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Summary
The log-rank test is the most powerful nonparametric test for detecting a proportional hazards
alternative and thus is the most commonly used testing procedure for comparing time-to-event
distributions between different treatments in clinical trials. When the log-rank test is used for the
primary data analysis, the sample size calculation should also be based on the test to ensure the desired
power for the study. In some clinical trials, the treatment effect may not manifest itself right after
patients receive the treatment. Therefore, the proportional hazards assumption may not hold.
Furthermore, patients may discontinue the study treatment prematurely and thus may have diluted
treatment effect after treatment discontinuation. If a patient’s treatment termination time is
independent of his/her time-to-event of interest, the termination time can be treated as a censoring
time in the final data analysis. Alternatively, we may keep collecting time-to-event data until study
termination from those patients who discontinued the treatment and conduct an intent-to-treat (ITT)
analysis by including them in the original treatment groups. We derive formulas necessary to
calculate the asymptotic power of the log-rank test under this non-proportional hazards alternative
for the two data analysis strategies. Simulation studies indicate that the formulas provide accurate
power for a variety of trial settings. A clinical trial example is used to illustrate the application of the
proposed methods.
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1 Introduction
In a clinical trial, especially a phase III clinical trial, where the primary endpoint is time to a
specific event under study, investigators are often interested in comparing the distributions of
this endpoint between a new treatment and a control. Before launching the trial, we need to
know how much resource is required so that the study has enough power to detect the difference
of interest. For time-to-event endpoints, the difference between their distributions is often
characterized in terms of a constant hazard ratio, the so-called proportional hazards model
[1]. It is well-known that the log-rank test is the asymptotically most powerful nonparametric
test for detecting a (local) proportional hazards alternative [2], and thus, is the most commonly
used testing procedure for comparing time-to-event distributions between treatments. When
the log-rank test is pre-specified as the primary data analysis method, the design of a clinical
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trial such as the sample size calculation and duration specification should consistently be based
on this test to ensure the power of the final analysis.

It is well-known that the two-sample log-rank test statistic asymptotically has the standard
normal distribution under the null hypothesis that the time to event endpoints have the same
distribution in two treatment groups. Schoenfeld [3] studied the asymptotic properties of the
two-sample log-rank test statistic for a general local alternative and showed that under some
regularity conditions it has an asymptotic normal distribution with variance one and a non-
centrality mean parameter in terms of hazard function difference in log-scale and the underlying
censoring processes. For a proportional hazards alternative, Schoenfeld’s [3] non-centrality
mean parameter reduces to a quantity dependent on the expected total number of events from
both treatment groups under some assumptions on the censoring processes, and the result has
been widely used to design clinical trials with time-to-event endpoints. For practical use, it is
often assumed that the time-to-event endpoints in both treatment groups have exponential
distributions, a special case of the proportional hazards alternative, and that patients are
enrolled at a constant accrual rate. Then one can manipulate the accrual period and the total
study length to find a solution that best fits the current situation and the resource at hand.

Recently, a placebo-controlled clinical trial was designed to evaluate the treatment effect of
an experimental drug on reducing cardiovascular risk. The trial used a fixed stopping time
design. That is, even though patients enter the study at different calendar time, they will all
complete the study at the same time. According to the past experience on similar drugs, it is
expected that this treatment will not show its effect during the first year after patients receiving
the treatment. Therefore, for design purpose, it may be reasonable to specify a special lag-time
model for the treatment effect that assumes the underlying hazard ratio between treated and
untreated patients is a two-step function with the first constant being 1 and the other constant
being less than 1, reflecting certain treatment benefit. Note that these assumptions are used for
power calculation only. They will not be used for the final data analysis. In fact, the log-rank
test is pre-specified as the primary data analysis method. Therefore, whether or not these
assumptions hold will have no impact on the validity of the final analysis results.

Other than the unavoidable end-of-study censoring, it is almost always the case that patients
in a clinical trial may withdraw from the study and terminate the treatment prematurely. In the
cardiovascular trial described above, patients who discontinue the treatments are planned to
be followed until the end of the study and their event status will be ascertained. It raises a
question on how we can use the information from those patients in data analysis. One strategy
is to treat those patients’ treatment termination times as censoring times in the data analysis if
their treatment termination times are independent of the time-to-event endpoints. An alternative
strategy is to keep all the patients in the original treatment groups as if no patient discontinued
the treatment and use the pre-specified log-rank test to conduct an intent-to-treat (ITT) analysis.
The first non-ITT strategy is valid only under the independence assumption between patients’
treatment termination times and their time-to-event endpoints. A potential drawback associated
with the ITT analysis is that patients who discontinued the treatments may take other available
medication, causing bias in the treatment effect estimate. In the ideal situation where patients
obtain no other treatment once they discontinue the assigned treatment, residual treatment
benefit, if exists, may be diluted. In this case, the power of the ITT analysis using the log-rank
test may compromise if the residual treatment effect is too low.

The analysis of time-to-event data when there is a time lag in the treatment effect has been
studied by many researchers. Zucker and Lakatos [4] proposed a maximum efficiency robust
statistic to test the treatment effect with a time lag. Luo et. al. [5] considered regression analysis
when there is time lag in some covariate effects specified in terms of hazards ratio. In this
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paper, our interest is to address the power and sample size calculation issue when the log-rank
test is pre-specified for the non-ITT and ITT analyses.

Sample size calculation for time-to-event endpoints has been received considerable attention
in statistics. Schoenfeld and Richter [6] developed nomograms to calculate the number of
patients needed for a clinical trial under the exponential distributional assumption for the time-
to-event endpoint. Lachin and Foulkes [7] discussed sample size and power calculation issues
in practical settings with nonuniform patient entry, losses to follow-up, noncompliance, etc.
They assumed the exponential distribution for the time-to-event endpoint and used maximum
likelihood approach. Lakatos [8] derived a formula for calculating the power of the log-rank
test for a general alternative. The formula involves iterative calculation of many quantities and
hence can be computationally intensive. The method has been implemented in a computer
program SIZE [9]. Lakatos and Lan [10] compared several methods for calculating sample size
for the log-rank test.

In this paper, we investigate the asymptotic distribution of the two-sample log-rank test statistic
under the lag-time model described above for the two strategies for handling treatment
termination: non-ITT and ITT strategies. We consider the ideal situation for the ITT strategy
assuming those discontinued patients obtain no other treatment once they terminate the
assigned treatment. We derive formulas necessary to calculate the asymptotic power of the
log-rank test for these two strategies for some commonly used design settings. Simulation
studies are conducted to evaluate the accuracy of the proposed power formulas, and the
cardiovascular clinical trial is used to illustrate its application. This paper is organized as
follows. In Section 2, we review Schoenfeld’s [3] result on the asymptotic distribution of the
two-sample log-rank test statistic, then derive formulas specifically for the lag-time treatment
effect model for the non-ITT and ITT strategies. In Section 3, we illustrate the proposed method
using the cardiovascular clinical trial and present the simulation results based on the example.
We conclude the paper by some discussion in Section 4.

2 Distributions of the log-rank test statistic
Denote by λ1(t) and λ0(t) the underlying true hazard functions for the treatment and control
groups. Suppose there are n patients in the study, each of whom will be assigned to the new
treatment with a constant probability π. At each event time x, denote by n1(x), n0(x) the number
of patients at risk for the treatment and control groups and by d1(x), d0(x) the number of events
from each group. Further denote n(x) = n0(x) + n1(x) and d(x) = d0(x) + d1(x). Then the standard
two-sample log-rank test statistic used to test the null hypothesis H0 : λ1(t) = λ0(t) takes the
following form

(1)

It is well-known that under H0, the test statistic T is asymptotically distributed as N(0, 1).
Therefore, we will reject H0 if |T| ≥ zα/2 when the type I error rate is pre-specified to be α. Here
zα/2 is the standard normal quantile corresponding to the right tail probability α/2.

Let fk(t), Sk(t) be the density and survival functions of the time-to-event endpoint and Hk(t) be
the cumulative distribution function of the censoring time for group k = 0, 1. Schoenfeld [3]
showed that under the alternative Ha : λ1(t) ≠ λ0(t) satisfying log{λ1(t)/λ0(t)} = O(n-1/2), the

log-rank test statistic T defined in (1) has an asymptotic distribution  as n → ∞ with
the following non-centrality mean parameter
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(2)

where V (t) = (1 - π)f0(t){1 - H0(t)} + πf1(t){1 - H1(t)} is the process of observing events and

If we assume the proportional hazards alternative

with γ = O(n-1/2) and equal censoring process in both groups (i.e., H0(t) = H1(t)), then the non-
centrality parameter (2) can be simplified as , where D is the expected total
number of events from the two groups combined. Therefore, for given type I error probability
α and power 1 - β, the required expected total number of events from the two groups combined
is given by

which can be used to design a study.

2.1 Distribution of the log-rank test statistic under a lag-time model for the non-ITT analysis
For the cardiovascular trial described in Section 1, the lag-time treatment effect model can be
expressed as

(3)

where t0 is the time point (in the patient time scale) before which the new treatment has no
effect relative to the control and γ is the full treatment effect we wish to detect.

If we directly apply Schoenfeld’s [3] non-centrality parameter (2), the log-rank test statistic
T under alternative (3) with γ = O(n-1/2) and the equal censoring process assumption will have

an asymptotic normal distribution  with the following new non-centrality mean
parameter

(4)

where  is the expected total number of events after t0 from the two groups combined and D
has the same definition as before.
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The derivation of the non-centrality parameter ϕ in (2) depends on the assumption that γ = O
(n-1/2). Therefore, for the non-centrality parameter ϕ in (4) to be reasonably accurate, the
treatment effect parameter γ in alternative (3) has to be very close to zero. When the treatment
effect γ has a moderate size, the non-centrality parameter ϕ in (4) derived from (2) may not be
accurate enough for practical use.

As shown using the iterative conditional expectation argument in Appendix, we can
approximate the non-centrality mean parameter in the asymptotic normal distribution of the
log-rank test statistic for alternative (3) by the following quantity

(5)

where  and  are the expected total number of events after t0 from the treated and untreated
groups respectively. If one uses the approximation 1 - e-γ ≈ γ and eγ - 1 ≈ γ for γ close to 0, the
non-centrality parameter in (5) reduces to the non-centrality parameter in (4) since

. Alternatively, for the sake of computational convenience,  can be expressed as

, where D0 and D1 are the expected total number of events from the
untreated and treated groups,  and  are the expected total number of events before t0 from
untreated and treated groups. The non-centrality parameter in (5) can be used to calculate the
power of the log-rank test for different clinical design settings.

For a given design with allocation probability π and anticipated treatment effect γ, we only
need to calculate D1, , D0 and  in order to calculate the power of the log-rank test. We
illustrate the calculation of these expected numbers for a situation we will encounter frequently
in practice.

To accommodate the situation where patients may not enter the study in a steady rate, we
assume that patients are enrolled in the accrual period [0, A] with the following piece-wise
constant accrual rate a(x)

(6)

where 0 = x0 < x1 < · · · < xK = A is a partition of [0, A], and a1, a2, · · · , aK are K constants.
Note that here a new variable x is used for the calendar time. Suppose the total study length is
L (> A) with additional follow-up time F = L - A. Then the total number of patients in the study
will be

Denote by Tk the time-to-event random variable for a random patient (in the patient time scale)
in treatment k (k = 0, 1). Further assume that the distribution of T0 for the control group is
exponential with constant hazard λ0. Then according to alternative (3), the hazard rate of the
patients in the treatment group is a two-piece step function

Zhang and Quan Page 5

Stat Med. Author manuscript; available in PMC 2010 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7)

In order to gain information regarding treatment effect γ from those patients entering the study
near the end of [0, A], the follow-up time F had better be chosen to be larger than t0.

Other than the end-of-study censoring, we assume that patients may discontinue the treatments
with a constant hazard rate τ. The treatment termination times will be assumed to be
independent of the primary time-to-event endpoints as well as the treatment groups, and will
be used as censoring times in this section. Denote by Z the time when a random patient
discontinues the treatment. Then the probability that a patient entering at time x ∈ [0, A] will
be observed to have an event in the study before t0 (in the patient time scale or x + t0 in the
calendar time scale) for the control group can be shown to be

(8)

which is also the same for the treatment group.

Since a patient is randomly assigned to treatment with probability π, , the expected number
of events before t0 (in patient time scale) for control group, is equal to

By (8), it is easy to show that when t0 ≤ F,  is equal to

When t0 > F (not a common case in practice), we can artificially insert an xJ in the partition
 such that xJ = L - t0. Then  in this case can be shown to be

Since p*(x) is the same for both the treatment and control groups,  will be the same as 
except that (1 - π) in  is replaced by π.

In order to calculate D0 and D1, we need the probability that a random patient entering at x will
be observed to have an event during the study for both groups. For the control group, this
probability can be shown to be
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Therefore, D0 can be calculated as

For the treatment group, the probability that a random patient entering at x is observed to have
an event during the study can be shown to be

Denote the two functional expressions in p1(x) by p11(x) and p12(x) respectively. Then when

t0 ≤ F,  can be calculated as

When t0 > F, D1 is equal to

where the first integral is equal to

and the second integral is equal to

2.2 Distribution of the log-rank test statistic under a lag-time model for the ITT analysis
When the treatment termination times for those patients who discontinued the treatments are
treated as censoring times as in the previous section, the hazard function of having an event
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after the treatment termination is irrelevant to the calculation of the non-centrality parameter
in (5), although the treatment termination process has to be used in calculating those expected
numbers of events in (5). However, when we conduct an ITT analysis using the log-rank test,
all patients including those early discontinued patients must be followed until study events or
study termination, and all events occurring between treatment termination and study
termination and the corresponding time to event have to be included in the analysis. Therefore,
we need to derive the hazard functions of having study events for the patients in the two
comparison groups during the entire study period. Denote by  and  the hazard
functions for the treated and untreated groups. Then the power of the ITT log-rank test is
calculated under the alternative specified by  and . Clearly, the hazard functions

 and  are not the same as the hazard functions λ1(t) and λ0(t) specified previously,
but will depend on λ1(t), λ0(t), the treatment termination process and the residual treatment
effect.

Lakatos [8] derived an approximation to the non-centrality parameter of the log-rank test
statistic for any alternatives. Suppose the new hazard functions  and  can be
calculated, we can then use Lakatos’ [8] formula to find out the approximate non-centrality
parameter associated with hazard functions  and .

Partition the patient time [0, L) = ∪[ti, ti+1) into many small sub-intervals with equal length
Δ. Lakatos’ [8] formula then leads to the following approximate non-centrality parameter for
the ITT log-rank test statistic

(9)

where  is the estimated expected total number of events in
[ti, ti+1) from the two groups combined,  is the hazard ratio at ti between the
treated and untreated groups, and pi = n1(ti)/n0(ti) is the ratio of number of patients at risk at
ti between the treated and untreated groups. Lakatos [8] calculated n0(ti) and n1(ti) iteratively
assuming a constant accrual rate. For the non-constant accrual rate a(x) given in (6),
Lakatos’ [8] formula can be modified to calculate the number of patients at risk at ti+1 as follows

If we assume the ideal situation where discontinued patients obtain no other medication, it may
be reasonable to assume that the hazard for discontinued patients in the control group will
remain the same after they terminated treatment. Under the assumption given in the previous
section that the patients in the control group has a constant hazard λ0 of having study events,
we have .

In order to derive , we need to specify the hazard of having study events after those patients
discontinue the study treatment in the treated group. Since the new treatment does not have an
effect before t0 relative to the control, it may be reasonable to assume that the hazard of those
patients discontinued before t0 will remain to be λ0, and the hazard of those discontinued after
t0 is a constant given by  (for example,  may take  for some
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w ∈ [0, 1]). Then the conditional survival function for those patients who discontinue at time
Z is

and if Z ≥ t0

The overall survival function  for the patients in the treatment group can then be calculated
as

From this, we can calculate the density function  for the treatment group
and hence the hazard function

and the non-centrality parameter in (9) and hence the power of the ITT log-rank test.

3 An example and simulation studies
We now consider the cardiovascular clinical trial introduced in Section 1. It is expected that
the yearly hazard rate to have a cardiovascular event for the untreated patients under study is
λ0 = 0.03. The new treatment under investigation is not expected to have an effect relative to
the placebo in the first year after patients receive the treatment (so t0 = 1 year), and then is
expected to reduce the hazard rate of cardiovascular risk by 25% so that λ1 = λ0 × 0.75 = 0.0225,
which the investigators would like to detect with 90% power using the standard two-sample
log-rank test at the significance level 0.05. It is anticipated that 12000 patients per year will be
available for this trial (so a(x) = 12000) and the patients will discontinue the treatment at a
yearly constant hazard rate 10% (so τ = 0.1). The investigators plan a 50 month trial (so L =
50/12 = 4.17 years). Assume equal probability (π = 0.5) for treatment assignment. The
investigators want to know for how long they should enroll patients to ensure the desired power
to detect the anticipated treatment effect.

For illustration, we treat treatment termination times as censoring times first. That is, we use
the methodology developed in Section 2.1. For the given design characteristics (except the
specified power), the non-centrality parameter (5) is a function of accrual period A only, so is
the power of the standard two-sample log-rank test. Figure 1 presents the power of the log-
rank test in the range [1,2] of accrual periods using non-centrality parameter (5). In comparison,
the log-rank test power using Schoenfeld’s [3] non-centrality parameter (4) is superimposed
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in Figure 1. To evaluate the accuracy of the log-rank test power using Schoenfeld’s [3] non-
centrality parameter (4) and the proposed non-centrality parameter (5), simulation using the
given design characteristics is used to calculate the empirical powers and 95% confidence
intervals (CI’s) at the following accrual periods A = 1.0, 1.1, 1.2, · · · , 1.9, 2.0, where each
empirical power is obtained using 10,000 simulation runs. It is seen from Figure 1 that 2 out
of 11 powers calculated using Schoenfeld’s [3] non-centrality parameter (4) are outside the
corresponding CI’s, while all the powers calculated using the proposed new non-centrality
parameter (5) are contained in the corresponding CI’s. For further comparison, we calculated
the residual sum-of-squares (RSS) for each setting. The new non-centrality parameter (5)
produced 8 out of 11 smaller RSS’s. It is also noticed from Figure 1 that Schoenfeld’s [3] non-
centrality parameter (4) slightly over-estimates the log-rank power. These results indicate that
the proposed non-centrality parameter (5) produces more accurate power than Schoenfeld’s
[3] formula.

From Figure 1, we can solve for the accrual period A that yields 90% power for Schoenfeld’s
[3] non-centrality parameter (4) and our non-centrality parameter (5). The former gives A1 =
1.313 years and the later gives A2 = 1.385 years. The difference between these two estimates
is not negligible. Of course, using Schoenfeld’s [3] non-centrality parameter (4) leads to a
smaller sample size (1313 vs. 1385), and hence a power lower than the one specified by the
design.

If we decided to fix the accrual period A at some value, then the non-centrality parameters (4)
and (5) are functions of the study length L, so are the log-rank powers. We can then calculate
the powers at different L’s and solve for L that yields the desired power. Figure 2 presents the
powers calculated at A = 1.42 years (17 months) in the range [3.5, 4.5] of L using non-centrality
parameters (4) and (5), as well as the empirical powers and CI’s using 10,000 simulation runs
for 11 settings. Although all powers calculated using both non-centrality parameter formulas
are within the corresponding CI’s, our new non-centrality parameter (5) produced 9 out of 11
smaller RSS’s, again indicating the better accuracy of the newly proposed formula. The study
length L that yields 90% log-rank test power using our new non-centrality parameter is L =
4.13 years.

Similarly, we can use ITT non-centrality parameter (9) to calculate the log-rank test power to
determine the accrual period A if ITT analysis is to be conducted. We assumed the ideal setting
where discontinued patients obtain no other medication. In this case, it is required to have the
knowledge about , the hazard rate of cardiovascular risk after treatment termination for
withdrawn patients. Or equivalently, the weight w has to be specified if  is
used. To illustrate the impact of w, we set A = 1.42 years, L = 4.17 years and calculate the
power using ITT non-centrality parameter (9) as a function of w, which is presented in Figure
3. One thousand sub-intervals per year is used to calculate non-centrality parameter (9). It is
seen from Figure 3 that in order to achieve at least the same power (90.4%) as the non-ITT
analysis treating treatment termination times as censoring times, the weight w has to be greater
than 0.7. This may or may not be reasonable. To evaluate the accuracy of the power calculated
using the non-centrality parameter (9), we superimpose the empirical powers and CI’s obtained
from 10,000 simulation runs for 11 equally spaced weights (w) in [0, 1]. It can be seen that the
calculated powers using non-centrality parameter (9) are all contained in the corresponding
CI’s and agree very well with the empirical powers.

Last, we compare in Figure 4 the powers as functions of accrual period A for non-ITT analysis
using non-centrality parameter (5) and ITT analysis using non-centrality parameter (9) for three
different weights w = 0, 0.5 and w = 1. It is evident from this figure that for the cardiovascular
clinical trial the non-ITT analysis may be more powerful than ITT analysis if the residual
treatment benefit is low. This indicates that if the independence assumption between treatment
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termination times and time-to-event endpoints is reasonable, we may prefer to use the non-ITT
analysis for the actual data analysis. Otherwise, the ITT analysis should be considered. For
example, an HDL increasing drug may at the same time increase blood pressure. Patients
withdrawn from the study due to high blood pressure may have a higher chance to have
cardiovascular events had they be followed until the end of the study. Thus, the non-informative
censoring assumption may not hold for the non-ITT analysis and the ITT analysis may be more
reasonable.

4 Discussion
In this paper, we discussed the asymptotic distribution of the two-sample log-rank test statistics
under a special lag-time model for the treatment effect. We proposed a new approximation to
the non-centrality parameter in this asymptotic normal distribution when patients’ treatment
termination times are independent of time-to-event endpoints of interest and are treated as
censoring times. For given design characteristics such as accrual period, study length and
accrual rate, this non-centrality parameter can be calculated easily. Simulation studies indicate
that the proposed new non-centrality parameter gives more accurate power than Shoenfeld’s
[3] formula, which is commonly used in practice.

We also discussed the calculation of the non-centrality parameter of the log-rank test if ITT
strategy is used for the data analysis. We posed a model for the treatment termination process
so that the distributions of time to event endpoints for each group can be derived. We then
modified Lakatos’ [8] result to accommodate the possible situation where the accrual rate is a
piece-wise step function. Simulation studies indicate that the calculated power is reasonably
accurate if the number of sub-intervals used to calculate the non-centrality parameter is
sufficiently large, although with some computational cost.

We illustrated the proposed power calculation using a cardiovascular risk clinical trial, and
compared the power difference between the non-ITT and ITT strategies. If we can assume that
the treatment termination process is independent of the primary time-to-event endpoint, the
non-ITT strategy is usually more powerful. However, if this independence assumption does
not satisfy, the non-ITT analysis may be invalid and the power is irrelevant. In this case, the
best strategy is to conduct the ITT long-rank test.

The standard log-rank test puts equal weights on all time points. A weighted log-rank test may
be pre-specified as the primary data analysis method. In the case when the patients’ termination
times are independent of the time-to-event endpoints, the maximum efficiency robust test
statistics proposed by Zucker and Lakatos [4] can be used. Their test statistics are robust to the
mis-specification of the lag-time treatment effect model. However, the non-centrality
parameter of their test statistic in general will not have a nice form similar to (5), even under
the alternative (3). In this case, Lakatos’ [8] method as described in Section 2.2 can be used to
calculate the non-centrality parameter and hence the power. In the case when the patients’
termination times are not independent of the time-to-event endpoints so that the ITT strategy
is the only valid analysis, search for an efficient yet robust test statistic similar to Zucker and
Lakatos’ [4] may be difficult, since it depends on the patients’ treatment termination process,
residual treatment effect, etc. More research is needed for this problem.
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Appendix: Derivation of the non-centrality parameter (5)
Denote by S the numerator of the log-rank test statistic T in (1). Consider a fine partition of [0,
∞) = ∪[x, x + Δx) with small and equal length Δx for each interval. Then S can be interpreted
as the sum of

over this partition, where
• d1(x), d0(x) are the total number of events in [x, x + Δx) from the treatment and control

groups respectively;
• n1(x) and n0(x) are the number of patients at risk at x for the treatment and control

groups respectively;
• d(x) = d0(x) + d1(x) is the total number of events in [x, x + Δx) from the two groups

combined;
• n(x) = n0(x) + n1(x) is the total number of patients at risk at x from the two groups

combined.

Re-write S(x) as follows:

Denote by H(x) all the information available up to x. Then under the independence assumption
between patients’ treatment termination time and their time-to-event data, we can show that
d1(x) and d0(x) have the following approximate conditional distributions

Therefore,

By the alternative (3), E[S(x)|H(x)] ≈ 0 if x < t0. When x ≥ t0, λ1(x) = eγ λ0(x) and λ0(x) =
e-γλ1(x). In this case,

If the censoring processes in both groups are the same and the treatment effect is close to zero
(i.e., γ ≈ 0), then
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This leads to

Therefore,

(10)

Now consider the random variable inside the square-root of the denominator of the log-rank
test statistic (1). Since [x, x + Δx) is an interval with small Δx, it is reasonable to assume that
there is at most one event in [x, x + Δx) from the two groups combined. That is, d(x) is either
0 or 1. So

and

(11)

Combining (10) and (11) yields the non-centrality parameter (5).
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