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Abstract
Theorists have long speculated on the mechanisms driving directed and spontaneous cell polarization.
Recently, experimentalists have uncovered many of the mechanisms underlying polarization,
enabling these models to be directly tested. In the process, they have demonstrated the explanatory
and predictive value of these models and, at the same time, uncovered additional complexities not
currently explained by them. In this review, we discuss some of main theories regarding cell
polarization and highlight how the intersection of mathematical and experimental biology has yielded
new insights into these mechanisms in the case of budding yeast and eukaryotic chemotaxis.

Introduction
Cells are not static entities but rather dynamically reorganize in response to internal and external
cues. The ability to spontaneously form specialized domains of regulatory and structural
elements is critical to the function of many cellular processes including differentiation,
communication, and directed migration [1]. While cell polarization has been well documented,
the driving mechanism has proved challenging to understand. Namely, how does a cell
transition from homogeneous state to a heterogeneous, asymmetric one? And, as one author
elegantly put it “how are heads made different from tails and everything in between?” [2].
Theorists have long puzzled over this question and proposed a number of potential models to
address it. In the past decade, substantial progress has been made towards understanding the
mechanisms involved in different polarization processes. These results have enabled various
mathematical models to be tested and also uncovered new phenomena lacking in them. The
aim of this review is to briefly highlight some of these theories and illustrate how the
intersection between mathematical modeling and experimentation has led to new insights into
the mechanisms behind cell polarization.

Theoretical Foundations
Theorists employ at least two approaches when constructing models of biological processes.
In the bottom-up approach, modeling has been used to test whether a proposed set of
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biochemical reactions is capable of generating a specific response, such as polarization; if not,
then this approach can be used to explore what reactions are possibly missing. Alternatively,
in a top-down approach, a general mechanism is proposed and then various molecules and
reactions are assigned roles within this mechanistic framework. In the past, this top-down
approach was the one modelers most often employed, as little was known about the underlying
biology. The resulting top-down models made specific predictions about the mechanisms
generating these responses; specific in the sense that fundamental feature of the reaction
networks were identified, such as positive/negative feedback and mutual inhibition, but not so
specific as to establish which proteins were involved. As more has became known about the
underlying biology, modelers have increasingly employed a bottom-up approach. Both
approaches are not mutually exclusive and many models employ a combination of the two. In
addition, both provide a common framework for integrating experimental data and generating
testable hypotheses.

We begin by briefly discussing some common models used to explain how polarization is
generated, many of which were developed before the underlying biology was known (and thus
are examples of a top-down approach). Nearly all of these models treat polarization as an
induced transition from a homogeneous state to an inhomogeneous one (Figure 1). Two
additional assumptions are typically employed in developing this framework. The first is that
the homogenous state is stable to uniform perturbations by not to some spatially non-
homogeneous ones. In other words, a cell is happy to remain in an unpolarized state until it is
coaxed into transitioning to polarized one, where the coaxing arises typically from exogenous
factors such as chemical gradients or, alternatively, from intrinsic random fluctuations that
generate small spatial asymmetries. The second assumption is that the transition is irreversible.
Once an asymmetry develops, the cell will polarizes and then remain in the polarized state.
Based on these two postulates, a number of related mechanisms have been proposed. Far and
away the most influential is the concept of a diffusion-induced instability, proposed by its
namesake, Alan Turing, over fifty years ago [3] and subsequently refined in the context of cell
polarization by Gierer and Meinhardt [4–6]. The basic idea is that polarization results from
two competing processes with different spatial characteristics, one local and the other global
(Figure 2). This model assumes that polarization is induced by a small fluctuation or some
external cue that is then amplified by the local process. Amplification is usually achieved by
a self-reinforcing or autocatalytic mechanism. For example, a protein may randomly associate
to the membrane. Once membrane bound, it then recruits other proteins to membrane. Left
unchecked, this process would continue until the entire membrane is bound with protein,
assuming there are sufficient reservoirs of cytosolic protein. A second process, therefore, is
needed to restrict protein to a single cluster and prevent it from binding the entire surface of
the membrane. To accomplish this, the local activating process is assumed to induce a global,
inhibitory process that prevents these clusters from growing too large in size.

This inhibitory process is typically assumed to arise from the induction of some slow-acting,
fast-diffusing molecule that counteracts the self-reinforcing mechanism involved in the local
activation process. Slow action ensures that inhibition occurs after activation and fast diffusion
ensures that the inhibitor has a rapid global reach within the cell, thereby limiting propagation
of the local activating process. In terms of mechanisms, the fast-diffusing inhibitor is typically
assumed to be a small, cytosolic molecule, whereas the local activation process is typically
assumed to involve large, slowly-diffusing, membrane-bound molecules such as proteins.

As an alternative to the diffusion-induced mechanism described above, a number of researchers
have proposed that substrate supply may limit the size of the cluster [5,7,8]. For example, in
the case of proteins localizing to the membrane via an autocatalytic process, this process will
continue until all of the available binding sites on the membrane are occupied or the cytosolic
supply of protein is depleted. However, if protein supply is limiting, then membrane-
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associating proteins will not be able to saturate all of the binding sites. Moreover, as the local
activation process is autocatalytic, the proteins will tend to associate in a few clusters.

Relative to a mechanism involving a global inhibitor, one involving substrate limitation is far
simpler. No additional mechanisms involving global inhibitors are needed and, as a
consequence, it is quite easy to convince oneself that any polarization process involving
positive feedback involves substrate limitation. However, the substrate limitation mechanism
is quite sensitive to parameters values. If the activator molecules or some co-factor is not
limiting, then the transition will be from one homogenous state, where for example all of the
activator is in the cytoplasm, to another, where all of it is bound uniformly to the membrane.
Mechanisms involving diffusing inhibitors are often more robust to parameter variations,
however they require additional mechanisms that, in many cases, have yet to be identified. We
do note that there is some overlap from a mathematical perspective between these mechanisms,
as depletion of a limiting substrate during the activation process can be viewed to play an
equivalent role as a global inhibitor [6]. While in some cases these mechanisms are
mathematically equivalent (or at least very similar), we note that in many other cases they are
quite distinct [8]. Of course, other mechanisms and variations are equally possible. The basic
formulation and key issues, nonetheless, are still the same: How is the cell able to robustly
amplify a small fluctuation or signal on the surface of the cell yet limit activation to distinct
regions of the cell?

Polarization in Budding Yeast
A classic model for polarization is the budding yeast Saccharomyces cerevisiae [9]. During
the cell cycle, yeast transition from uniform to polarized growth in order to build a bud. A key
step in initiating polarization involves the clustering of active, GTP-bound Cdc42 to the
membrane [10]. Cdc42 then directs the nucleation of actin cables, which serve as conduits for
delivering the necessary components for bud formation [11,12]. The transition to and
maintenance of the polarized state is facilitated by both F-actin-dependent and independent
positive feedback loops [11,13–17].

In an elegant series of papers involving modeling and experimentation, Altschuler, Li, Wu,
and colleagues used budding yeast as a model for understanding the mechanism of spontaneous
polarization [7,11,15]. Working with a constitutively active variant of Cdc42 that stably
associates with the membrane in yeast arrested in the G1 phase (so that polarization is
independent of any preexisting cues), they developed a simple experimental system that
spontaneously polarizes in random directions when expression of Cdc42 is induced [11]. Using
this system, they established that spontaneous polarization involves a positive feedback loop
consisting of Cdc42-dependent actin polymerization and F-actin-dependent recruitment of
Cdc42 to the membrane. These results suggest a mechanism where Cdc42 initially accumulates
along the entire surface of membrane. Small fluctuations in the relative amount of Cdc42 are
then amplified by the positive feedback loop, leading to the accumulation of Cdc42 at distinct
clusters, known as caps, on the membrane. Based on this simple mechanism, they developed
a mathematical model for polarization. A key prediction of their model was that as the initial
amount of Cdc42 on the membrane increases the number of caps also increases; a result they
experimentally validated. This result is easily interpreted with the model: induction of the
positive feedback loop necessary for cluster formation requires that the proximal amount of
Cdc42 exceed some threshold, in the sense that there is sufficient Cdc42 at a particular site on
the membrane to effectively compete for co-factors necessary for activating the positive
feedback loop. At low concentrations, the probability of exceeding this threshold is low and
likely will occur at only one site. However, as the concentration increases, so does the
probability that multiple sites will exceed this threshold.
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One key issue that was not directly addressed in their initial studies was a mechanism for
limiting cap growth. As emphasized in the previous section, some mechanism is needed to
prevent a cluster from growing and eventually encompassing the entire membrane. In their
initial model, Altschuler and colleagues implicitly assumed substrate limitation, both in terms
of Cdc42 and the factors involved in forming the actin cables. In a subsequent study [7], they
investigated polarization under conditions where actin polymerization was inhibited in order
to eliminate F-actin-dependent positive feedback, leaving only the F-actin-independent one.
By eliminating the F-actin-dependent loop, they could focus directly on how the supply of
Cdc42 affects polarization independent of changes in the cytoskeleton. Consistent with their
model predictions specific for this system, they found that increasing the supply of Cdc42
decreased the probability that a cell would polarize. In particular, as the supply of Cdc42
increases, there is a greater tendency for the molecule to associate along the entire membrane
rather than cluster in distinct locations, an expected result from a mechanism involving
substrate limitation.

Note that these two models make different predictions. In the first, where the actin-dependent
feedback loop is present, increasing Cdc42 leads to the formation of multiple clusters while in
the second, where this actin-dependent loop is absent, increasing Cdc42 decreases the
probability that a cluster will form (and increases the probability that Cdc42 will be uniformly
distributed on the membrane). These two predictions regarding the responses to increasing
Cdc42 concentrations result from how the positive feedback was modeled. In case where actin-
dependent feedback is present, the actin cables were assumed to provide a stable conduit for
recruiting Cdc42 to the membrane. In other words, once the cables form (where the probability
of nucleation is proportional to the proximal density of membrane-bound Cdc42), they stay
formed and continue to deliver Cdc42 to the membrane at the site of nucleation, irrespective
of the proximal concentration of Cdc42. In the model where only the actin-independent
feedback loop is present, the process is transient as the kinetics are second order; the
instantaneous activity of the positive feedback loop is directly proportional to the proximal
concentration of membrane-bound Cdc42, whereas in former case the activity is independent
of proximal concentration once the cables form. These differences illustrate how differences
in the underlying kinetics can lead to different results in otherwise equivalent mechanisms.

In another remarkable study involving budding yeast, Ozbudak and colleagues investigated
spontaneous polarization in the absence of the Rsr1 (Bud1) landmark protein [18]. Unlike wild-
type cells where Rsr1 provides an internal cue directing polarization, in cells lacking Rsr1
polarization will occur at random locations [13,19]. Moreover, Ozbudak and colleagues found
that the cap will move around the cell when Rsr1 is missing whereas it will remain fixed when
present. In addition, they found that motion of cap was F-actin dependent. Based on their
results, they constructed a mathematical model that predicted that polarization must involve
an F-actin-dependent negative feedback loop that removes Cdc42 from the membrane. When
Rsr1 is present, the F-actin-dependent positive feedback loop dominates the negative one and
stably fixes the cap at one location. However, in the absence of Rsr1, the negative feedback
loop dominates and the cap migrates as a traveling wave around the cell. One immediate
question is whether this negative feedback loop has a role in regulating polarization when Rsr1
is present and, if so, what that role is. One possibility is that this putative negative feedback
loop serves to control the dynamics of Cdc42 recruitment to the membrane and subsequent
accumulation within the cap, in effect fine-tuning the polarization process.

These models are all examples of where a top-down approach was employed. In particular,
these models investigated how positive and negative feedback can control different aspects of
polarization without regard to many mechanistic details. One notable example of a bottoms-
up approach to modeling yeast polarization is the work of Goryachev and Pokhilko [20]. Here,
the authors constructed a mechanistic model of spontaneous yeast polarization in the absence
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of landmark proteins and actin polymerization. Key elements of their model include the cycling
of Cdc42 between the active GTP-bound and the inactive GDP-bound states and the role of
guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and GDP
dissociation inhibitors (GDIs) in controlling Cdc42 recruitment and persistence on the
membrane. Using their model, they were able to show that these biochemical reactions were
sufficient for inducing polarization. Furthermore, to understand the general mechanism
involved, Goryachev and Pokhilko were able to simplify their model and demonstrate that
polarization results from a Turing-like instability where the cytoplasmic depletion of Cdc24-
Bem1 GEF complex plays the role of the global inhibitor, a mechanism somewhat different
than the one proposed in the models previously described where Cdc42 was assumed to be the
limiting component. This kind of analysis is an elegant example of how a bottoms-up approach
can be coupled with a top-down one. More often than not, detailed mechanistic models are
difficult to analyze, as the complexity of governing reaction networks often obscures the key
underlying processes and general mechanisms. By simplifying their model, they were able to
merge these two model approaches, in the process gaining the insight offered by top-down
models while simultaneously capturing much of the biological detail afforded by the bottoms-
up approach.

Polarization and Gradient Sensing
Many kinds of cells are able to migrate in response to external cues [21,22]. For example,
neutrophils and the slime mold Dictyostelium discoideum are able to detect shallow gradients
of chemoattractants and crawl towards the source of these chemicals [23]. Prior to stimulation
with chemoattractant, these cells exist in an unpolarized, non-motile state. When stimulated,
they migrate by extending pseudopods at their front and contracting at their rear. This transition,
from an unpolarized state to a polarized one, involves the selective recruitment of a number of
proteins and lipids, initially distributed uniformly on either the membrane or in the cytosol, to
either the front or back of the cell. These molecules align themselves with the external gradient
and thus are thought to serve as a compass for the migrating cell [24,25]. With regards to
modeling polarization, chemotaxis has attracted the most attention from theoreticians [26,
27]. While a complete survey of these models is beyond the scope of this review, we wish to
highlight a few key ideas and issues to emerge from them.

Both neutrophils and Dictyostelium discoideum sense chemoattractants using G protein
coupled receptors (GPCR), which are uniformly distributed on their surface [28]. These cells
sense gradients by detecting the number of ligand-bound receptors on their surface and then
migrate in the direction where their number is greatest [29]. As receptors are activated along
the entire surface of the cell, some mechanism is needed to discriminate between the front and
back of the cell.

Perhaps the simplest and most elegant models proposed for gradient sensing, championed by
Devreotes, Iglesias, and coworkers [30,31], involve local excitation and global inhibition
(LEGI) (Figure 3). In the LEGI models, ligand-bound receptors recruit and/or produce both
activator and inhibitor molecules on their membrane in their vicinity. The activator is produced
locally, and its concentration is proportional to the number of ligand-bound receptors in its
proximal vicinity. The inhibitor, on the other hand, has a global reach, as it is assumed to be
rapidly diffusing and, therefore, does not accumulate in any particular region of the membrane.
The net result is that more activator is present at the front of the cell than the rear in relation
to the chemoattractant gradient, whereas the inhibitor is more uniformly distributed throughout
the cell. Differences in the local concentration of activator and inhibitor are then hypothesized
to establish the front and back of the cell.
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While the LEGI mechanism provides both a simple and robust mechanism for polarization in
response to a gradient, experimental corroboration is still lacking. Whereas a number of
candidates exist for the local activator, such as phosphatidylinositol-3-kinase (PI3K) or its
product, phosphatidyl-3-4-5-triphosphate (PIP3) [25], no viable candidate for the global
inhibitor has yet been identified. One additional limitation of the simple LEGI model as
described above is that it fails to provide a mechanism for polarization in the absence of a
gradient. Both neutrophils and Dictyostelium discoideum will randomly polarize and then
migrate when stimulated with a uniform field of chemoattractant [32].

This discrepancy between model and experiments led to development of several new models
for gradient sensing and polarization, each with select strengths and weaknesses [26]. Some
have extended the LEGI mechanism to include, for example, random polarization in uniform
chemoattractant fields by assuming that positive feedback enables a Turing-like instability to
occur [33]. Others have employed a bottom-up approach to test if the known biological
pathways are sufficient to cause spontaneous polarization [34–36].

As one example, we recently proposed a mathematical model for gradient sensing and
polarization in neutrophils using a bottom-up approach [37]. Our model was motivated by
recent work from Bourne and colleagues that suggested ligand-bound receptors activate two
antagonizing pathways, one for establishing the front of the cell and the other the rear (Figure
4) [38]. Through modeling, we set out to explain how these two antagonizing pathways could
possibly enable gradient sensing and polarization. In order to capture the general chemotactic
behavior along with key mutant data, we first thought constructively about the underlying
mechanism. One obvious fact was that the front pathway included a number of positive
feedback loops. Another was that there was no reasonable candidate for a global inhibitor, at
least based on the data at hand. Given these constraints, we naturally concluded that a
mechanism involving substrate limitation must be involved. In our case, we assumed that PI3K
was the limiting molecule though other candidates such as Ras had an equivalent effect. While
sufficient for recruiting the components of two pathways to distinct and separate regions of the
membrane in response either to a gradient or a uniform field of chemoattractant, this mechanism
still did not explain why one pathway always localizes to the front of the cell and the other to
the rear in response to gradient. To achieve selective localization of the two pathways, we
needed to find a mechanism where the front pathway is more sensitive to the local concentration
of ligand-bound receptors than the rear pathway. Based on the data available, we assumed that
localization of the front pathway required the coincident activation of Ras and PI3K by ligand-
bound receptors [39]. Coincident activation yielded a simple mechanism for robustly
positioning the two pathways in response to an external gradient of chemoattractant. We note
that a number of other models have also been proposed using a similar line of reasoning and
that ours is in no way unique [35,40].

The example above describes a scenario where modeling was used to establish how the parallel
activation of two antagonizing pathways, based on known molecular biology, may give to
gradient sensing and polarization. While providing a sufficient mechanism for some aspects
of chemotaxis, the model fails to account for others. For example, as positive feedback plays
a key role in inducing polarization, the response to a chemoattractant is switch-like, and not
dose dependent as observed experimentally [41]. In fact, this issue associated with models
involving substrate limitation provides, arguably, the strongest case of a LEGI mechanism,
which does not have this problem [42]. Of course, other issues associated with LEGI models
provide reciprocal support other mechanisms, such as those involving substrate limitation.
More significantly, subsequent experimental investigations have questioned the central role of
PI3K signaling in chemotaxis [43,44] and found that multiple, redundant pathways control this
process [45,46], indicating that we have just scratched the surface with regard to understanding
the mechanisms driving chemotaxis.
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Conclusions
We are now in a position to experimentally test many competing models of directed and
spontaneous cell polarization. For theorists, the results so far have been very encouraging, as
they have validated many key predictions from their models. At the same time, these results
have uncovered new behaviors and mechanisms, requiring new concepts and models that will
keep theorists busy for the foreseeable future. For experimentalists, mathematical models offer
a systematic framework for quantitatively exploring the ingredients necessary for cell
polarization and also analyzing the nonintuitive consequences that arise from the interplay of
coupled processes such as diffusion and positive feedback. We have briefly covered only a few
examples of how modeling can aid in this understanding; many more exciting examples exist
that we were unfortunately unable to cover due to space limitations. However, we believe the
examples cited demonstrate the explanatory and predictive power of mathematical modeling
coupled with experimental endeavors, and that this approach can accelerate our understanding
of complex biological processes.
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Figure 1. Polarization involves a transition from a symmetric, homogenous state to an asymmetric,
inhomogeneous one
A key question concerns the mechanisms that enable cells to transition between from one state
to the other.
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Figure 2. Activator-inhibitor model for cell polarization
A. In this model, polarization is assumed to arise from the interplay between a local activator,
capable of catalyzing its own production, and a global inhibitor. B. In the case of the formation
of polarized clusters on the cell surface, membrane-bound activator (green) recruits other
activator molecules to proximal regions of the membrane via a positive feedback mechanism.
In addition, membrane-bound activator is assumed to recruit inhibitor molecules to the
membrane (red). The inhibitor molecules prevent the activators from binding to the membrane.
Unlike the activator, the inhibitor has a global reach. Competition between the activator and
inhibitor limits the size and number of the clusters.
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Figure 3. Local excitiaton, global Inhibition (LEGI) mechanism for gradient sensing
A. An external signal (eg, ligand-bound receptor), is assumed to activate two pathways, one
involving a local activator and the other a global inhibitor of the downstream pathway used to
establish the front of the polarized cell. B. As the activator (green) is more sensitive to the local
strength of the external signal, more of it will accumulate in front of the cell than in the rear,
mimicking the external gradient. The inhibitor (green) is less sensitive to the local strength of
the external signal as it is assumed to be rapidly diffusing and, therefore, will be more
homogeneously distributed throughout the cell. Local differences in the concentration of the
activator and inhibitor are thought to establish to front and back of the cell. The relative timing
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of induction of the activator and inhibitor can also provide a mechanism for sensory adaptation
[31]. Note the dashed ellipse is used to denote the cell boundary.
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Figure 4. Schematic of proposed pathway regulating polarization and gradient sensing in
neutrophils
Ligand-bound receptors activate two antagonizing pathways that establish the front and back
of the cell [38]. The “front” pathway activates F-actin polymerization and the “back” pathway
activates myosin contractions. The two pathways are proposed to inhibit one another at five
points (four are denoted by the dashed lines and the other results from the reciprocal action of
PI3K and PTEN on PIP3 formation). From [37].
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