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Abstract
Schistosomiasis is an important parasitic disease for which there is no available vaccine. We have
focused on a functionally important antigen of Schistosoma mansoni, Sm-p80, as a vaccine candidate
because of its consistent immunogenicity, protective potential and antifecundity effect observed in
murine models; and for its pivotal role in the immune evasion process. In the present study we report
that a Sm-p80-based DNA vaccine formulation confers 38% reduction in worm burden in a
nonhuman primate model, the baboon (Papio anubis). Animals immunized with Sm-p80-pcDNA3
exhibited a decrease in egg production by 32%. Sm-p80 DNA elicited specific immune responses
that include IgG; its subtypes IgG1 and IgG2; and IgM in vaccinated animals. Peripheral blood
mononuclear cells (PMBCs) from immunized animals when stimulated in vitro with Sm-p80
produced appreciably more Th1 response enhancing cytokines (IL-2, IFN-γ) than Th2 response
enhancing cytokines (IL-4, IL-10). PBMCs produced appreciably more spot forming units for INF-
γ than for IL-4 in enzyme-linked immunosorbent spot (ELISPOT) assays. Overall it appears that
even though a mixed (Th1/Th2) type of humoral antibody response was generated following
immunization with Sm-p80; the dominant protective immune response is Th1 type. These data
reinforce the potential of Sm-p80 as an excellent vaccine candidate for schistosomiasis.
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1. Introduction
Presently there is no vaccine available to control the human parasitic disease, schistosomiasis.
This disease afflicts an estimated 207 million people in 74 countries [1] and an additional 779
million people are at risk of acquiring this infection [2]. Treatment with praziquental remains
the mainstay of current medical treatment following infection. Therefore advent of a
schistosomiasis vaccine would be a significant addition to current methods of the control of
this disease.

A major problem that has hindered schistosomiasis vaccine research and development concerns
the identification and selection of potential protective antigens encoded by the parasite [3–5].
We have identified a novel schistosome protein that was originally determined to be involved
in the surface membrane biogenesis [6;7]. This represents a mechanism of immune evasion
utilized by hemo-helminths to evade the protective host immune response [6;8–10]. This novel
protein, calpain, has two subunits, the larger of which, Sm-p80, was shown in our previous
studies [9;11–15] and of other investigators [16–19] to have a great potential as relevant vaccine
antigen for the reduction of the morbidity associated with both Schistosoma mansoni [4] and
S. japonicum [17] because of its pronounced antifecundity and anti-worm effects in mice. In
the present study we have examined the prophylactic and antifecundity efficacy of a Sm-p80
based DNA vaccine formulation against S. mansoni in a nonhuman primate model. We have
utilized baboons to evaluate safety, immunogenicity, protective and antifecundity immune
responses in an animal model because this model is more predictive of the human situation
[4;20]. This proof of concept study, along with other ongoing work, was designed to serve as
the basis for phase I/II human clinical trials.

2. Materials and methods
2.1. Parasites and animals

Biomphalaria glabrata snails, infected with Schistosoma mansoni (Puerto Rican strain) were
obtained from the National Institute of Allergy and Infectious Disease Schistosomiasis
Resource Center (Biomedical Research Institute, Rockville, MD). Sexually immature baboons
(Papio anubis), 1.5 to 2.4 years old, weighing from 5 to 7.7 kilograms, were obtained from the
University of Oklahoma Health Sciences Center baboon breeding program and housed in single
cages in Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC)
accredited facilities. Baboons were first screened for parasites and for antibodies that were
cross-reactive to Sm-p80 before immunization, and were found negative for both. This study
was approved by the Institutional Animal Care and Use Committee.

2.2. Naked DNA-vaccine constructs and confirmation of protein expression in COS-7 and
CHO K1 cells

Full length cDNA of the large subunit of S. mansoni calpain (Sm-p80) was subcloned into
pcDNA3 (Invitrogen Corporation, San Diego, CA) and designated as Sm-p80-pcDNA3, as
described earlier [14;15;21;22]. High level expression of Sm-p80-pcDNA3 was ascertained
via transient tranfection in CHO K1 [14;15;21;22] and COS-7 cells. The expressed product in
COS-7 and CHO K1 cells was analyzed via polyacrylamide gel electrophoresis and western
blotting, as described previously [14;21]. For DNA immunization, plasmid DNA was isolated
via conventional alkaline lysis method. The plasmid DNA was further purified on Sepharose
CL4B columns. The purified DNA was then ethanol precipitated and resuspended in sterile,
endotoxin-free saline.
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2.3. Baboon immunizations, parasite challenge, worm burden determination and egg counts
Six baboons (3 males and 3 females) were initially immunized with 500 μg Sm-p80-pcDNA3
(prepared in PBS) [22]. Baboons were boosted with 500 μg Sm-p80-pcDNA3 at weeks 4, 8,
and 12. For the control group, three baboons (2 males and 1 female) were vaccinated with 500
μg of the control plasmid DNA, pcDNA3 (prepared in PBS) [22]. Baboons in the control group
were boosted with 500 μg pcDNA3 at weeks 4, 8, and 12. In both groups, DNA was injected
intramuscularly in the quadriceps. At week 16, baboons from both of the groups were
challenged with a total of 1000 cercariae each of S. mansoni essentially as provided [23] except
that an axillary rather than a groin pouch was used as the cercarial exposure site for each animal.
Eight weeks after the challenge, the baboons were immobilized and lightly anesthetized with
a mixture of ketamine (Ketaminol – 10 mg/kg body wt) and xylazine (0.5 mg/kg) and then
were deeply anesthetized by intravenous injection of heparinized sodium pentobarbital
solution. The animals were then euthanized by exsanguination from the heart ventricle. The
adult parasites were recovered by perfusion from the mesenteric vasculature and hepatic portal
system[24]. Protection (P) was calculated by comparing worm burdens from immunized (I)
and control (C) baboons by a standard formula: %P = [(C-I)/C x 100]. After sacrifice, liver
and intestine samples were collected, and following digestion in KOH [25], the number of eggs
present in each tissue was determined and percent reduction in egg production was calculated.

2.4. Blood collection and peripheral blood mononuclear cell (PBMC) isolation
Blood samples from baboons were collected just prior to the primary immunization, at every
booster (i.e., 4, 8 and 12 weeks) and 4 weeks after the final immunization, i.e., before challenge
(16 weeks). Sera collected from these bleeds were used in ELISA assays. PBMCs were isolated
from baboon blood using HISTOPAQUE®-1077 (Sigma-Aldrich, St. Louis, MO).

2.5. ELISA
Serum samples from each individual animal were used to determine antibody levels/titers for
IgG, IgG subtypes (IgG1, IgG2, IgG3, IgG4), IgM, IgA and IgE antibodies as described
elsewhere [22;26]. Briefly, 96 well microtiter plates were coated with recombinant Sm-p80
(1.2 μg/well). Various dilutions of individual baboon serum was used and as secondary
antibodies, horseradish peroxidase labeled anti-monkey (IgG and IgM) and anti-human IgG1,
IgG2, IgG3, IgG4 (Alpha Diagnostic International, San Antonio, TX, USA), IgA and IgE
(Sigma-Aldrich, St. Louis, USA) were used at a dilution of 1:1000. All of the samples were
assayed in triplicate. Results are expressed as endpoint titers calculated from a curve of optical
density verses serum dilution to a cutoff of 2 standard deviations above background control
values. Results are expressed as the mean ± S.E.

2.6. PBMC proliferation assays
PBMCs from the two groups of baboons were isolated by density gradient centrifugation using
HISTOPAQUE®-1077 (Sigma-Aldrich, St. Louis, MO). For the in vitro proliferation assays,
recombinant protein and incubation period was first optimized. A standard assay was then
developed which was as follows: in a 96-well flat-bottom plate, PBMCs (5×105cells/200 μl/
well) were stimulated with either 0.5 μg ConA or 1.2 μg recombinant Sm-p80 and incubated
at 37°C with 5% CO2. After 48h incubation, 100μl supernatant was removed for estimation of
cytokine production and to the remainder, 20μl of MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] was added and incubated for another 4h at 37°C. The contents
of the microtiter plates were centrifuged at 1000 g for 10 min and the supernatant was aspirated
gently and discarded. In order to dissolve the formazan salt crystals, 100μl of DMSO was
loaded into each well and incubated for 30 min at 37°C. The microtiter plates were then read
at 550 nm. Stimulation index was calculated as the ratio of OD550nm of stimulated cells to
OD550nm of non-stimulated cells.
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2.7. Estimation of cytokine production by proliferating PBMCs
To quantitate the cytokine production (IL-2, IL-4, IL-10 and IFN-γ) by the proliferating
PBMCs, the medium collected above was used in a Baboon Th1/Th2 ELISA Panel Kit (U-
cyTech, The Netherlands), following the manufacturer’s instructions.

2.8. ELISPOT
ELISPOT assay was used to estimate IFN-γ and IL-4 secreting cells following in vitro
stimulation with recombinant Sm-p80. Briefly, PBMCs from the two groups of baboons were
seeded (3×105cells/100μl/well) on the 96 well pre-coated (anti-IFN-γ or anti-IL-4, U-cyTech,
The Netherlands). The cells were stimulated with either 0.5 μg ConA or 1.2 μg recombinant
Sm-p80 and incubated at 37°C with 5% CO2 for 48 h, allowing for production and capture of
released cytokines. One hundred μl of biotinylated detection antibody was loaded to each well
and incubated overnight at 4 °C. The next day GABA(ϕ-labelled anti-biotin antibodies) was
added and after 1h incubation at 37°C, freshly prepared Activator I/II solution was added and
incubated for 20–30 min at room temperature to develop the spots. The reaction was terminated
by washing with distilled water. All assays were run in triplicate. The spot-forming units (SFU)
representing single cells were counted using a ELISPOT Bioreader 5000 (ImmunoBioSystem,
The Colony, TX, USA). Antigen-specific SFU per well was calculated by subtracting its
individual background value (buffer control well without antigen).

2.9. Statistical analyses
Significance between two groups was calculated via one-way ANOVA and in group
significance by paired t-test, using the SPSS computer program. Bonferroni adjustments were
included for multiple comparisons, to reduce the risk of reaching false conclusions based on
chance. P values obtained by these methods were considered significant if they were <0.05.

3. Results
3.1. Expression of Sm-p80-pcDNA3 in COS-7 and CHO K1 cells

The construct used in vaccination experiments (Sm-p80-pcDNA3) was examined for the
protein expression in COS-7 and CHO K1 cells. Expression of Sm-p80 was detected via
western blotting using an anti-Sm-p80 antibody. A discrete 80 kDa bands was detected in
lysates of COS-7 (Fig 1; Lane A) and CHO K1 cells (Fig 1; Lane B) transiently transfected
with Sm-p80-pcDNA3 (Fig 1, lane B). No such band was detected in COS-7 or CHO K1 cells
transfected with pcDNA3 alone (data not shown).

3.2. Reduction in worm burden and in egg production achieved in baboons following
vaccination with Sm-p80 in naked DNA immunization protocol

In this study, baboons did not show any difficulty in (i) eating, drinking, urinating, or
defecating; (ii) they were alert and responsive; (iii) showed no signs of swelling, hyperemia,
indurations at or around the injection site; (iv) no neurological/motor problems were observed.
Furthermore, no anti-DNA antibodies were detected in immunized animals.

Using a vaccination strategy that involved priming with plasmid DNA via intramuscular
injections and boosting intramuscularly three times at monthly intervals, the protective
potential of Sm-p80 was determined. Baboons immunized with Sm-p80-pcDNA3 (three
boosts) showed 38% reduction in worm burden when compared with baboons that received
only control pcDNA3 (Fig 1; Table 1). Additionally, in the control group of baboons, the
breakup of worm types was found to be as follows: males (25.95%), females (11.48%), paired
worms (52.91%) and immature worms (9.65%). Whereas in the experimental group, the worm
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count was as follows: males (30.25%), females (13.94%), paired worms (50.12%) and
immature worms (5.66%).

Antifecundity effect of this vaccine regimen was also found to be pronounced (Fig. 2). Animals
immunized with Sm-p80-pcDNA3 exhibited a decrease in egg production (liver + intestine)
by 32% (Table 1). These differences in reduction of worm burden and egg counts between Sm-
p80-pcDNA3 and control pcDNA3 groups were found to be statistically significant (p<0.05).

3.3 Protective antibody response to Sm-p80 in immunized baboons
Specific antibody titers were obtained for the total IgG (Fig 3A) and its subtypes; IgG1 (Fig
3B) and IgG2 (Fig 3C) in the sera samples obtained from baboons immunized with Sm-p80-
pcDNA3. IgG3 and IgG4 reactivities were not detected in any of the vaccinated animals. Also,
no detectable levels of Sm-p80-specific antibodies (total IgG or IgG subtypes) were detected
in the group of animals immunized with control plasmid DNA. Antibody titers for the total
IgG in the Sm-p80-pcDNA3 group started to rise at week 4 and reached the highest level at
week 12 for 2 animals and at week 16 for 4 animals (end point titer = 6400) (Fig 3A). In the
Sm-p80-pcDNA3 group the highest level of antibodies were observed for IgG subtype, IgG1;
its titer in the vaccinated group showed an increase at week 8 and levels reached a peak at week
12 and maintained at this high level (end point titer = 6400) in 50% of vaccinated animals until
the cercarial challenge (Fig 3B). For IgG2 (Fig 3C) antibody levels gradually started to rise at
week 8 and reached a peak at week 16 (end point titer = 1600). Similarly, in the vaccinated
group, IgM titers had risen by week 8, peaked at week 12 and had decreased by week 16 (Fig
4). Weak to no antibodies titer were observed for specific IgA responses in almost all of the
vaccinated animals except one (Fig 5). No IgE, IgG3 or IgG4 were detectable in vaccinated
animals (data not shown).

3.4. Sm-p80 induced protective T cell response in vaccinated baboons
The PBMCs from the vaccinated Sm-p80-pcDNA3 group proliferated to significantly higher
levels than compared to their respective control when stimulated in vitro with Sm-p80
recombinant protein (Table 2). However, Sm-p80 driven proliferation of PBMCs was markedly
lower when compared to the stimulation induced by ConA (Table 2). Specifically, the PBMCs
from the Sm-p80-pcDNA3 vaccinated group exhibited approximately 2-fold higher
proliferation compared to their controls (P<0.004) (Table 2). As shown in Table 3, the high
degree of proliferation was also correlated by the INF-γ andIL-2 production. IL-2 was produced
at over 15-fold higher levels and INF-γ was produced at over 220-fold higher levels compared
to their respective pcDNA immunized controls. IL-4 and IL-10 production by PBMCs was
negligible in both groups (Table 3). These results were confirmed by ELISPOT analysis of the
proliferating PBMCs in response to in vitro stimulation by Sm-p80. In these studies,
approximately 65-fold to 200-fold more spot forming unit (SFU) were detected (Table 4) for
INF-γ Fig 6, compared to IL-4 (Fig 7) in baboons vaccinated with Sm-p80-pcDNA3.

4. Discussion
It is widely accepted that human populations in endemic areas develop some degree of immune
protection against schistosome infection [27–29]. Additionally, in mice, immunization with
radiation-attenuated cercariae can result in up to 80% protection [30]. Furthermore many anti-
helminth recombinant vaccines have successfully been used in veterinary practice [31;32].
Taken together these studies provide further credence to the rationale for the continual
development and refinement of vaccine formulations against a complex metazoan parasite like
S. mansoni.
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Immunization regimens that induce immune recognition of functionally important host-
interactive proteins in their native state have great potential in enabling the host to “reject”
schistosome worms prior to the onset of pathology. In this regard, the antigen understudy, large
subunit of calpain (Sm-p80) fits such a target criterion because this protein plays an important
role in the surface membrane renewal of schistosomes, a process that is widely considered to
be a mechanism employed by blood-dwelling helminths to evade host immunity [6;8–10]. Sm-
p80 has been shown to be exposed at the host parasite interface of larval and adult parasites
and is naturally immunogenic [6;12;33]. While the natural immunogenicity of the molecule
does not provide protection under conditions of natural infection, we have demonstrated that
it is possible to present Sm-p80 to a naive host immune system in such a way as to induce
immunity in experimental animals [11–14;21]. Thereby we have achieved the goal of
developing a reliable, dependable and consistent immunization protocol using Sm-p80 that
gives at least 50–60% protection in mice [11–14;21].

As a prelude to Phase I/II human clinical trials, this present proof of concept study was
performed to test the prophylactic potential of a Sm-p80-based DNA in a nonhuman primate
model. We have utilized the baboon model to evaluate safety, immunogenicity, protective and
antifecundity immune responses in an animal model that is more clinically relevant because
these animals exhibit human-like acute schistosomiasis syndrome following the cercarial
challenge [34;35].

In the present pre-clinical vaccination trial, the Sm-p80-based DNA vaccine was well tolerated;
baboons from both control and experimental groups did not exhibit any behavioral or clinical
abnormalities. Baboons immunized with Sm-p80-pcDNA3 showed a 38 % reduction in worm
burden and a 32 % reduction in egg production. Baboon as a “protection” model has previously
been utilized successfully by many investigators to test the efficacy of different schistosome
vaccines [34–41]. For example, immunization of baboons with Sm28GST resulted in 38%
reduction in the number of parasites and a 33% decrease in female fecundity [36]. Similarly,
inoculation of baboons with IrV5 elicited a protection by 28% and noticeable reduction in the
sizes of granulomas [40]. In baboons, radiation-attenuated cercariae vaccine is effective but
multiple exposures are required to elicit levels of protection from 50% [41] to 80% [40;42].
However, compared to the studies that utilized defined vaccines, a Sm-p80-based DNA vaccine
appears to be comparable or superior in its anti-worm and anti-fecundity effect.

Sm-p80 DNA elicited strong immune responses that included IgG1 and IgG2 antibody isotypes
and IgM in vaccinated baboons. In this study, total IgG and its subtypes (IgG1 and IgG2),
responses increased with each vaccine booster. IgG3 and IgG4 responses were not detectable.
Similarly in vaccination studies using Plague antigen LcrV in baboons, IgG3 and IgG4 were
found to be under the detection limits [43]. However a cautionary note is warranted here, the
non-detection of IgG3 and IgG4 (as well as IgE) could actually be due to the poor cross-
reactivity of human reagents being utilized for the detection of baboon antibody subtypes since
no secondary antibodies from nonhuman primate origin are available for these subtypes.
Conversely, distinct IgM responses to immunization were recorded even though they appeared
to be short-lived. Similar trend for IgM levels was also observed with radiation-attenuated
cercariae vaccine in baboons [44]. Weak responses were observed for total IgA; however, one
animal which appeared to be an outlier showed a robust IgA response. No IgE was detectable
in vaccinated animals. As recorded in this study, early emergence with short lives of IgM
responses and very small/undetectable levels of IgE were also observed in the “self-curing”
S. mansoni-rhesus macaque model [45]. Taken together, our data on Sm-p80 specific humoral
responses indicate that even though a mixed Th1/Th2 type of priming was achieved following
vaccination with Sm-p80-pcDNA3, Th1 appears to be the dominant of the two.
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PBMCs proliferating in response to in vitro stimulation with Sm-p80 produced appreciably
more Th1 response enhancing cytokines (IL-2, IFN-γ) than Th2 response enhancing cytokines
(IL-4, IL-10). These observations were reaffirmed by ELISPOT analyses in which up to 200-
fold more SFUs were detected for INF-γ than for IL-4 in Sm-p80-induced PBMCs. It is evident
that Sm-p80 in a DNA formulation is able to elicit a dominant Th1 type Sm-p80-specific
response in baboons, as has been observed in the murine model [11;14;15].

Overall our previous data on antifecundity and anti-worm effects of Sm-p80 in the murine
model [4;11–15;22] combined with this report in the baboon model and results of other
investigators [16;17] clearly indicate that this antigen has a great potential as an important
vaccine candidate for the reduction of the morbidity associated with both S. mansoni and S.
japonicum infections. The results of this study in the nonhuman primate model have provided
the proof of concept and we now believe that Sm-p80 is ready to be tested for safety and efficacy
testing in humans.
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Figure 1.
Eukaryotic expression of Sm-p80 in COS-7 and in CHO K1 cells. Western blot of Sm-p80
obtained following transient transfection of the DNA construct, Sm-p80-pcDNA3, in COS-7
cells (lane A) and CHO K1 cells (lane B). This Sm-p80-pcDNA3 construct was used in all of
the immunization experiments.
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Figure 2.
Worm burden distribution (A) and egg load per gram of liver and intestine of individual baboon
(B) for groups of animals immunized with control plasmids, pcDNA3 (n =3) and with Sm-
p80-pcDNA3 (n =6). Both reduction in worm burden and in egg counts were statistically lower
in vaccinated animals (*P< 0.05).
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Figure 3.
Antibody titers of anti-Sm-p80 total IgG and IgG subtypes in immunized baboons. ELISA was
performed with sera from each baboon (every four weeks) in their respective groups (pcDNA3
and Sm-p80-pcDNA3). Total IgG (A), IgG1 (B), IgG2(C) in individual control (1N08, 1T09
and 1T12) and vaccinated (1T94, 1P17, 1P15, 1N07, 1G97 and 1G29) baboon sera collected
every 4 weeks. The values represent the mean of three replicates ± standard error.
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Figure 4.
Total IgM titers in individual control (1N08, 1T09 and 1T12) and vaccinated (1T94, 1P17,
1P15, 1N07, 1G97 and 1G29) baboon sera collected every 4 weeks. The values represent the
mean of three replicates ± standard error.
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Figure 5.
Total IgA titers in individual control (1N08, 1T09 and 1T12) and vaccinated (1T94, 1P17,
1P15, 1N07, 1G97 and 1G29) baboon sera collected every 4 weeks. The values represent the
mean of three replicates ± standard error.
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Figure 6.
Secretion of IFN-γ products by PBMC cells. Detection of IFN-γ secreting cells by ELISPOT
assays in wells seeded with 3×105 cells.
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Figure 7.
Secretion of IL-4 products by PBMC cells. Detection of IL-4 secreting cells by ELISPOT
assays in wells seeded with 3×105 cells.
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Table 2
In vitro
proliferation of baboon PBMCs from control and vaccinated animals

Baboon Vaccine group
Stimulation index(SI)

ConA * Sm-p80

1T12 pcDNA3 2.41±0.67 0.98±0.02

1T09 pcDNA3 8.69±6.24 1.00±0.17

1N08 pcDNA3 7.65±0.01 0.72±0.34

1T94 Sm-p80-pcDNA3 2.27±0.57 2.50±0.95

1N07 Sm-p80-pcDNA3 6.13±3.91 1.63±0.52

1G29 Sm-p80-pcDNA3 2.55±0.14 2.23±0.11

1P15 Sm-p80-pcDNA3 3.20±1.88 2.09±1.95

1P17 Sm-p80-pcDNA3 24.53±9.38 3.34±2.21

1G97 Sm-p80-pcDNA3 3.05±0.07 1.44±0.05

*
P<0.01)
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Table 3
Levels of cytokines production by PBMCs after in vitro stimulation with recombinant Sm-p80 as measured by ELISA

Cytokines

Groups

pcDNA3 (mean ± S.D.) Sm-p80-pcDNA3 (mean ± S.D.)

IL-4 (pg/mL) 11.05±0.5 10.45±0.1

IL-10 (pg/mL) 2.67±0.6 3.66±0.3

IL-2 (pg/mL) 37.10±6.6 543.12±21.0*

IFN-γ (pg/mL) 14.14±1.7 3088.64 ±64.0*

*
P<0.04)
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