time (O(n8)). The methods STRUCTAL, LSQMAN,
and SSM explore this same space using a faster heuristic search rather than exhaustive
exploration. The methods SSAP, DALI and CE work by selecting similar subsets of two
internal distance matrices. This is an NP-hard problem, which is as difficult as finding a
maximal clique in a graph. It is possible that relying on the fact that these distance matrices
describe objects in three-dimensional space will reveal a polynomial time algorithm, which
compares the matrices directly. At present, we see no way in which this can be done.

Future directions
Understanding protein function and protein evolution are key aims in structural biology. Both
are furthered by detecting all known protein structures that are geometrically similar to a given
query structure. The straightforward way of doing this is to maintain a database of all
(representative) structures, and compare the query structure to each of the structures in the
database, using a structural alignment method. In this study, we evaluate the structural
alignment methods that can be “plugged” into this procedure. Following homology
modeling37 one can construct a method that calls different structural alignment methods, and
selects the best alignment(s). The geometric match measures are reasonable criteria for this
selection. Unfortunately, as the database is fairly large, this is computationally expensive.
Ideally, we would like a fast filter that rules out some of the structures. Many approaches are
currently tested in order to design such filters, including methods that consider geometric
properties of protein backbone,38 as well as probabilistic methods based on contact maps
describing protein structures.39 Certifying that a structure cannot be structurally aligned to
another structure is a hard because the certifier must prove that no alignment can be found (for
reasons other than the failure of the heuristic search). Designing such filters remains an
important area of research.

This work touches upon the fundamental difference between classification of protein structures
and measuring the similarities amongst them. In particular, we argue that converting a
classification gold standard to a binary gold standard similarity measure is too crude of an
approximation. We plan further investigation in this area. Specifically, we plan to study
similarities among structures that are classified differently. In addition, we hope to study cases
in which the classification is the same, yet all methods indicate that there is no similarity. This
can be due to classification errors, or, more interestingly, due to protein structures that are
intrinsically hard for structural alignment methods.

Methods
Geometric match measures of structural alignments

We aim to compare different structural alignments of pairs of structures by comparing their
geometric match measures. There are two types of comparisons: (1) alignments found by
different programs for the same pair(s) of structures. Here, the match measures must depend
on the geometric and other properties of the particular alignments (cRMS, number of matched
residues, number of gaps, and length of the proteins). (2) Alignments found by the same
program. Here, we compare different alignments for the same pair of protein structures, as well
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as different alignments for different pairs of structures. In the second case, the geometric match
measures can be used in addition to the native score provided by the particular protein structure
alignment program. Native scores cannot be used when comparing alignments found by
different programs as the scores may be in different units and on different scales.

Consider an alignment of two structures that have been optimally superimposed with respect
to one another. The number of residues in each of the two structures is denoted by L1 and L2.
The number of matches (aligned residue pairs) is denoted by Nmat. The coordinate root means
square (in Å), between the aligned pairs of α-carbon (CA) atoms, is denoted cRMS. A gap
opening is every instance of an aligned residue whose previous residue is not aligned. The
number of gaps, denoted by Ngap, is the total number of gap openings in both structures. Note
that here we have assumed that we compare structures using one atom per residue, generally
but not necessarily, the CA atom. This simplifies things, making the unit of comparison (a CA
atom) correspond to a unit of sequence (a residue).

Intuitively, a match measure based on the geometric properties of an alignment should favor
alignments with many matched residues, low cRMS deviations, and few gaps. Unfortunately,
these properties are not independent. For example, a lower cRMS deviation can always be
achieved by selecting a shorter match; given the fixed inter-CA distance there is the extreme
case of many alignments of just two residues that have cRMS deviation of 0 Å. Also, by
allowing additional gaps, the alignment can be lengthened without necessarily increasing the
cRMS deviation. Different match measures attempt to balance these values in different ways.
In this work, we consider four geometric match measures: similarity index (SI),27 match index
(MI),27 structural alignment score (SAS)7 and gapped SAS (GSAS). The original match index
(OMI),27 has values between 0 and 1, with better alignments having higher values; instead we
take MI = 1–OMI, so that lower values always imply better alignments. GSAS is introduced
here as a variant of SAS that penalizes gap openings. MI includes a normalizing factor w0=1.5
(following Krissinel’s suggestion†). All measures are defined explicitly in terms of cRMS,
Nmat, L1, L2 and Ngap as follows:

(1)

(2)

(3)

(4)

A GSAS value of 99.9 denotes worst possible value. The number “100” used above is in units
of number of aligned residues. Thus, the units of SI, SAS and GSAS are Å.

†http://www.ebi.ac.uk/msd-srv/ssm/comparisons/cmp_index.html
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Data set of structures to be aligned
The set of structures aligned in this study consists of 2930 sequence-diverse CATH2 v.2.4
domains, each with a CATH classification. As we focus on three-dimensional structures, we
consider only the top three levels of CATH, Class, Architecture, and Topology to give a CAT
classification. We refer to a set of structures with the same CAT classification as a fold class.
There are 769 fold classes in the set that fit the Class categories as follows: 218 Mainly α class,
132 Mainly β class, 345 Mixed α/β class and 74 Few Secondary Structures class. The
Supplementary Material to this work, presented online†, lists the names of the CATH domain
of all these structures.

Using a set of structures with sufficient sequence diversity ensures that the set is duplicate-free
and that the problem of structural alignment is non-trivial for all pairs. Here, we select the
structures as follows: (1) sort all 34,287 CATH v.2.4 domains by their SPACI score.40 (2)
Select the domains from the list, starting with the one with the best SPACI score (most
accurately determined). (3) Remove from the list the selected one and all domains that share
significant sequence similarity with it (FASTA22 E-value <1×10−4). (4) Continue until there
are no domains left for selection. This is the same method used by Brenner et al.17 to produce
the sequence-diverse set of SCOP structures.

The protein structure superposition programs
The structural alignment methods that we evaluate, listed chronologically from date of first
publication, include: (1) SSAP,6 (2) STRUCTAL,7 (3) DALI,8 more specifically DaliLite (v.
1.8),9 (4) LSQMAN,10 (5) CE,11 and (6) SSM.14 The common goal of all methods is to
identify a set of residue pairs from each protein that are structurally similar. There are two
general strategies for finding such good alignments: (1) search for transformations that
optimally position the two structures with respect to one another, and then use the
transformation to find the best alignment, and (2) directly search for a good alignment.
STRUCTAL, LSQMAN, and SSM belong to the first group, whereas SSAP, DALI, and CE
belong to the second. Most methods also rely on a structure superposition procedure (such as
that due to Kabsch41), which finds the transformation (i.e. rotation and translation) to optimally
match the aligned pairs, in terms of their cRMS deviation.

Each method scores a good alignment differently, which can impact the perceived performance
of the method. For example, if a method defines an alignment as good only by its length, while
ignoring the cRMS, it will find alignments with high values of the geometric match measures,
and therefore will score badly in our analysis. Some of the methods report as a score the final
value of the function optimized to find a good alignment. Others report a Z-score, or
significance score calculated by comparing a particular score to the distribution of scores
expected by chance. In general, the different methods judge the quality of an alignment by the
number of matched residues (longer is better), the number of gaps (fewer is better), the
geometric similarity value (either cRMS or dRMS), and the length of the shorter of the two
structures min(L1,L2) (used to estimate the fraction of the structure matched). Below, we briefly
describe the six methods with an emphasis on how they calculate the native score of a structural
alignment.

SSAP6 searches for an optimal alignment of two protein structures using dynamic
programming (DP). The DP algorithm requires a similarity measure for all pairs of residues,
one from each structure to find the optimal alignment. For SSAP, the residue similarity is the
overlap of the “views” from each of the two residues, where the “view” is the list of distances
from the particular residue to all other residues in the same structure. SSAP also uses dynamic

†http://csb.stanford.edu/~rachel/comparison/subset_list-web
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programming to optimize the overlap of distances in the two distance lists. The procedure is
thus dubbed double dynamic programming. Gaps are allowed, but their lengths are limited to
improve speed. The native score of SSAP is a normalized logarithm of a measure which
combines the similarity of the aligned residues (accounting for the length of the alignment)
and the number of residues in the smaller protein, min(L1,L2).

STRUCTAL7‡ assumes an initial alignment (a correspondence of residues in the two
structures), and gets the rigid-body transformation that superimposes the corresponding
residues. It then finds an optimal alignment for this superposition. The new alignment is used
to superimpose the structures again and the procedure is repeated till it converges to a local
optimum that depends on the initial alignment. In an attempt to reach the global optimum,
STRUCTAL starts with several different correspondences. For a given correspondence, the
optimal transformation is the one with minimal cRMS and STRUCTAL uses the procedure by
Kabsch41 to find it. For a given transformation, the optimal correspondence is the one with a
maximal STRUCTAL score, and STRUCTAL uses DP to find it. The STRUCTAL score of a
correspondence is Σi∈correspondence(20/(1+5 dist(ai, bi)2)) − 10 × Ngap, where dist(ai,bi) is the
distance in space between the α-carbon (CA) atoms of the ith residue pair in the correspondence.
Three of the initial correspondences are: aligning the beginnings, the ends and the midpoints
of the two structure chains without allowing any gaps. The fourth initial correspondence
maximizes the sequence identity of the chains and the fifth is based on similarity of α-carbon
torsion angles between the two chains.

DALI8 constructs an alignment by joining well aligned fragment pairs (which are six-residue
backbone fragments). The similarity score is calculated from the pair-wise differences of all
equivalent elements of the two distance matrices. DALI uses the Monte Carlo method to search
for the best consistent set of similar fragment pairs joined into an alignment. The basic step in
the Monte Carlo search is addition or deletion of residue equivalence assignments. The native
score of DALI is a sum, over all aligned residue pairs in both structures, of a bonus score that
is maximal when the inter-residue distances in both structures are equal. DALI uses many
initial alignments, and searches for the best one in parallel, using the total score to select the
best one. It reports the similarity score, and a normalized Z-score; we use the former as the
DALI native score.

CE10 constructs an alignment by successively joining well aligned fragment pairs (denoted as
AFPs). The AFPs are pairs of eight-residue fragment, which are considered similar if their
corresponding internal distances are similar (of low dRMS). Gaps are allowed between
neighboring AFPs, but their length is limited (less than 30 residues) to improve speed. CE
constructs the alignment by choosing an initial AFP and extending it; the heuristic algorithm
is greedy but it does consider AFPs that are not the very best to widen and improve the search.
Finally, CE has an optimization step, which lengthens the alignment without compromising
its cRMS. The native score of CE is a Z-score that evaluates the statistical significance of the
alignment by considering the probability of finding an alignment of the same length (Nmat),
with the same (or less) gaps (Ngaps) and geometrical distance (dRMS).

LSQMAN11 iteratively searches for a rigid body transformation (i.e. rotation and translation)
that superimposes the structures. The initial transformation is calculated by optimally
superimposing41 the first residues of the secondary structure elements (SSEs) in the two
structures. Once the structures are superimposed, LSQMAN starts by searching for a long
alignment, where matching residues are within 6 Å of each other, and the minimum fragment
length is four residues. Given the alignment, an optimal transformation is calculated, starting
a new iteration. The distance cutoff is slowly increased in the later optimization cycles.

‡Available online at http://csb.stanford.edu/levitt/structal.html
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LSQMAN uses the similarity index (SI), which is defined above, as its optimization criterion.
LSQMAN also calculates a Z-score, as defined by Levitt & Gerstein42 for its native score.

Secondary Structure Matching (SSM)14 iteratively searches for a rigid body transformation
(i.e. rotation and translation) that superimposes the structures; it then finds an optimal
alignment for this transformation. The initial transformations are found by matching
substructures in the three-dimensional graphs that describe the structures in terms of secondary
structure elements (SSEs) and their relative position and orientation. SSM then iteratively finds
a correspondence of nearby α-carbon (CA) atom pairs, one from each structure, and optimally
superimposes41 the corresponding sets. The procedure for finding the correspondence is
greedy in nature. First it matches nearby residues of matched SSEs, then nearby residues of
non-matched SSEs, and then more nearby residues that are not part of SSEs. The
correspondence is further refined by removing some of the pairs. SSM uses a geometric quality
measure Q, which balances the cRMS, the alignment length Nmat, and the length of the
structures L1, L2: Q = (Nmat)2/((1+(cRMS/R0)2)L1L2). The refinement of the alignment tries
to maximize the value of Q. Q is also used for the evaluation of the significance of the alignment
with a P value and a Z-score. We use the latter as the native score of SSM.

Setting up the large scale protein structure comparison experiment
Each of the programs compared in this study aligned all 8,581,970 pairs of structures from the
above set (i.e. 2930×2929=8,581,970 pairs). As our focus is evaluating the performance of the
structural alignment methods, and due to the scope of the test, we ran the standalone Linux
versions of the programs that implement the methods in-house using i386 Intel processors.
Unless otherwise noted, each structural alignment program took as input the coordinates for
all atoms (all lines starting with ATOM, TER or END in the PDB file). All the programs were
run using default parameters, and no efforts were made to adjust these parameters to specific
cases, such as low sequence or structure similarity. Doing so, we are aware that the individual
results of each program may not be optimal, and that an expert of one of the methods tested
here would certainly get better results than we do. Our goal however is to test these programs
on large-scale comparisons, for which fine-tuning is not always possible. This also allows us
to treat all six programs equally.

Each of the programs tested output the alignments, their cRMS values, and their scores,
according to the method implemented in the program. The only exception is SSAP which
provides the alignment and the score; in this case, the (optimal) cRMS was computed from the
alignment and the PDB structures, using in-house software. From the alignment, we then
calculated the number of matched residues and the total number of gaps (for SSM we could
not derive the number of gaps). We stored the values of the geometric properties of the
alignment together with the native score for further analysis. Each pair of structures has two
alignments and we consider the one with the better native score (i.e. we use only 4,290,985
alignments). In cases where a particular method finds more than one alignment for a given pair
of proteins, we consider the alignment with the best native score. Lastly, we recorded the
computing times.

In CE, we change the source code so that the z-threshold value is 0 rather than 3.5, to ensure
that the optimization block is always invoked. For CE, we also add the SEQRES fields to the
input files to insure proper parsing of multi fragment chains. Since the ROC curve of CE based
on SAS was significantly better than the one based on the native score, we select the best
alignment for a pair of structures based on the one with highest SAS score. In LSQMAN, we
use “Brute_force” mode, following the O macro procedure published in align2.omac†.

†ftp://xray.mc.uu.se/pub/gerard/omac/align2.omac
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Comparison of methods using ROC curves
The traditional method of evaluating the performance of structural alignment programs is by
comparing their receiver operating characteristic (ROC) curves.31 ROC curves quantify how
much a scoring scheme agrees with a gold standard; the gold standard indicates for every pair
if it is similar or not. Here, we derive a binary (similar or not similar) gold standard from the
CATH hierarchy: we consider a structure pair to be a positive if both structures have the same
CAT classification, and to be a negative otherwise. The alignments found by each program are
sorted according to a quality measure, either one of the four geometric measures or the
program’s native score. This order, along with a threshold value, marks all structure pairs with
values below it as positives. We denote structure pairs that are also marked as positives by the
gold standard as true positives (TPs) and pairs that are not marked by the gold standard as
positives as false positives (FPs). For a particular measure, the ROC curve plots the fraction
of FPs (1 – specificity) against the fraction of TPs (sensitivity). These fractions are calculated
at every increasing threshold of the measure, starting from the most significant in the pair list
sorted by the measure. A perfect predictor will have a ROC curve that moves up the y-axis
turning right at the left-topmost corner, with area 1 below it; a completely random predictor
will have a curve that follows the diagonal, with area 0.5 below it.
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Figure 1.
Receiver operating characteristic (ROC) curves for the structural alignment methods SSAP,
STRUCTAL, DALI, LSQMAN, CE, and SSM. A true positive is assumed when the two
aligned structures have the same Class/Architecture/Topology CATH classification. We sort
all alignments and calculate the fraction of false positives (FP) and fraction of true positives
(TP) with values lower than a particular threshold. As the threshold is increased to include less
good alignments, we get pairs of FP and TP values that are plotted in the ROC curve. Here the
alignments are sorted by their native scores, (those given by the programs and shown as broken
lines) or by the geometric match measure SAS (continuous lines). In continuous black, we plot
the ROC curve of the Best-of-All method, the best alignments (in terms of SAS) found by all
methods. In (a) we plot the fractions of FP against the fractions of TP, and in (b), we plot
log10 (fraction FP) against fractions of TP, to better see performance at low rates of false
positives. In (c) and (d) we plot for every threshold the average SAS value of the TP and the
FP alignments below that threshold. Methods that perform better in terms of their ROC curves
climb to high TP values very quickly (i.e. at low FP values). We see that the performance of
the methods depends on whether the alignments are sorted by the SAS geometric match
measures or the native scores. Furthermore, some of the best methods as judged by the ROC
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curves (such as DALI and SSAP) do not produce the best alignments as indicated by the average
TP SAS value; they seem to do well because they find even worse average FP SAS values.

Kolodny et al. Page 19

J Mol Biol. Author manuscript; available in PMC 2009 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Comparison of the quality of the alignments produced by the methods SSAP, STRUCTAL,
DALI, LSQMAN, CE, and SSM, using four geometric match measures: GSAS, SAS, SI, and
MI. For each geometric measure and for each method, we plot a cumulative distribution. This
gives the number of alignments (expressed as a percentage of the total number of alignments
in the set considered) that is found with a geometric match score better than the particular
threshold plotted along the x-axis. A lower value of the geometric match measure is better in
all cases. In the upper panels, we consider the set of 104,309 pairs that have the same Class/
Architecture/Topology (CAT) classification; in the lower panels we consider all pairs (these
number 4,290,985). Better performing methods find more alignments (greater values along the
y-axis) with better scores (smaller values on x-axis). The MI measure is always between 0 and
1, whereas the other measures are unbounded. For GSAS, SAS, and SI, we use a cutoff value
5 Å, which allows us to focus on good matches. The Figure also shows the cumulative
distribution of the Best-of-All method, a method that returns the best alignment found by any
of the above methods. This method is clearly the best performer in all categories. Among the
existing methods, for each of the geometric match measures, STRUCTAL is the best performer;
the next best method is SSM.
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Figure 3.
The composition of the set of structure pairs that have good alignments demonstrates the
significant amount of structural similarity across CATH fold classes. These Best-of-All
alignments are divided into four categories depending on the similarity of the CATH
classification of the two aligned structures. These four categories (color-coded from black to
light gray) are: (1) both structures have the same C, A and T classifiers (CAT set), (2) both
structures have only the same C and A classifiers (CA set), (3) both structures have only the
same C classifier (C set), and (4) both structures have different C classifiers (other pair set).
We consider all good alignments, i.e. of low GSAS, SAS or SI value (left hand six panels), as
well as the subset of good alignments with more than 50 matched residues (right hand six
panels). The upper panels give the number of good alignments and the lower panels plot the
percentage of alignments found at that level of similarity for each category. All methods find
many examples of highly similar structures that CATH classifies differently.
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Figure 4.
Comparing the performance of the different structural alignment programs when aligning
different classes of structures. We consider all 104,309 pairs of the same fold class (i.e. same
CAT), and partition them according to their C classification into four classes: Mainly α, Mainly
β, Mixed α/β and Few Secondary Structure (from left to right). For each of the programs, and
for each SAS threshold value, we plot the percent of alignments found below it. The percentage
of pairs of each group, among all pairs, is the horizontal line. We see that Mainly α pairs, and
Mixed α/β pairs, are over-represented in the high geometric similarity region, while the Mainly
β pairs are under-represented. Generally, all methods have similar behavior, with the exception
of LSQMAN, which is less successful, compared to all the other methods at detecting Mixed
α/β pair similarity when the geometric similarity is high (this leads to a compensatory increase
in recognition of alignments of Mainly α, Mainly β, and Few Secondary Structures pairs).
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Table 5
Total running time of each program on all pairs

Program CPU hours Relative to SSM

SSAP 9042 14.3

STRCUTAL 1906 3.0

DALI 4515 7.1

LSQMAN 1790 2.8

CE 2642 4.2

SSM 633 1.00

Time is measured in CPU hours on an Intel Xeon 2.8 GHz processor with 512 Mbytes of RAM memory. There are 8,581,970 pairs in all (2930×2929).
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