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Cerebellar Neurons Possess a Vesicular Compartment
Structurally and Functionally Similar to Glut4-Storage
Vesicles from Peripheral Insulin-Sensitive Tissues
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The insulin-sensitive isoform of the glucose transporting protein, Glut4, is expressed in fat as well as in skeletal and cardiac muscle and
is responsible for the effect of insulin on blood glucose clearance. Recent studies have revealed that Glut4 is also expressed in the brain,
although the intracellular compartmentalization and regulation of Glut4 in neurons remains unknown. Using sucrose gradient centrif-
ugation, immunoadsorption and immunofluorescence staining, we have shown that Glut4 in the cerebellum is localized in intracellular
vesicles that have the sedimentation coefficient, the buoyant density, and the protein composition similar to the insulin-responsive
Glut4-storage vesicles from fat and skeletal muscle cells. In cultured cerebellar neurons, insulin stimulates glucose uptake and causes
translocation of Glut4 to the cell surface. Using '*FDG (**fluoro-2-deoxyglucose) positron emission tomography, we found that physical
exercise acutely increases glucose uptake in the cerebellum in vivo. Prolonged physical exercise increases expression of the Glut4 protein
in the cerebellum. Our results suggest that neurons have a novel type of translocation-competent vesicular compartment which is
regulated by insulin and physical exercise similar to Glut4-storage vesicles in peripheral insulin target tissues.

Introduction

Glut4 is the insulin-responsive isoform of the glucose transporter
protein which is responsible for postprandial glucose clearance
(Huang and Czech, 2007) and, more generally, for glucose sens-
ing and metabolic homeostasis in the body (Herman and Kahn,
2006). Traditionally, it is believed that Glut4 is expressed only in
skeletal muscle, cardiac muscle and fat, i.e., in tissues that repre-
sent major physiological sinks for circulating glucose. In these
tissues, 50—75% of total Glut4 is localized in specialized traffick-
ing organelles, GSVs (for Glut4-storage vesicles), that deliver
Glut4 to the plasma membrane in response to insulin stimulation
(Huang and Czech, 2007) and, in the case of myocytes, exercise
(Rose and Richter, 2005). In addition to Glut4, the GSVs include
two major cargo proteins, insulin-responsive aminopeptidase, or
IRAP (Kandror et al., 1994; Keller et al., 1995) and a putative
sorting receptor sortilin (Lin et al., 1997; Morris et al., 1998) as
well as the v-SNARE, VAMP2 (Cain et al., 1992), SCAMPs (Lau-
rieetal., 1993; Thoidis etal., 1993) and several recycling receptors
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and other membrane proteins that may or may not represent
essential vesicular components (Larance et al., 2005).

Interestingly, recent studies have demonstrated that all the
known component proteins of the GSVs including IRAP, sortilin
and even Glut4, are expressed in the brain at significant levels
(Rayner et al., 1994; Kobayashi et al., 1996; Leloup et al., 1996;
McCall et al., 1997; El Messari et al., 1998; Mazella et al., 1998;
Vannucci et al., 1998; Apelt et al., 1999; Alquier et al., 2001;
Choeiri et al.,, 2002; Lu et al., 2004; Fernando et al., 2005, 2008;
Komori et al., 2005). Although multiple neurons in forebrain,
cerebral cortex and hippocampus are known to be Glut4-
positive, studies agree that areas involved in the regulation of
metabolism (hypothalamic nuclei) and motor activity (sensori-
motor cortex, motor nuclei of cranial nerves, motor neurons of
the ventral horn of the spinal cord and, specially, cerebellum) are
the regions with the highest Glut4 content (for review, see Routh,
2002; McEwen and Reagan, 2004).

Vast majority of the published studies address only the total
expression levels of Glut4 and/or cognate mRNA in various brain
regions, so that the intracellular localization of Glut4 in neurons
remains largely unknown. To the best of our knowledge, only one
group has described the subcellular localization of Glut4 in neu-
ronal cells (El Messari et al., 1998), and another group has studied
IRAP (Fernando et al., 2005, 2007, 2008). Using light and elec-
tron microscopy, these authors found that, under basal condi-
tions, both proteins are localized not in the plasma membrane
but inside the cell with a significant fraction of the total neuronal
Glut4 and IRAP pools being present in small clear vesicles remi-
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niscent of those present in basal adipocytes and myocytes (Smith
et al., 1991; Ploug et al., 1998). However, it is still not known
whether neuronal Glut4 and IRAP are localized in the same or in
different vesicles and whether or not these vesicles translocate
to the cell surface. Thus, the protein composition and func-
tions of neuronal Glut4-vesicles remain unknown and it is not
yet clear whether or not Glut4 actually participates in glucose
uptake in neurons.

Here, we confirm that certain brain areas, such as the cerebel-
lum, endogenously express high levels of Glut4, and that Glut4 in
the cerebellar neurons is localized in intracellular vesicles that are
different from small synaptic vesicles (SSVs) but have the sed-
imentation coefficient, the buoyant density and the protein
composition similar to the GSVs from fat and skeletal muscle
cells. We also show that neuronal Glut4-vesicles are translo-
cated to the plasma membrane in response to insulin stimula-
tion and exercise.

Materials and Methods

Antibodies. Monoclonal antibody against Glut4 (1F8) and a polyclonal
antibody against IRAP were a kind gift from Dr. Paul Pilch (Boston
University School of Medicine, Boston, MA). Polyclonal antibody
against Glut4 MC2A was a kind gift from Dr. Giulia Baldini (University
of Arkansas, Pine Bluff, AR) and polyclonal antibody against Glut4 aG4
was a kind gift from Dr. Samuel Cushman (National Institute of Diabetes
and Digestive and Kidney Diseases, Bethesda, MD). Another polyclonal
antibody against Glut4, C-20, was purchased from Santa Cruz (Santa
Cruz, CA). Monoclonal antibodies against synaptophysin was from Mil-
lipore Bioscience Research Reagents, against VAMP2, from Synaptic Sys-
tems, and against sortilin, from BD Biosciences PharMingen.

Mouse tissue homogenization and fractionation. CD-1 mice and
Sprague Dawley rats were killed by CO, inhalation followed by cervical
dislocation under an approved IACUC protocol. Gastrocnemius muscle
and cerebellum were isolated and homogenized in Buffer A (150 mm
NaCl, 10 mm HEPES, pH7.4, 1 mm EGTA, 0.1 mm MgCl,) with protease
inhibitors (1 wMm aprotinin, 5 mm benzamidine, 2 um leupeptin, 1 um
pepstatin, 1 mM phenylmethylsulfonyl fluoride) using a ball bearing cell
cracker (European Molecular Biology Laboratory, Heidelberg, Ger-
many). Homogenates were centrifuged at 1000 X g for 5 min to generate
a postnuclear supernatant (PNS) that was further centrifuged at
27,000 X g for 35 min in a Ti42.2 rotor (Beckman Coulter) to produce
high-speed supernatant (S2) and the heavy membrane pellet P1. For
velocity gradient centrifugation, 1 mg of S2, adjusted to the volume of
300 ul, was layered on a 4.6 ml linear 10-30% (w/v) sucrose gradient in
Buffer A. Gradients were centrifuged at 280,000 X g for 1 h in a SW55
rotor (Beckman Coulter). For the equilibrium density gradient centrifu-
gation, 1 mg of S2, adjusted to the volume of 300 ul, was layered onto a
4.6 ml 10-50% (w/v) continuous sucrose gradient in Buffer A. Centrif-
ugation was performed at 280,000 X gfor 16 h ina SW55 rotor (Beckman
Coulter). Fractions were collected from the bottom of the tube using a
peristaltic pump.

For the isolation of the plasma membrane fraction, P1 was resus-
pended in 2 ml of Buffer A, layered on top of 3 ml of 1.12 M sucrose
solution in Buffer A, and centrifuged at 116,000 X g (31,000 rpm) for 1 h
in a SW55 rotor (Beckman Coulter). Material at the interface was col-
lected, brought up to 4 ml with Buffer A and pelleted by centrifugation at
42,000 X g (22,000 rpm) for 20 min in a Ti70 rotor (Beckman Coulter).
The plasma membrane pellet was resuspended in 250500 wl of Buffer A.

Immunoprecipitation. Affinity purified 1F8 antibody and control
mouse IgG (Sigma) were each coupled to Dynal magnetic beads at a
concentration of 2 ug of antibody per 30 ul of beads according to man-
ufacturer’s instructions. Before use, the antibody-coupled beads were
blocked with 1% BSA in PBS for 30 min at 4°C, followed by wash with
PBS. Triton X-100 and NaCl were added to S2 obtained from adult CD-1
mouse cerebellum to final concentrations 1% and 0.5 M respectively, and
this material (typically, 1 mg) was incubated with 30 ul of 1F8- and
nonspecific IgG-coated beads overnight at 4°C. Beads were then washed
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with 1% Triton X-100 in PBS and eluted with Laemmli sample bufter for
1 h at room temperature. Eluates were subjected to SDS-PAGE.

Immunoadsorption. 1F8 and IgG were coupled to Dynal magnetic
beads as described in the previous section. S2 obtained from adult CD-1
mouse cerebellum (typically, 1 mg) containing 0.5 M NaCl, was incu-
bated with 30 ul of 1F8- and nonspecific IgG-coated beads overnight at
4°C. Beads were then washed with PBS and eluted with 1% Triton X-100
in PBS for 1 h at 4°C. After Triton elution, beads were eluted with Lae-
mmli sample buffer for 1 h at room temperature. Eluates were subjected
to SDS-PAGE.

Primary cell culture. Seven-day-old CD-1 mice were killed by decapi-
tation and brains were isolated in ice-cold Hibernate-A medium (Brain-
Bits). Cerebellums were gently removed, cut into small pieces and di-
gested in Hibernate-A medium containing 20U/ml papain and 250U/ml
DNase (Worthington Biochemical). Digestion was stopped by washing
the tissues with the solution consisting of Hibernate-A media, 1 mg/ml
ovomucoid albumin inhibitor and 125U/ml DNase. Cerebellar cells were
gently dissociated using borosilicate fire-polished siliconized glass pi-
pettes. The cell suspension was layered on top of 4% BSA Hibernate-A
and centrifuged at 2000 X g for 4 min after which the centrifugal force
was decreased to 1000 X g and centrifugation continued in the same
tubes for another 4 min. A loose pellet of isolated cells was resuspended in
the Basal Eagle Medium (Sigma-Aldrich) containing 10% horse serum
and 1% penicillin/streptomycin, and plated on poly-p-lysine-coated cul-
ture dishes or coverslips. After 24 h, the medium was replaced with the
Neurobasal/B27, 1% penicillin/streptomycin, 2 mm L-Glutamine and 0.5
mM GlutaMAX (all from Invitrogen). Cells were cultured for 7 d at 37°C,
5% CO,.

RT-PCR. Total RNA (3—4 pg) was isolated from mouse cerebella or
from primary cerebellar neurons using the TRIzol reagent (Invitrogen).
Total RNA was reverse transcribed into cDNA with the help of M-MLV
reverse transcriptase (Invitrogen). cDNA was amplified by PCR using the
sense primer CCCTGTTACCTCCAGGTTGA and the antisense primer
AGAGCCTGTGTGGCAAGAGT, and the PCR product was subjected to
the agarose gel electrophoresis.

’H-2-Deoxy-p-glucose uptake. Primary neurons were plated on 60 mm
culture dishes and transferred to serum-free DMEM for 4 h before each
experiment. Indinavir (100 nm, Merck), wortmannin (100 nm) and cy-
tochalasin B (5 mm) (both from Sigma) were added 30 min before the
experiments. Plates were washed with glucose-free KRH medium (121
muM NaCl, 4.9 mm KCl, 1.2 mm MgSO,, 0.33 mm CaCl,, 12 mm HEPES
acid, pH 7.4) and treated with 100 nwm insulin (Sigma) or carrier for 15
min. *H-2-Deoxy-p-glucose/2-deoxy-p-glucose mixture (specific activ-
ity: 6.25mCi/mmol) was added for 3.5 min at 37°C. Glucose uptake was
stopped by washing plates with ice-cold KRH with 25 mm glucose and 10
M cytochalasin B for 3 times. Cells were then collected in glucose-free
KRH with 0.1% SDS, and radioactivity was counted by liquid scintillog-
raphy in EcoLume (ICN Biomedicals).

Immunohistochemistry. Mouse brains were isolated and fixed for 30
min in 4% paraformaldehyde. Fixed tissue was dehydrated and embed-
ded in Paraplast (Oxford Labware). Sections (4-5 wm) were obtained
with the help of a Microtome No820 (American Optical) and mounted
on Superfrost/Plus microscope slides (Fisher Scientific). Sections were
deparaffinized, rehydrated and treated with antigen unmasking solution
according to manufacturer’s instructions (Vector Laboratories) and per-
meabilized with 0.2% Triton X100 in PBS. Sections were blocked with
MOM mouse IgG blocking reagent (Vector Laboratories), washed with
Gadenza buffer (Vector Laboratories) and stained with polyclonal anti-
Glut4 antibody MC2A followed by Cy3-conjugated goat anti-rabbit IgG
(Jackson ImmunoResearch Laboratories). Coverslips were mounted on
sections using the Slow Fade-Light Antifade kit (Invitrogen) and immu-
nofluorescence was examined by fluorescence microscopy (Axiovert
200M; Carl Zeiss).

Immunofluorescence staining. Primary neurons grown on poly-D-
lysine-coated coverslips were fixed with 4% paraformaldehyde, perme-
abilized with 0.2% Triton X-100, blocked with 4% donkey serum and
probed with primary antibodies followed by Cy3-conjugated rabbit anti-
mouse IgG (Jackson ImmunoResearch), Alexa 488-conjugated donkey
anti-rabbit IgG, Cy3-conjugated donkey anti-mouse IgG (Invitrogen) or
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tained. Animals were then injected with 200
wCi of '®fluoro-2-deoxyglucose ('*FDG)
through the tail vein and scanned for 60 min.
Mean '®FDG accumulation was calculated for
cerebellum and striatum from the last 40 min of

g
\\)& @ the experiment when '®FDG accumulation
Qg c,’@ reach the plateau. Difference in 'FDG accu-
mulation between cerebellum and striatum

(left and right) was calculated for individual an-
imals using a Student’s ¢ test.

Long-term exercise. CD-1 mice (25 d old)
(Charles River Laboratories) were housed un-
der standard lighting (12 h light, 12 h dark cy-
cle), temperature (22-23°C), and humidity
(50—60%) conditions. Food and water were
available ad libitum. All mice were acclimated to
treadmill running by three 15 min sessions per
day for 2 d. During experimental sessions, a
group of 5 mice was confined in treadmills for
2 h per day for five consecutive days and a con-
trol group was left to rest. Immediately after the
last session, all mice were killed by CO, inhala-
tion followed by cervical dislocation. Gastroc-
nemius muscle and cerebellum were isolated
and subjected to biochemical analysis.

Results

Glut4 is expressed in the granular layer

0 3 6 9 12 15 18
Glut4 ===

Post-Natal Day

Figure 1.

Cy2-conjugated donkey anti-goat IgG (Jackson ImmunoResearch) at
1:250 dilution. Coverslips were mounted on slides using the SlowFade-
Light Antifade kit (Invitrogen). Staining was examined by fluorescence
microscopy (Axiovert 200M; Zeiss) or laser scanning fluorescence con-
focal microscopy (LSM 510 Axiovert 100M; Zeiss).

Gel electrophoresis and immunoblotting. Protein samples were sub-
jected to SDS-PAGE according to Laemmli (1970) and transferred to
polyvinylidene difluoride membranes in 25 mwm Tris, 192 mm glycine.
Membranes were blocked with 10% nonfat dry milk in PBS, 0.05%
Tween 20 and probed with antibodies (1:1000) followed by correspond-
ing horseradish peroxidase-labeled secondary antibodies (1:1000). Blots
were developed with ECL reagent (PerkinElmer Life Sciences) and ex-
posed in Eastman Kodak Co. 440 Image Station. Data analysis was per-
formed with Kodak 1D image analysis software.

Acute exercise and positron emission tomography. A small animal
positron emission tomography (PET) scanner with a full-width at half-
maximum resolution of 1.8 mm was used. Individual mice were exer-
cised by running in a treadmill for 2 h or left to rest without food for 2 h
and anesthetized immediately after each session with continuous 2%
Isoflurene inhalation. All animal protocols were approved by the Insti-
tutional Animal Care and Usage Committee. Tail veins were catheterized
and blood glucose was measured as control for CSF endogenous glucose
levels. After positioning in the scanner, an attenuation data set was ob-
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Expression of Glut4 in the mouse cerebellum. 4, Dissected brain regions were homogenized in a ball-bearing
homogenizer and centrifuged at 1000 X g for 5 min to obtain postnuclear supernatant, which was then analyzed by Western
blotting with three different antibodies against Glut4 (40 w.q per lane). B, Triton X-100 and NaCl were added to 52 obtained from
adult mouse cerebellum to final concentrations of 1% and 0.5 m, respectively, and immunoprecipitation was performed with
either TF8-coupled or lgG-coupled beads as described in Materials and Methods. The beads were washed and eluted with
SDS-containing Laemmli sample buffer. The panel shows Western blot of the starting material (S2, 30 g), postadsorptive
supernatant (PAS) (30 r.g), and eluate stained with the polyclonal antibody MC2A against Glut4. , Cerebella were dissected on the 14)
indicated days and total homogenates were analyzed by Western blotting. Glut4 and actin signals were quantified using the KODAK 1D
Image Analysis Software (Eastman Kodak), and normalized data were analyzed using Student’s t test. The graph shows mean values == SD
of three independent experiments. The panels below show the result of a representative experiment.

of the mouse cerebellum at a high level
To identify brain regions with the highest
content of Glut4, we dissected cortex, hy-
pothalami and cerebella from adult mice,
and analyzed Glut4 expression in post-
nuclear supernatants prepared from these
tissues by Western blotting using three dif-
ferent antibodies against Glut4 (Fig. 1 A).
We found that Glut4 was predominantly
expressed in the adult cerebellum (see also
(Vannucci et al,, 2000), and, to a slightly
lesser extent, in the hypothalamus (Fig.
. Based on these results, we chose
cerebella for the isolation and character-
ization of the Glut4-containing compart-
ment(s) in neurons. Although immuno-
histochemical staining revealed the
presence of Glut4-positive neurons and nuclei in other brain areas
as well (El Messari et al., 1998), the overall levels of Glut4 expression
there may or may not be sufficient for the biochemical analysis;
therefore, for all following experiments we used cerebella from adult
rodents.

Specificity of Glut4 detection in the samples was confirmed
with the help of the commercially available antibody C-20 (Santa
Cruz, CA) and two other anti-Glut4 polyclonal antibodies raised
in sheep and goat (kind gift from Dr. Birnbaum) (data not
shown). Additional control experiments showed that the pre-
dominant brain glucose transporter Glut3 did not interfere with
the detection of Glut4 (data not shown). Furthermore, the ~48
kDa protein immunoprecipitated from the cerebellar extract
with the help of the monoclonal 1F8 antibody was specifically
recognized by the polyclonal anti-Glut4 antibody aG4 (Fig. 1 B)
which strongly suggests that this protein is indeed Glut4. The
developmental pattern of Glut4 expression in the cerebellum
(Fig. 1C) is reminiscent of its expression in skeletal muscle where
Glut4 levels reach the maximum on day 20 (Santalucia et al.,
1992). Interestingly, the transcription factor MEF-2 that is re-

21 30
L d
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sponsible for Glut4 expression in skeletal
muscle (Olson and Knight, 2003) is essen-
tial for the survival of Glut4-expressing
granule neurons of the cerebellum (Gaud-
illiere et al., 2002).

In agreement with several previous
studies (El Messari et al., 1998; Vannucci et
al., 1998; Choeiri et al., 2002), immunohis-
tochemical staining of cerebellar sections
showed that Glut4 was localized primarily
in the granular layer of the cerebellum and
was virtually absent from the molecular
layer (Fig. 2A). In subsequent experi-
ments, we isolated cerebellar neurons
from P7 mice and cultured them for 7 d in
vitro. The PCR analysis confirmed the
presence of Glut4 mRNA in cultured neu-
rons (supplemental Figs. S1 and S2, avail-
able at www.jneurosci.org as supplemental
material). Using confocal immunofluo-
rescence microscopy, we found that Glut4
was expressed in the same cells as the neu-
ronal marker protein synaptophysin (Fig.
3A,B; supplemental Fig. S3, available at
www.jneurosci.org as supplemental mate-
rial). At the same time, the intracellular
localization of Glut4 and synaptophysin in
neurons is apparently different with Glut4
being localized primarily in the cell body
(Fig. 3B).

Biochemical characterization of the
Glut4-containing compartment

in neurons

To assess the subcellular compartmental-
ization of Glut4 in the cerebellar neurons,
we applied the fractionation protocol pre-
viously used for adipocytes (Kupriyanova
et al., 2002) to mouse cerebellum samples
and found that a significant fraction of
Glut4 resided in the 27,000 X g superna-
tant, i.e., in the vesicular fraction that con-
tains small synaptic vesicles, or SSVs. We
then separated this fraction in the linear
sucrose velocity gradient and found that
Glut4 did not reside in SSVs marked by the
presence of synaptophysin but, rather, in a
different and a heavier vesicular popula-
tion (Fig. 4A) with the sedimentation co-
efficient identical to “classical” GSVs
(Kandror et al., 1995). IRAP and sortilin,
the two major protein components of the
GSVs from fat and muscle, cosedimented
with Glut4 (Fig. 4A) suggesting that these
three proteins colocalize in the same vesic-
ular compartment. Equilibrium density
centrifugation of cerebellar extracts sup-
ports this notion and further shows that, in
cerebellar neurons, Glut4-vesicles repre-
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Figure 2.  Immunohistochemical staining of the thin sections of mouse cerebellum. 4, Bright field. The red quadrangle indi-
cates the area shown in B and C under higher magnification. B, Staining with MC2A antibody (Glut4). C, Control staining with
rabbit 1gG (IgGr).

Mergg

synaptophysin

100um

Glutd

10um

synaptophysin

Figure 3.  Localization of Glut4 and synaptophysin in cerebellar neurons. Primary cultures of cerebellar neurons were serum
starved for 2 h. Cells were stained with the polyclonal antibody MC2A against Glut4 and a monoclonal antibody against synapto-
physin followed by Alexa488-conjugated donkey anti-rabbit and Cy3-conjugated donkey anti-mouse antibodies. The figure
demonstrates two different panels at 40X (4) and 63 X (B) magpnification. A low magpnification field and nonspecific controls are
shown in supplemental Fig. S3 (available at www.jneurosci.org as supplemental material).

sent a distinct compartment separate from SSVs (Fig. 4 B). Note,  al., 2002; Carvalho et al., 2004; Takamori et al., 2006). Finally,
that the buoyant density of the GSVs is lower than that of SSVs ~ immunoadsorption of vesicles from cerebellar extracts with the
which is consistent with the observation that the latter have much ~ anti-Glut4 monoclonal antibody 1F8 demonstrated that at least
higher protein to lipid ratio (Sleeman et al., 1998; Kupriyanovaet =~ 50% of total IRAP and sortilin present in the vesicular fraction S2
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Figure4. Glut4 in the cerebellum is localized in the GSV-like vesicles. A, High speed super-

natant from mouse cerebellum was centrifuged in a linear 10 —30% sucrose gradient for 1h at
48,0000 rpm in a Beckman Coulter SW55 rotor. The pellet of this centrifugation (P) was analyzed
along with gradient fractions by Western blotting. The arrow indicates the direction of sedi-
mentation. B, High speed supernatant from mouse cerebellum was centrifuged in an equilib-
rium density 10 -50% sucrose gradient for 16 h at 48,0000 rpm in a Beckman Coulter SW50.1
rotor. €, Glut4-containing vesicles were immunoadsorbed from S2 prepared from mouse cere-
bellum in the presence of 0.5 m NaCl with 1F8- and nonspecific IgG-coupled beads. Bound
material was subsequently eluted with 1% Triton and Laemmli sample buffer (SDS), and ana-
lyzed by Western blotting along with the starting material (S2, 30 r.g) and postadsorptive
supernatant (PAS) (30 ). Dotted lines indicate that intervening lanes have been spliced out.

colocalized with Glut4 in the same vesicular population (Fig. 4C).
Note, that we eluted immunoadsorbed material in two steps, first
with 1% Triton X-100 and then with SDS-containing Laemmli
sample buffer. Triton elutes IRAP, sortilin, and a fraction of
Glut4, i.e., vesicular proteins that do not bind to the antibody
directly. SDS elutes those Glut4 molecules that directly interact
with 1F8 antibody. Thus, results of the biochemical fractionation
and immunoadsorption collectively suggest that cerebellar neu-
rons have a vesicular compartment analogous to the GSVs.

In cerebellar neurons, Glut4 is translocated to the plasma
membrane in response to insulin stimulation

To address the question of whether neuronal Glut4 can be trans-
located to the plasma membrane, we used the primary culture of
cerebellar neurons and found that endogenous Glut4 was redis-
tributed from the perinuclear region to the plasma membrane in
response to insulin stimulation (Fig. 5A). Measurements of *H-
2-deoxy-D-glucose uptake showed that translocation of Glut4
was accompanied by an increase in glucose transport which took
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place in a wortmannin- and indinavir-sensitive manner (Fig. 5B).
Because indinavir is a specific inhibitor of Glut4 (Murata et al.,
2002), this result, together with the immunofluorescence staining
data, strongly suggests that the increase in insulin-stimulated glu-
cose uptake in cultured neurons is mediated by Glut4. In agree-
ment with our results, it was recently shown that insulin may
induce plasma membrane translocation of Glut4 in the SH-SY5Y
neuroblastoma cell line (Benomar et al., 2006) and in rat hip-
pocampus (Piroli et al., 2007).

In the cerebellum, Glut4-vesicles translocate to the plasma
membrane in response to physical exercise

In skeletal muscle, GSVs are translocated to the plasma mem-
brane in response to exercise, although the signaling mecha-
nism(s) involved in this process still remain controversial (Rose
and Richter, 2005). Given that cerebellum plays a major role in
the coordination of motor activity of skeletal muscle, we decided
to test whether physical exercise causes translocation of Glut4 in
the cerebellum. Mice were exercised by running in a treadmill for
2 h, and glucose uptake in the cerebellum of exercised and non-
exercised mice was measured by '*fluoro-2-deoxyglucose
positron emission tomography. As is shown in Figure 6 A, acute
exercise increases accumulation of '*FDG in the cerebellum by
20-25% ( p = 0.008, n = 4 per group) in comparison to striatum,
a brain area in which expression of Glut4 is virtually undetectable
by Western analysis (supplemental Fig. S4, available at www.
jneurosci.org as supplemental material). This observation is con-
sistent with earlier results of Vissing et al. who demonstrated that
exercise stimulated total cerebrum glucose utilization in rats
(Vissing et al., 1996). Another report, however, showed decreased
cerebellum glucose uptake during high-intensity exercise associ-
ated with massive lactate production in humans (Kemppainen et
al., 2005). Because lactate can also be used by the brain to com-
pensate for energy expenditures during high-intensity exercise, it
is not surprising that lactate partially reduces glucose consump-
tion and uptake. At the same time, low-intensity exercise may
have a stimulatory effect on glucose uptake in the cerebellum
(Kemppainen et al., 2005).

To determine whether physical exercise causes translocation
of Glut4-vesicles in the cerebellum, we obtained cerebellar ex-
tracts from exercised and nonexercised animals and fractionated
them in sucrose gradients. Sedimentational analysis (Fig. 6 B)
showed that exercise significantly decreased the amount of intra-
cellular Glut4-vesicles but has no visible effect on small synaptic
vesicles (Fig. 6 B, note no change in the synaptophysin signal). At
the same time, exercise increases the amount of Glut4 by twofold
(p < 0.001, n = 5 per group) in the plasma membrane fraction
isolated from cerebellar neurons (Fig. 6C; supplemental Fig. S5,
available at www.jneurosci.org as supplemental material).
These results collectively suggest that acute physical exercise
may induce translocation of Glut4-vesicles to the plasma
membrane and increase glucose uptake in the mouse
cerebellum.

As activation of AMPK may play an important role in
contraction-stimulated translocation of Glut4-vesicles in skeletal
muscle (Fujii et al., 2006), we decided to determine whether phys-
ical exercise causes activation of AMPK in the cerebellum as well.
Indeed, we found that exercise increases phosphorylation of
AMPK by twofold (p = 0.03, n = 5 per group) and that of its
substrate, acetyl CoA carboxylase, by twofold (p = 0.016,n = 5
per group) in the cerebellum (Fig. 6 D).
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of Glut4 in mouse cerebellum

It was shown previously that physical ex-
ercise increased Glut4 levels in skeletal
muscle (for review, see Dohm, 2002; Hol-
loszy, 2005). We confirmed these reports
by showing that running in a treadmill for
2 h per day for 5 consecutive days in-
creased Glut4 content in the mouse gas-
trocnemius muscle ~2-fold (p = 0.01)
(Fig. 7). Interestingly, Glut4 levels in the
cerebellum of exercised mice were also sig-
nificantly increased (~2.5-fold, p =
0.003). This observation is not necessarily
consistent with the earlier report by Van- B
nucci et al. who have found that physical

exercise may actually decrease Glut4 levels

in rat cerebellum (Vannucdi et al., 1998).

This inconsistency may be explained by in-

terspecies differences as well as by techni-

cal variations in the preparations of sam-

ples. In particular, Vannucci et al. analyzed

the membrane fraction obtained by cen-

trifugation at 150,000 X g for 20 min

(Vannucci et al., 1998) which may not be

sufficient to pellet small Glut4-vesicles. In

our study, we used total homogenates of

the cerebellum (Fig. 7). In any case, our

results are consistent with the idea that

Glut4 in cerebellar neurons and in skeletal

muscle is regulated in a similar manner.

This may allow for a better coordination of

glucose uptake between these tissues.

Discussion
The GSVs along with SSVs represent well
characterized types of intracellular trans-
port vesicles. However, an unresolved
problem that has been attracting attention
of many researchers for >10 years remains
whether or not the GSVs and SSVs repre-
sent conceptually similar vesicular com-
partments. The fact that the GSVs and
SSVs share several common proteins, such
as VAMP2 and SCAMPs, seems to support the idea that these
vesicles may represent similar types of compartments formed in
different specialized cells. Several research groups (Hudson et al.,
1993; Herman et al., 1994; Thorens and Roth, 1996) including
ours (Thoidis and Kandror, 2001) attempted to address this
question by force-expressing Glut4 in neuronal cell lines. Others
tried to express synaptic proteins in different non-neuronal cells
(Johnston et al., 1989; Cameron et al., 1991; Linstedt and Kelly,
1991; Feany et al., 1993; Leube et al., 1994; Belfort et al., 2005).
Results of these studies have been somewhat controversial, al-
though several reports do point out to the existence of a distinct
type of the GSV-like vesicles in neuronal cells (Herman et al.,
1994; Thorens and Roth, 1996; Thoidis and Kandror, 2001).
However, the best way to answer this question is to explore the
intracellular compartmentalization of Glut4 and/or other GSV
proteins endogenously expressed in neurons.

It has been known for >10 years that some neurons in the
CNS express Glut4, although it has not been clear whether or not
Glut4 in the brain is sufficiently abundant for biochemical anal-

Figure5.
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Glut4is translocated to the cell surface of cerebellar neurons in response to insulin stimulation. A, Primary cultures of
cerebellar neurons were serum-starved for 2 h and treated or not treated with 100 nm insulin for 15 min. Top, Cells were stained
with the polyclonal antibody MC2A against Glut4 followed by Cy3-conjugated donkey anti-rabbit IgG. Bottom, Phase-contrast
images. B, Primary cultures of cerebellar neurons were serum starved for 2 h and treated as indicated with indinavir (100 nm) for
4h, wortmannin (100 nm) and cytochalasin B (5 ) for 30 min, and insulin (100 nw) for 15 min. Glucose uptake was measured in
cultured cells in triplicate. A representative result of three independent experiments is shown.

ysis. We have identified cerebellum as the brain region with high
Glut4 content (Fig. 1 A; supplemental Fig. S1, available at www.
jneurosci.org as supplemental material) and could, therefore,
take advantage of the well established methods of the biochemical
fractionation used previously for the isolation and characteriza-
tion of SSVs and GSVs. Our results show that, in cerebellum
neurons, Glut4 is not localized in SSVs but rather is present in a
different vesicular population that coexists with SSVs in the same
cells. Interestingly, neuronal Glut4-containing vesicles have the
sedimentation coefficient and buoyant density similar to the
GSVs from fat and skeletal muscle. In addition, the two proteins
colocalized with Glut4 in the GSVs of peripheral insulin-sensitive
tissues, IRAP and sortilin, are present in neuronal Glut4-
containing vesicles as well, suggesting that the mechanism of GSV
biogenesis is not tissue-specific. Note, however, that the overall
distribution of IRAP and sortilin in different mammalian tissues
(Keller et al., 1995; Petersen et al., 1997) as well as brain regions
(El Messari et al., 1998; Fernando et al., 2005, 2008) does not
necessarily mimic that of Glut4 suggesting that these proteins
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may have other biological functions not related to regulated glu-
cose uptake. In particular, in the cerebellum, IRAP is highly ex-
pressed in Purkinje cells (Fernando et al., 2008) that have unde-
tectable to low levels of Glut4 (Fig. 2) (El Messari et al., 1998;
Vannucci et al., 1998). Nonetheless, if IRAP and Glut4 are coex-
pressed in the same cell (either neuronal or non-neuronal) both
proteins demonstrate a high level of colocalization in small vesi-

the cerebellum neurons are translocated to
the plasma membrane in response to insu-
lin stimulation and exercise (Figs. 5, 6)
suggesting that neurons possess a novel
type of a translocation-competent vesicu-
lar compartment.

What could be the biological functions
of such a compartment in neurons? We
suggest that Glut4-mediated glucose up-
take in the brain may provide metabolic
fuel for energy-consuming synaptic activ-
ity. Indeed, physical exercise is accompa-
nied by elevated synaptic activity of cere-
bellar neurons that control locomotor
muscles; therefore, glucose transport into
these neurons needs to be acutely in-
creased to compensate for excess energy
demands. In thelong run, physical exercise is
known to improve cognition and to have a
neuroprotective role (Hillman et al., 2008). These long-term effects
of exercise may at least in part be explained, by the increase of Glut4
protein expression in neurons (Fig. 7). This increase should lead to
better nutrient supply and have a positive effect on the survival and
functioning of neurons.

It is also possible that insulin-regulated glucose uptake in the

Glut4
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brain plays an important role in the control of whole body energy
homeostasis and glucose metabolism (Schulingkamp et al., 2000;
Schwartz and Porte, 2005; Biddinger and Kahn, 2006; Herman
and Kahn, 2006; Myers, 2006). It has been suggested that im-
paired energy and glucose homeostasis in obesity and diabetes is
caused, at least to some degree, by malfunctioning of glucose-
sensing neurons in the brain (Levin et al., 2002, 2004; Routh,
2002; McEwen and Reagan, 2004; Herman and Kahn, 2006; Par-
tonetal., 2007). Although these neurons are located mainly in the
hypothalamus that has not been analyzed in this study, hypothal-
amus (and, in particular, the arcuate nucleus) has high Glut4
content (Fig. 1A) (Choeiri et al., 2002; Komori et al., 2005). It is
feasible, therefore, that Glut4 in the hypothalamus is also com-
partmentalized in the vesicles similar to those present in the cer-
ebellum, and that Glut4-mediated glucose uptake in the hypo-
thalamus may represent an essential part of glucose sensing and
integration of metabolic and hormone signals. Future studies
should determine the role of neuronal Glut4 in regulation of
metabolism.
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