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Abstract
Sixteen healthy young adults (ages 18–32) and 16 healthy older adults (ages 67–81) completed a
delayed response task in which they saw the following visual sequence: memory stimuli (2 abstract
shapes; 3,000 ms), a blank delay (5,000 ms), a probe stimulus of variable duration (one abstract
shape; 125, 250, 500, 1,000, or 2,000 ms), and a mask (500 ms). Subjects decided whether the probe
stimulus matched either of the memory stimuli; they were instructed to respond during the mask,
placing greater emphasis on speed than accuracy. The authors used D. L. Hintzman & T. Curran’s
(1994) 3-parameter compound bounded exponential model of speed–accuracy tradeoff to describe
changes in discriminability associated with total processing time. Group-level analysis revealed a
higher rate parameter and a higher asymptote parameter for the young adult group, but no difference
across groups in x-intercept. Proxy measures of cognitive reserve (Y. Stern et al., 2005) predicted
the rate parameter value, particularly in older adults. Results suggest that in working memory, aging
impairs both the maximum capacity for discriminability and the rate of information accumulation,
but not the temporal threshold for discriminability.
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Healthy aging impairs human memory in general and working memory in particular (Grady
& Craik, 2000). The present study seeks to characterize the specific attributes of working
memory (WM) that deteriorate with age. In a delayed-response task, we used the response-
signal method to compare the tradeoff between processing time and recognition memory
discriminability in young and older adults.

Working memory suffers an age-related loss of both efficiency (Salthouse & Babcock, 1991)
and capacity (Zacks & Hasher, 1993). Previous aging literature has extrapolated from simple
measures of task performance to theorize about these broader elements of WM. Efficiency is
often measured by reaction time (e.g., Anders, Fozard, & Lillyquist, 1972; Salthouse, 1992),
and capacity is often described by the number of items remembered (e.g., Holtzer, Stern, &
Rakitin, 2004; Oberauer, 2001). In the present study, we mathematically modeled subjects’
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task performance to derive quantitative measures of WM retrieval dynamics. These measures
characterize broad components of WM and are more directly related to the ideas of efficiency
and capacity than simpler measures like reaction time. Our methodology also helps relate
theories of WM and aging to the notion of individual differences in reserve against memory
loss. Below, we discuss models of WM and how our experimental paradigm relates to these
models and to cognitive reserve.

WM consists of three distinct processes: encoding, rehearsal, and retrieval (Awh et al., 1996;
Jonides, Lacey, & Nee, 2005). Neuroimaging studies have revealed differences between the
neural substrates of these processes (e.g., J. R. Anderson, Qin, Jung, & Carter, 2007; Habeck
et al., 2005; Rypma, Prabhakaran, Desmond, & Gabrieli, 2001). A particularly useful
behavioral paradigm for investigating WM along these divisions is a delayed-response task
(DRT; Habeck et al., 2005; Holtzer et al., 2004; Holtzer, Stern, & Rakitin, 2005; Rypma &
D’Esposito, 1999; Sternberg, 1966; Wager & Smith, 2003; Zarahn, Rakitin, Abela, Flynn, &
Stern, 2005, 2006). In a DRT, subjects are presented with a set of stimuli (often visual, such
as letters, shapes, or spatial locations), followed by a delay and then a probe stimulus. Subjects
must determine whether the probe stimulus was included in the presentation set. DRTs are
advantageous because they allow the experimental procedure to be temporally divided into
periods of encoding, rehearsal, and retrieval (Holtzer et al., 2004; Rypma & D’Esposito,
1999), reducing the overlap between ongoing processes. One can manipulate the extrinsic
difficulty of a DRT by varying presentation set size (Habeck et al., 2005; Rypma, Eldreth, &
Rebbechi, 2007; Zarahn et al., 2006) or by varying the duration of the probe stimulus (Corbett
& Wickelgren, 1978; Dosher, 1984; Dosher, McElree, Hood, & Rosedale, 1989; Hintzman,
Caulton, & Curran, 1994; McElree & Dosher, 1993; Reed, 1973, 1976; Wickelgren, 1977).
Moreover, DRTs allow manipulation of extrinsic difficulty without the use of dual-task
methods (e.g., N. D. Anderson, Craik, & Naveh-Benjamin, 1998) and without any temporal
overlap of task elements, as in the n-back task (e.g., Jonides et al., 1997).

Previous experiments have used Rypma and D’Esposito’s (1999) variant of the DRT with
letters of the Latin alphabet as stimuli (e.g., Habeck et al., 2005; Holtzer et al., 2004, 2005;
Zarahn et al., 2005, 2006). These studies characterized the aural component of the Baddeley
and Hitch (1974) model of WM—the phonological loop—which was theorized to support the
retention of letter stimuli. The present study addresses the analogous visual component of the
Baddeley and Hitch model—the visuospatial sketchpad. We employed unfamiliar, abstract
(i.e., difficult to name) shape stimuli, which we assumed would require use of the visuospatial
sketchpad, to provide information about WM in aging that complements the previous studies.
In a prior DRT experiment, these shape stimuli were used along with letter stimuli to compare
the parallel processing of the phonological loop and the visuospatial sketchpad (Holtzer et al.,
2004, 2005).

In the present study, we manipulated the extrinsic difficulty of a DRT by varying the probe
duration and eliciting the recognition response promptly after termination of the probe. This
technique, known as the response-signal method (RSM), varies the duration of the retrieval
process and usually results in a speed—accuracy tradeoff (Reed, 1973). That is, as the
processing time allowed for retrieval increases (slower speed), accuracy on a memory task
improves, and vice versa. We assessed accuracy with the signal detection measure dL
(Snodgrass & Corwin, 1988), following the example of Hintzman and Curran (1994). Previous
studies have used the RSM to investigate how subjects discriminate between semantic and
episodic associations (Dosher, 1984) and to study the dynamics of recognition memory (Dosher
et al., 1989; Hintzman & Caulton, 1997; Hintzman & Curran, 1994; Reed, 1973). Boldini,
Russo, and Avons (2004) used the RSM to distinguish between single- and dual-process
accounts of recognition memory via mathematical modeling similar to that used in the present
study. To our knowledge, this paradigm has not been used to study WM in the context of aging.
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When processing time is systematically varied to affect recognition memory discriminability,
mathematical modeling can describe the speed—accuracy tradeoff (SAT) in terms of a three-
parameter compound bounded exponential curve (Hintzman & Curran, 1994). The fit
parameters that define this curve quantitatively describe three characteristics of WM. The
curve’s x-intercept represents the time at which retained information first becomes available
to guide recognition memory decisions beyond random guessing. The curve’s asymptote
represents the maximum level of accuracy that can be attained and thus the maximum amount
of mnemonic information an individual can process without time constraints. The rate of
change of the curve’s slope represents the rate at which information becomes available for
decision making. In these ways, the x-intercept and rate parameters describe how efficiently
WM retrieves information, and the asymptote parameter describes WM capacity.

Aging is known to impair the speed of encoding new information in WM (Salthouse, 1992;
Salthouse & Babcock, 1991), and older adults have longer reaction times than young adults in
delayed item recognition (Anders et al., 1972; Eriksen, Hamlin, & Daye, 1973; Holtzer et al.,
2004; Zarahn, Rakitin, Abela, Flynn, & Stern, 2007). We therefore predicted a more acute
tradeoff for older adults than for young adults. In terms of our mathematical model, we
hypothesized that older adults would show a higher x-intercept and a lower rate parameter (both
indicating slower performance) because these two measures relate specifically to the speed of
information processing. The asymptote parameter is not speed related; it is associated with the
maximum capacity for information processing in WM, which is also known to deteriorate with
age (Zacks & Hasher, 1993). Thus, we similarly predicted that older adults would have a lower
asymptote (smaller capacity) than young adults would. Because we modeled performance
using a compound bounded exponential curve, we could predict how the resultant curves for
the two age groups would look on the basis of our various hypotheses. Figure 1 presents
hypothetical resultant curves showing a group difference for each individual fit parameter, as
well as for all three. Our hypotheses predicted that the actual resultant curves would resemble
those in Figure 1D.

Previous studies have shown that individuals differ greatly in their susceptibility to age-related
changes in cognitive function (Gold et al., 1995; Hultsch, Hertzog, Small, & Dixon, 1999;
Manly, Touradji, Tang, & Stern, 2003; Scarmeas, Levy, Tang, Manly, & Stern, 2001; Schaie,
1984; Stern et al., 1994; Wilson et al., 2000, 2002). Cognitive reserve (CR) theory posits that
individual differences in task performance give some individuals greater resilience than others
against age-related neural change (Stern, 2002; Stern et al., 2005). That is, if the neural network
underlying task performance is the same in young and old, individuals can still differ in how
quickly they must increase activation with the rising demands of a task (efficiency) or in the
maximum level of activation they can achieve (capacity; neural reserve is the overall term for
differential efficiency and/or capacity of a network). CR theory also posits that some older
adults develop more effective compensatory mechanisms than others against age-related
changes, recruiting brain networks not used by young adults (neural compensation).
Differential efficiency and capacity of the same network, as well as recruitment of
compensatory networks, have been observed in the neural activation associated with different
phases of WM tasks (Stern et al., 2008; Zarahn et al., 2006). Individual differences in the use
of these networks may be reflected in behavioral measures of WM ability.

In the present study, we used estimated verbal IQ, vocabulary, and years of education as proxy
measures of CR to investigate the relationship between WM and CR. Premorbid IQ and
vocabulary have proven to be strong proxies for CR, in that they are associated with slower
rates of cognitive decline in normal aging and reduced risk of developing dementia (e.g., S.
M. Albert & Teresi, 1999; Alexander et al., 1997; Corral, Rodríguez, Amenedo, Sánchez, &
Díaz, 2006; Solé-Padullés et al., 2007). Similarly, education has been shown to impart reserve
over an individual’s lifetime (Evans et al., 1993; Mortel, Meyer, Herod, & Thornby, 1995;
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Rocca et al., 1990; Stern et al., 1994), and individuals with higher levels of education
demonstrate slower cognitive and functional decline during normal aging (M. S. Albert et al.,
1995; Butler, Ashford, & Snowdon, 1996; Chodosh, Reuben, Albert, & Seeman, 2002;
Christensen et al., 1997; Colsher & Wallace, 1991; Farmer, Kittner, Rae, Bartko, & Regier,
1995; Lyketsos, Chen, & Anthony, 1999; Snowdon, Ostwald, & Kane, 1989). Moreover, we
have successfully used IQ, vocabulary, and education as proxies for CR in previous behavioral
and neuroimaging studies (e.g., Habeck et al., 2005; Scarmeas et al., 2004; Stern et al., 2005,
2008). Thus, we believe these measures serve as meaningful indicators of individual
differences in susceptibility to age-related cognitive impairment.

Our statistical analysis addressed the question of whether CR mediates retrieval dynamics in
object working memory. If CR does not modulate the aspects of WM characterized by our SAT
model, our CR measures should not statistically predict the fit parameter values across age
groups. If CR does modulate WM, our CR measures should predict the fit parameter values
either in the same way for both age groups (e.g., high IQ is associated with a higher rate
parameter in young and older adults) or differently for each group (e.g., high IQ is associated
with a higher rate parameter in older adults but not in young adults). To address the relationship
between CR and behavior, and to allow for these various possibilities, we included CR variables
and their interactions with age group as covariates in our statistical model.

Because CR accumulates over one’s lifetime and provides resilience against age-related
memory loss, we hypothesized that CR is more likely to modulate behavioral performance in
older adults. That is, we anticipated CR × Group interaction effects on the fit parameters such
that our CR measures would predict the fit parameter values in older adults but not in young
adults.

Method
Participants

Sixteen healthy young adults and 16 healthy older adults participated in this study. Young
adults were recruited via fliers or Internet ads, and older adults were recruited from senior day
centers located in Manhattan, New York. Table 1 provides descriptive demographics for each
group. All participants were right-handed, spoke English, and had normal or corrected-to-
normal vision. Participants had no past or current medical, neurological, or psychiatric
disorders, were not being treated with psychoactive drugs, and were screened to ensure the
absence of dementia. Given the age range of participants, subjects had to score 133 or higher
on the Mattis Dementia Rating Scale (Mattis, 1988) to be included in the study (cf. Mayo’s
Older Americans Normative Studies scaled scores; Lucas et al., 1998). All study participants
met this criterion, and no recruits were excluded from the study. We obtained informed consent
from all participants in accordance with the procedures of Columbia University Medical
Center.

Apparatus
Participants completed the experiment on a Macintosh G3 iBook computer with a 12-in. LCD
color monitor. Testing occurred in a well-lit room where the subject was approximately 25 in.
from the screen. The task was programmed and run using PsyScope software (Version 1.2.5;
Cohen, MacWhinney, Flatt, & Provost, 1993), and subjects entered responses on the computer
keyboard.

Procedure
Participants completed the study in a single session. After providing informed consent, they
completed a pretraining task, the DRT, and a brief neuropsychological battery.
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Pretraining was administered to ensure that subjects could meet the demands of the RSM
experiment. Pretraining consisted of a two-alternative forced-choice (2-AFC) object
discrimination task, divided into 10-trial blocks. Participants completed at least 5 blocks of the
2-AFC task and continued until they were able to respond accurately during the mask on at
least 9 out of 10 trials within a block. Subjects who could not meet this criterion after 50 blocks
would have been excluded from the study. However, all participants met criteria; young
participants completed an average of 5.56 ± 0.22 blocks of pretraining, and older participants
completed an average of 14.00 ± 2.60 blocks.

The DRT consisted of 11 blocks of 30 trials each, divided into three training phases and 1 test
phase. In Training Phase 1 (2 blocks), subjects received feedback after each trial about their
speed and their accuracy. At the end of each block, a summary displayed the number of trials
on which the subject responded both correctly and on time, as well as the number of trials when
the response was on time (regardless of choice accuracy). Training Phase 2 (3 blocks) provided
only speed feedback after each trial, and the summary for each block displayed only the number
of on-time responses. In Training Phase 3 (1 block), no feedback was provided. Participants
then completed 5 test blocks with no feedback, the results of which we used for statistical
analysis.

Participants were administered the Mattis Dementia Rating Scale test (DRS; Mattis, 1988) for
neuropsychological screening. With the exception of two subjects, young and older participants
also completed the vocabulary subtest of the revised Wechsler Adult Intelligence Scale
(Wechsler, 1981) and the National Adult Reading Test (NART; Grober & Sliwinsky, 1991)
as proxy measures of CR.

The entire protocol lasted about 2.5 hr: 70 min for pretraining and training, 50 min for testing,
and 30 min for the neuropsychological evaluation.

Tasks
In each trial of the pretraining 2-AFC task, participants were presented with one out of a fixed
set of two abstract shapes (described below), followed by the same mask used in the DRT. To
reduce the task’s memory demands, the same set of two shapes was used across all the
pretraining trials and blocks. The single shape was presented for a variable duration (similar
to the DRT probe item, described below), and during the mask, subjects had to identify which
of the two shapes they saw via computer key-press (the X key or the period key, depending on
the stimulus). After each response, they received speed and accuracy feedback. If the
participant responded before or after the mask, the feedback read, “Sorry, response made too
soon …” or “Sorry, time ran out …,” respectively. If the subject responded during the mask,
the feedback read either “Correct!” or “Fast enough, but wrong,” depending on response
accuracy. At the end of each block, a summary displayed the number of trials on which the
subject responded both on time and correctly.

Each DRT trial consisted of encoding, retention, and probe phases. The encoding phase
presented two shape stimuli (visual angle for the two-shape stimulus = 4° vertical × 26°
horizontal) for 3 s, followed by a 5-s retention interval during which the computer screen was
blank. Subjects then saw a single probe item (visual angle = 4° ± 4°) that either matched one
of the stimuli from the study set (true positive) or was completely different from both of them
(true negative). The probe item was presented for either 125, 250, 500, 1,000, or 2,000 ms and
was followed immediately by a 500-ms mask (gray square, visual angle = 4° × 4°), during
which subjects were instructed to respond. The current task differs from previous
implementations of the response-signal method in its use of a relatively long response window
following the removal of the probe stimulus. Our mask was 500 ms in duration, compared to
more typical values around 300 ms (Hintzman & Curran, 1994; Reed, 1973). On the basis of
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extensive pilot data, we made this modification to accommodate slower reaction times in older
adults.

Subjects responded during the mask by indicating whether the probe stimulus matched either
of the memory stimuli via computer key-press (X key or period key). Assignment of response
keys to the true positive and true negative conditions was counterbalanced across participants
within each age group. Participants were instructed to place greater emphasis on speed than
accuracy in responding and to guess rather than delay their response on trials when they felt
unsure. In training, the mask was followed by a 250-ms delay and a 1,750-ms feedback display.
Training Phase 1 provided speed and accuracy feedback identical to the feedback in the 2-AFC
task. Training Phase 2 provided only speed feedback, so the display for any on-time response
read ON TIME regardless of choice accuracy; the display for early or late responses was the
same as in the 2-AFC task. Figure 2 illustrates the visual sequence for a single test phase trial.

Each DRT block consisted of 30 trials. The crossing of two probe types (positive or negative)
and five probe durations yielded 10 conditions, which were repeated three times within a block.
Analyses included five testing phase blocks, so that from each participant we obtained a total
of 15 trials for each of the 10 conditions.

Within each block of 30 trials, there were 70 blank, 2,000-ms intervals, randomly interspersed.
When added to the minimum 3-s intertrial interval (ITI) preceding each trial, these intervals
resulted in a mean ITI of 9,119 ms (SD = 5,265 ms). This design element staggered the timing
of trial presentation so that subjects could not anticipate the onset of the next trial. The exact
duration of the ITI was determined to maximize statistical power in an ongoing functional
neuroimaging study.

Visual stimuli were selected from a set of 420 computer-generated closed-curve shapes
(Holtzer et al., 2004). These shapes were abstract and did not correspond to or intuitively relate
to real words or objects (see Figure 3). The mean pixel ratio of the shapes (white) to the
background (black) provided an estimate of their complexity, which was comparable among
encoding and probe stimuli within a single trial. Positive and negative trials were also matched
for complexity, and the overall complexity of the shapes was counterbalanced across all five
probe durations. At most, each individual shape appeared once across the three training phases
and once within the testing phase. Within training 228 shapes appeared twice, and in testing
120 shapes appeared twice. However, each combination of 3 shapes within a single trial (two
encoding stimuli plus one probe stimulus) was unique across the entire experiment.
Additionally, no shape occupied the same position (e.g., left side of the encoding stimulus)
more than once.

Statistical Analysis
We used a repeated-measures analysis of variance (ANOVA) to analyze reaction time (RT;
measured from the onset of the mask) with probe duration (five-level) as the within-subjects
variable and age group (two-level) as the between-subjects factor. We conducted a similar
analysis for the proportion of time-out trials (pTO), defined as the number of trials on which
subjects did not respond during the mask, divided by 15 (the total number of trials per
condition). CR covariates were not included in either of these models.

Proficiency at the task was calculated in terms of the discriminability measure dL, given by the
formula dL = ln{[H(1 - FA)]/[(1 – H) FA)]} where H = hits (correct true-positive probe trials),
FA = false alarms (incorrect true-positive probe trials), and ln is the natural logarithm function.
Response bias was calculated as CL, given by the formula CL = 0.5[ln{[(1 - FA)(1 - H)]/[(H)
(FA)]}] (Snodgrass & Corwin, 1988). With the same design used for RT, we conducted
repeated-measures ANOVAs to analyze both signal detection parameters. CR covariates were
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not included in these models. Planned comparisons between levels of the probe duration were
conducted using polynomial contrasts with one degree of freedom.

Last, to determine whether RT or pTO account for any of the variability in signal detection
measures, we conducted separate repeated-measure ANCOVAs on dL and CL with probe
duration as a five-level within-subjects variable and age group as a two-level between-subjects
factor. We included RT and pTO as covariates, and we included the interactions between these
continuous variables and the fixed effects as tests of homogenous slopes across fixed-effects
levels.

For all standard parametric tests involving probe duration, we report the actual degrees of
freedom, measuring statistical significance at the p = .05 level after Huynh-Feldt epsilon
correction for violations of the assumptions of the ANOVA.

We modeled the SAT between discriminability and total processing time (probe duration plus
reaction time) using a three-parameter bounded exponential curve (Hintzman & Curran,
1994). Each such curve is defined in terms of its x-intercept, asymptote, and slope, using the
compound equation: For x ≤ x-intercept, dL = 0; for x > x-intercept, dL = asymptote × {1 - exp
[-slope × (probe duration - intercept)]}, where x is the total processing time.

We derived best-fit curves for each individual’s performance in three steps: First, for each age
group and at each probe duration, we calculated the between-subject mean dL and the between-
subject mean total processing time, generating a SAT function for each age group. Second, we
fitted a three-parameter best-fit curve to these group-average SAT functions. We completed
this step simultaneously for both age groups to identify a set of fit parameters that optimizes
both best-fit curves at once (six parameters altogether, three for each group curve). Third, we
fitted similar curves to each individual’s SAT function: Using the intercepts, asymptotes, and
slopes of the group-average best-fit curves (from Step 2) as starting points, we carried out a
simple gradient descent procedure to estimate the parameter values for each individual’s best-
fit curve (Step 3), minimizing the residual to each subject’s data for each fit parameter. Each
subject’s unique parameter values served as the dependent variables in our statistical analysis.

For each of the three fit parameters (intercept, asymptote, and rate), we built a general linear
model (GLM) that proceeded in stages (method of heterogeneous slopes; Siegel, 1956). In the
first stage (full model), the following independent variables were used as predictors: age group,
years of education, NART IQ estimate, and age-scaled vocabulary score. We also added
interaction terms by multiplying the group-membership predictor with each of the subject-
specific predictors. Thus, the full model comprised seven predictors: group, education, NART
IQ, vocabulary, Group × Education, Group × NART IQ, and Group × Vocabulary. Including
these interaction terms allowed for formal tests of group heterogeneity of the slope of the
relation between the CR measures and the model fit parameters. After performing the full-
model analysis, we retained the covariate main effects and only those interaction terms that
yielded statistically significant regression weights. The results of the linear regression with the
reduced set of predictors are reported as the reduced model. The simple model contains only
the fixed effect and is relevant when none of the covariate terms are significant in the reduced
model.

Because we used group-average fit parameters to begin to estimate each individual’s fit
parameters in Step 3, our GLMs violated the assumption of independent errors, and so we could
not rely on standard parametric assumptions to determine the probabilities associated with test
statistics. Instead, we employed a nonparametric permutation procedure to generate the null-
hypothesis distribution of regression weights from the data itself. This was achieved by
randomly sampling from the data 10,000 times without replacement, destroying the subject-
to-group assignment. For each such permuted data set, we performed our fitting routine to

Kumar et al. Page 7

Psychol Aging. Author manuscript; available in PMC 2009 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



generate the three fit parameters anew. The fit parameters obtained from the permuted data
sets were then used as dependent variables for general linear modeling (see above), while the
subject-to-group assignment for the independent variables was left intact. This generated a
null-hypothesis distribution for each regression weight. This process was repeated as needed
for the full, reduced, and simple GLMs.

To assess statistical significance, we empirically estimated the percentile location of the
unpermuted data set’s regression weight in relation to the computed null-hypothesis
distribution. Our significance test was two-tailed: the p level equaled the fraction of absolute
values in the null-hypothesis distribution that lay beyond the absolute value of the unpermuted
data set’s regression weight. Therefore, a p level of 0.05 meant the absolute value of the
unpermuted data set’s regression weight was larger than at least 95% of the absolute-valued
regression weights produced by the permutation procedure. Although we derived p values from
two-tailed t distributions, our hypotheses about the effects of age group on the fit parameters
are unidirectional (see Introduction). So for main effects of age group, we present one-tailed
p values derived by halving the permutation test p levels. For the effects of CR covariates,
about which we do not offer directional hypotheses, we report two-tailed p values.

For comparison, we used standard parametric methods to test the same statistical models
submitted to permutation testing. Univariate ANCOVA was performed for each of the
individual fit parameters—intercept, asymptote, and rate—with age group (two-level) as the
between-subjects factor and with proxy measures of CR—education, NART IQ, and
vocabulary—as covariates. As in our nonparametric reduced model, we retained only those
interaction terms that yielded statistically significant regression weights.

Results
Neuropsychological Measures

Table 1 shows participant demographics and neuropsychological test results for each age
group. Young and older adults performed comparably on the DRS, vocabulary, and NART
tests; they had equal (and high) levels of education; and they were equivalent in terms of sex
distribution.

Analysis of Reaction Time and Proportion of Time-Out Trials
The analysis of SAT using the RSM is predicated on controlling a participant’s total time for
processing the probe item. The response window in the current task is longer than in previous
implementations of the RSM (Hintzman & Curran, 1994; Reed, 1973), allowing for greater
within- and between-group variability in processing time that could complicate the
interpretation of the SAT analyses. Thus, we analyzed reaction time from the mask onset as a
function of age group and probe duration to determine, for example, whether young adults had
more processing time than older adults had and whether this difference was comparable across
probe duration levels. For the same reasons, we also analyzed the proportion of trials on which
subjects timed out (pTO), defining time-outs as trials with no response recorded during the
mask. Figures 4A and 4B show the relationships between RT and probe duration and between
pTO and probe duration, respectively.

Results of the RT analysis indicated no effect of age group on RT, F(1, 30) = 0.04, ns, nor any
interaction between age group and probe duration, F(4, 120) = 0.636, ns. However, RT did
vary as a function of probe duration, F(4, 120) = 56.22, p < .001, such that subjects had longer
RTs for shorter probes. This variability in RT across conditions indicates that we did not control
perfectly for total processing time, so there may be a bias in analysis of the discriminability
measures. For this reason, we include RT as a covariate in the dL analyses reported in the next
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section. The inverse relationship between RT and probe duration may indicate that the probe
was serving as a warning signal for the presentation of the mask, much like the warning signal
effect on RT shown in variable foreperiod experiments (e.g., Niemi & Naatanen, 1981).
Because our SAT model is fit to functions of dL with respect to total processing time (probe
duration + RT), analysis of the fit parameters accounts for the differences in RT across
conditions.

ANOVA of pTO showed an effect of age group such that older adults failed to respond on
more trials than younger adults, F(1, 30) = 13.56, p < .001, and both age groups’ pTO varied
as a function of probe duration, F(4, 120) = 17.20, p < .001. The effects of group and probe
duration on pTO also demonstrate the experiment’s imperfect control of processing time,
motivating inclusion of pTO as a covariate in the dL analyses reported in the next section. Post
hoc review of the data found responses recorded on TO trials during the ITIs following these
trials. That is, older participants rarely failed to respond but rather made the occasional response
with latency greater than the mask duration. These responses did not contribute to the mean
RT, explaining the absence of an age group difference in RT. Overall, it appears that older
participants have an RT distribution similar to that of the young participants but with a longer
right tail.

Signal Detection Measures
We plotted dL and CL against total processing time to depict the relationship between speed
and accuracy (Figures 4C and 4D). Effects of probe duration on CL were not significant, F(1,
30) = 2.84, ns, indicating no response bias across all probe duration conditions. There was a
significant effect of probe duration on dL, F(1, 30) = 90.25, p < .001, including both a linear
trend, F(1, 30) = 41.34, p < .001, and a quadratic trend, F(1, 30) = 14.29, p < .001. The linear
characteristic of the curve shows that discriminability increases with processing time, and the
quadratic characteristic shows that this increase decelerates as processing time increases. These
results are consistent with the hypothesis that there is an SAT between processing time and
discriminability.

In addition, polynomial planned contrasts with the ANOVA probe duration effect also revealed
a significant interaction between group and probe duration in the quadratic effect, F(1, 30) =
4.22, p < .05, and in the fourth-order effect, F(1, 30) = 4.73, p < .05, with group mean dL
increasing to a level of 1.42 for young adults and 1.06 for older adults at a probe duration of
2,000 ms. This demonstrates that the degree of SAT depends upon age group, with a more
acute tradeoff for older adults. That is, with the successive increases in probe duration, older
adults showed a slower improvement in performance than young adults (Figure 4C). Also,
maximum recognition memory discriminability for these abstract visual stimuli was lower than
in previous experiments that used letter stimuli and a 3-s probe duration (Habeck et al.,
2005; Holtzer et al., 2004).

As noted in the previous section, the variability in RT and pTO across conditions implies a
failure to control perfectly for probe processing time, which may be reflected in initial analyses
of the discriminability data. To determine whether the effects of interest were independent of
potential processing time confounds, we conducted analyses of covariance (ANCOVAs) for
dL and CL.

The ANCOVA for dL, with RT and pTO as covariates, revealed three-way interactions among
age group, probe duration, and RT, F(5, 159) = 5.15, p < .001, and among age group, probe
duration, and pTO, F(5, 159) = 3.87, p < .05. These effects show that RT and pTO predicted
discriminability differently for each age group and at each probe duration, indicating that in
the simple ANOVA for discriminability, the effects of probe duration were biased. However,
the effects of probe duration persisted in the ANCOVA: There was still an independent effect
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of probe duration on dL, F(4,159) = 21.15, p < .001, and there was still an independent
interaction between probe duration and group, F(4, 159) = 3.18, p < .05. Thus, the ANCOVA
corroborated the results of the ANOVA, and also like the ANOVA, it yielded no significant
effects of age group alone.

The ANCOVA for CL, with RT and pTO as covariates, yielded similar results for RT. A three-
way interaction among group, probe duration, and RT, F(5, 159) = 4.75, p < .001, shows that
RT predicted response bias differently for each age group and at each probe duration, indicating
a bias in the simple ANOVA for CL. Nonetheless, the ANCOVA for CL, like the ANOVA for
CL, showed neither an effect of group, F(1, 159) = 0.12, ns, nor an effect of probe duration, F
(4, 159) = 0.62, ns, on response bias.

Analysis of Model Fit Parameters
We transformed the discriminability data into a best-fit curve for each subject, collapsing across
probe durations. The three unique fit parameters for each individual’s curve were the dependent
variables in separate statistical analyses. Figure 5 shows some examples of model fits to
individuals’ SAT functions. Figure 6 shows the group averages of the individual best-fit curves.
Goodness of fit for each regression was measured in terms of R2, where R(X, Y) = [Cov(X,
Y)]/[StdDev(X) × StdDev(Y)] for any set of data points (x, y). Mean R2 was .6074 ± .0840 for
the young adults group and .4945 ± .0788 for the older adults group. The age groups did not
differ significantly in the quality of their fits, t(1, 30) = 0.980, ns.

Figure 7 compares the distributions of numerical values for each fit parameter (x-intercept,
asymptote, and rate) between age groups. Table 2 shows the correlations among the three fit
parameters for each age group. The only significant correlation was between rate and x-
intercept in the young adults group, but this observation likely results from the restricted range
of x-intercept values in our mathematical model (floor effect in the older adults group; see
Figure 7A). The absence of other correlations shows that each fit parameter represents a
separate component of task performance.

For each of the three parameters, we built three GLMs: a full model, a reduced model, and a
simple model. The full model included all CR variables as covariates, as well as the interactions
of these variables with age group. The full model allowed for the possibility that age group,
every covariate, and every interaction term predicts the value of a given fit parameter. If any
interactions did not predict a fit parameter (i.e., not significant at the α = .05 level, two-tailed),
these terms were dropped from the model. The GLM with the CR covariates and remaining
interactions (if any) was considered the reduced model. If no covariates or interactions reached
statistical significance even in the reduced model, we concluded that CR does not modulate
that fit parameter. In this case, we built a simple model with age group as the sole predictor,
because this is the fixed factor—the independent variable of interest. The mathematical logic
behind this process (known as the heterogeneous slopes method; Siegel, 1956) is described in
detail in the Method section. Table 3 gives a quantitative summary of the successive GLMs
for each fit parameter.

In the full model, x-intercept did not differ across age groups, nor did the reduced model show
any significant effects of CR covariates or interactions ( p > .2 for all predictors). Because CR
did not modulate age-related differences in x-intercept, we built a simple model without any
covariates or interactions; even here, we observed no difference in performance across age
groups. This suggests that the earliest time at which information becomes available to WM
remains the same across a person’s lifetime.

Neither the full model nor the reduced model for asymptote yielded any significant effects of
the covariates or of interactions between the covariates and age group ( p > .3 for all predictors).
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Because group differences in asymptote could not be attributed to CR, we ran a simple GLM
for asymptote with age group as the sole predictor variable. Here, asymptote was higher for
young adults than for older adults ( p < .05, one-tailed). This suggests that aging impairs the
maximum capacity for information processing in WM, but the extent of impairment is not
mitigated by CR.

In the full model for the rate parameter, only NART IQ, education, and the Group × Education
interaction were significant, so the other interaction terms were dropped in the subsequent
GLM. The reduced model showed an effect of group on rate ( p < .05) such that young adults
had a higher rate parameter than older adults (Figure 7C), which agrees with the previous
observation that young adults had a more quickly rising SAT function (Figure 4C). Thus, aging
impairs the rate at which information for the recognition decision accumulates over time. The
reduced model also showed an effect of education on rate ( p < .05) and an education by group
interaction ( p < .05) such that high levels of education predicted a higher rate for older adults
and a lower rate for young adults. In other words, education level mitigated the effect of age
on rate, and the degree to which education improved rate was itself age-dependent. NART IQ
also predicted the value of the rate parameter ( p < .05), such that high IQs were associated
with higher rates for both age groups. Because the reduced model showed CR to modulate
group differences in rate, there was no need to build a simple model for the rate parameter.

We verified these nonparametric analyses using standard parametric statistics. Individual
GLMs for each fit parameter, including the CR covariates, showed identical results to those of
the nonparametric method, except that the reduced rate parameter model showed no effect of
education alone, F(1, 25) = 2.642, ns.

Discussion
On the basis of our prior understanding of the relationships between aging, WM, and CR, we
hypothesized that: (a) there would be a tradeoff between processing time and accuracy in the
DRT, with a more acute tradeoff for older adults; (b) older adults’ more acute speed—accuracy
tradeoff would be evident in higher x-intercept, lower asymptote, and lower rate parameters
from the SAT model compared to young adults; and (c) proxy measures of CR would predict
WM ability (in terms of the fit parameters), particularly for older adults.

In keeping with Hypothesis 1, discriminability measures revealed a clear tradeoff between
processing time and proficiency at the DRT, with discriminability reaching its maximum at
the 2,000 ms probe duration. Also as predicted, older adults showed a more acute tradeoff than
young adults did. When we modeled each subject’s SAT data as a three-parameter compound
bounded exponential curve, we found age-related differences in some but not all aspects of
retrieval dynamics. Hypothesis 2 predicted that all three parameters would differ across groups,
so that the resultant curves would look like Figure 1D. In fact, both age groups showed
comparable x-intercepts, whereas young adults approached a greater maximum level of
recognition memory discriminability at a greater rate than older adults (Figure 6). Finally, in
regard to Hypothesis 3, CR modulated the effect of age on rate but not on x-intercept or
asymptote. Below we discuss the results for each individual fit parameter.

Intercept
The curve’s x-intercept represents the time at which information in WM first becomes available
for decision making and discriminability rises above chance. This value was comparable across
age groups, and CR measures did not predict the value of the x-intercept. These results disaffirm
parts of Hypotheses 1 and 3, respectively. The lack of a group difference in intercept may be
due to the large variability in intercept parameter values (young adults: M = 0.282, SD = 0.189;
older adults: M = 0.259, SD = 0.248; see Figure 7A), as well as a floor effect in estimates of

Kumar et al. Page 11

Psychol Aging. Author manuscript; available in PMC 2009 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the x-intercepts for the older group. Both the variability and the floor effect indicate that the
x-intercept term was underdetermined, most likely because discriminability was not zero at the
shortest probe duration (see Figure 4C). It is possible that our data obscure a real age-related
difference in the temporal threshold for discriminability; but from the present analyses we must
conclude that intercept does not vary, either with age or with CR. A future experiment using
the RSM should include a shorter probe duration or increase the overall difficulty of the task,
so that the obtained SAT functions actually reach floor at the shortest processing times.

Asymptote
The maximum value at which the curve tapers off represents the maximum level of
discriminability that can be attained in WM. Our results support Hypothesis 2 that young adults
have a higher asymptote than older adults do and that aging impairs maximum discriminability.
Because the broader statistical model including measures of CR showed no significant effects,
we further conclude that CR does not mediate this age-related impairment, partially
disaffirming Hypothesis 3.

Rate
The rate of change of the exponential curve represents the rate at which information becomes
available for decision making. Young adults had higher rates than older adults did, showing
that aging impairs the rate of information accumulation in WM. With respect to the CR
measures, high IQ predicted a higher rate for all participants, and high levels of education
predicted a higher rate for older adults only. The interaction of age and education in predicting
the rate parameter is largely due to an association between education and rate in the older adults
and the absence of such an association in the young adults, who have little variability in
education. Overall, the rate parameter differs from intercept and asymptote in that it changes
with CR variables, which are known to predict behavioral resistance to age-related pathology
(Stern, 2002). Below we discuss some of the limitations of this experiment and then the
implications of our findings for theories of WM and CR.

A methodological limitation of the current study is that the long time course of our delayed-
response task (DRT; 8–10-s trials with a 5-s delay) may have resulted in a temporal overlap
between short-term and long-term memory processes. Given the assumption that WM is
divided into encoding, rehearsal, and retrieval phases, and given the additional assumptions of
the compound bounded exponential model, we could not avoid this overlap in our experimental
paradigm. Additionally, DRTs of comparable length, with delay periods ranging from 6.5–10
s, have been used reliably in previous studies of WM (e.g., Gazzaley, Sheridan, Cooney, &
D’Esposito, 2007; Holtzer et al., 2004).

A further theoretical limitation of this experiment concerns the model from which we derived
the fit parameters. We based our approach on a model used to characterize retrieval in verbal
episodic memory for a single age group (Hintzman & Curran, 1994), but the present study
focuses on object working memory across two different age groups. Moreover, our
experimental design is quite different from that of Hintzman and Curran’s (1994) study. Our
subjects received significantly less training (hours as opposed to days), and their window for
responding in the task was larger (500 ms as opposed to 300 ms). Nevertheless, the compound
bounded exponential model is a rather general model of the threshold for use and the exhaustion
of a limited resource over time because it makes only three assumptions: first, that accuracy is
at chance until a certain minimum level of information accumulates; second, that memory has
a limited capacity; and third, that this capacity is reached with decreasing efficiency over time.
We believe our assumptions are as valid for working memory as for long-term verbal episodic
memory, and that young and older adults differ only quantitatively in their WM dynamics.
Thus, given the model’s formulation, its use here is appropriate.
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Although our mathematical model is a general one, we focused on a very specific memory
process, manipulating only the retrieval phase of WM for two abstract objects in a visual
paradigm. This limits the generalizability of our findings in that we cannot extrapolate our
results either to memory for verbal or semantic information or to other sense modalities besides
vision. It is also difficult to relate our conclusions to the encoding and rehearsal processes in
WM. However, it may be possible to apply our methodology to encoding and rehearsal
dynamics (see below). Our methodology can also be easily adapted to study memory for heavier
and smaller workloads and perhaps to study different sense modalities.

The present study is important because it successfully applies the RSM in the context of healthy
aging. The RSM, together with Hintzman and Curran’s (1994) modeling method, provides
quantitative measures of components of WM that, until now, have been discussed in mainly
qualitative terms as they relate to aging. Previous experiments have used simple measures
(reaction time, number of items retained, etc.) to describe age-related differences in retrieval
ability, allowing for only qualitative discussions of concepts like WM efficiency and capacity.
The fit parameters derived from our mathematical model provide quantitative measures that
relate directly to these concepts: x-intercept and rate characterize the efficiency of WM retrieval
(how soon information can be accessed and how quickly it accumulates), whereas asymptote
characterizes capacity (how much information can accumulate) in units of discriminability.
Below we discuss how the rate and asymptote parameters inform past research.

The rate parameter may be a better measure of WM speed than reaction time because it avoids
the conflation of efficiency and capacity. For example, Holtzer et al. (2004) measured retrieval
efficiency in terms of reaction time and found that when the memory set size gets large (e.g.,
six letters), response accuracy drops in older adults but not in young adults. This finding reveals
a difference in WM capacity that complicates estimates of WM efficiency in terms of speed
(Stern et al., 2008; Zarahn et al., 2005). The rate parameter derived in the present study
explicitly accounts for SAT, encompassing the relationship between the duration and the
effectiveness of the retrieval process. Moreover, this parameter is computed simultaneously
with estimates of the fastest effective memory processing (x-intercept) and the maximum
efficacy of WM (asymptote). So the process for estimating the rate parameter takes into account
the important distinction between the amount of information that is immediately available to
WM and the amount of information that can be recalled at all (cf. Sternberg, 1966). In addition
to providing a good quantitative measure of WM efficiency, the age-related impairment of rate
affirms previous studies that have shown aging to specifically impair the speed of WM retrieval
(e.g., Holtzer et al., 2004; Salthouse, 1992; Salthouse & Babcock, 1991).

The asymptote effect affirms previous assertions that aging limits the capacity of WM (e.g.,
Zacks & Hasher, 1993); and like rate, the asymptote parameter provides an improved
characterization of capacity. Although previous aging research has commonly measured
capacity as the quantity of information (e.g., number of items) that can be processed before
memory failure occurs (e.g., Anders et al., 1972; Holtzer et al., 2004), asymptote measures
one’s maximum ability to use available information. Age-related impairment may involve
similar mechanisms for both concepts of capacity. That is, if aging impairs a cognitive function
that is relevant to a variety of tasks, such as attention (e.g., Greenwood & Parasuraman,
2004; West, 2004), this could result in decreased WM capacity regardless of how capacity is
measured. But because asymptote quantifies the accuracy of WM, it is more broadly applicable
to theoretical assertions about capacity.

In these ways, characterizing the retrieval process with the SAT model parameters has
conceptual advantages over previous approaches that have used individual, direct measures of
performance. The present method for modeling SAT may also prove useful in manipulations
of the encoding and rehearsal processes. For example, an experiment similar to the current
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study in which the timing of the presentation stimulus is manipulated instead of the probe could
provide similarly meaningful measures of WM encoding dynamics, demonstrating the specific
effects of aging on encoding ability.

A quantitative characterization of WM efficiency and capacity also provides a useful bridge
to understanding cognitive reserve. CR insulates aging individuals from the cognitive
consequences of degenerative neuropathology (Stern, 2002; Stern et al., 2005). We tested
proxies of CR as predictors for our fit parameters, and we found that CR provides resistance
against age-related impairments in WM efficiency (rate) but not WM capacity (asymptote).
To whatever extent the efficiency of WM retrieval decreases over one’s lifetime, individual
differences in IQ, vocabulary, and education modulate the degree of natural memory loss. Other
factors that have been shown to impart reserve, such as occupational attainment and leisure
activity (Evans et al., 1993; Stern et al., 1994), are likely to temper the loss of efficiency as
well. On the other hand, the extent to which aging impairs the capacity of WM retrieval is
independent of these reserve-related factors.

Prior research has shown a relationship between measures of CR and the activation of
individual brain regions or brain-wide networks (Habeck et al., 2005; Stern et al., 2003,
2005). Stern (2002) has hypothesized that one aspect of the implementation of CR is neural
reserve, which involves individual differences in unimpaired cognitive networks (those used
by young, healthy individuals), particularly with respect to the efficiency and capacity of
functional memory networks. The modulating effect of CR on WM retrieval efficiency
observed in the present study may also extend to neural efficiency, in that individuals with
greater CR can ramp up neural activation more quickly as task demands increase. Similarly,
the absence of a CR effect on WM retrieval capacity may also extend to neural capacity, in
that the degree of neural activation an individual can achieve is only a function of age and not
of CR. We cannot definitively address these issues in a behavioral paradigm. Future
neuroimaging studies that employ the RSM along with CR measures will clarify how reserve
modulates neural activation associated with WM, while providing a quantitative
characterization of WM retrieval dynamics.
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Figure 1.
Hypothetical sets of exponential curves for modeling speed—accuracy tradeoff across two
groups of subjects. Young adults (solid lines) always show better performance than older adults
(dotted lines). A: Young adults have a lower x-intercept than older adults; asymptote and rate
are the same across groups. B: Young adults have a higher asymptote than older adults; x-
intercept and rate are the same across groups. C: Young adults have a higher rate than older
adults; x-intercept and asymptote are the same across groups. D: Young adults have a lower
x-intercept, higher asymptote, and higher rate than older adults. dL = discriminability measure.

Kumar et al. Page 18

Psychol Aging. Author manuscript; available in PMC 2009 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Schematic representation of the delayed response task. After a 1,000-ms intertrial interval,
presentation stimuli were shown for 3,000 ms, followed by a 5,000-ms blank retention period.
Next, the probe shape was shown for a variable amount of time (five different probe durations),
and a 500-ms mask immediately followed the probe. Subjects were instructed to respond during
the mask.
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Figure 3.
Examples of the experimental shapes. Each row is a given trial: The first two columns are the
presentation shapes, and the last column is the probe shape. The three shapes of each trial (row)
are matched for complexity by mean pixel ratio. True negative trials are represented in Rows
1 and 3. True positive trials are represented in Rows 2 and 4. From “Age-related differences
in executive control of working memory,” R. Holtzer, Y. Stern, and B. C. Rakitin, 2004,
Memory & Cognition, 32, Appendix, p. 1345. Copyright 2004 by the Psychonomic Society.
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Figure 4.
Data for reaction time, proportion of time-out trials, and signal detection measures. A: reaction
time versus probe duration. B: pTO versus probe duration. C: dL vs. total processing time. D:
CL versus total processing time. Data shown for 16 young adults (unfilled triangles, solid lines)
and 16 older adults (filled circles, dotted lines). Error bars represent standard errors. dL =
discriminability measure; CL = response bias.
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Figure 5.
Sample individual data for two young adults and two older adults. Dotted lines represent
individual discriminability data at the five levels of processing time; solid lines represent best-
fit curves. Because each individual fit is estimated from a best-fit curve for the relevant age
group, some curves fit the discriminability data better than others. A and B show the most exact
fits for a young adult and an older adult, respectively; C and D show the least exact fits. R2

values indicate the quality of each best-fit curve regressed to the actual data set.
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Figure 6.
Best-fit curves for each age group. The older adult group is represented by filled circles and
the young adult group is represented by the unfilled triangles. The fit parameter values that
define these two curves are the averages of the parameter values for each individual in the
relevant group. Error bars represent standard errors.
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Figure 7.
Box plot distributions for fit parameter values by age group. A: x-intercept for older adults
(M = 0.259 ± 0.062 s, Mdn = 0.050 s) and young adults (M = 0.282 ± 0.047 s, Mdn = 0.321 s).
B: Asymptote for older adults (M = 1.304 ± 0.127 dL, Mdn = 1.300 dL) and young adults (M
= 1.769 ± 0.190 dL, Mdn = 1.685 dL). C: Rate for older adults (M = 1.543 ± 0.250 dL/s, Mdn
= 1.143 dL/s) and young adults (MN = 2.276 ± 0.362 dL/s, Mdn = .832 dL/s). The horizontal
lines in each box plot show median fit parameter values. Error bars represent standard errors.
Asterisks represent outliers. O = older adults; Y = young adults; dL = discriminability measure.

Kumar et al. Page 24

Psychol Aging. Author manuscript; available in PMC 2009 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kumar et al. Page 25

Table 1
Participant Demographics and Neuropsychological Test Results

Variable Older Young

Age range 67-81 18-32

Age* 72.8 ± 5.1 24.6 ± 3.7

%Female 68.75 50.00

Education 14.3 ± 2.4 15.9 ± 2.5

NART IQ 110.515 ± 9.583 116.383 ± 8.610

Vocabulary 46.3 ± 12.8 54.5 ± 8.8

DRS 140.1 ± 3.7 141.9 ± 2.0

Note. Values for age, education, National Adult Reading Test (NART) IQ, Vocabulary, and Mattis Dementia Rating Scale (DRS) are the mean ± 1 standard
deviation. Education is measured in years. All t tests assume equal variances, except DRS, where Levene’s test for equality of variances indicates equal
variances should not be assumed.

*
p < .05, 2-tailed t test.
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Table 2
Correlations Among the Three Fit Parameters

Variable x-intercept Asymptote Rate

Young adult group

x-intercept 1.000 0.086 0.771*

Asymptote 0.086 1.000 0.019

Rate 0.771* 0.019 1.000

Older adult group

x-intercept 1.000 -0.124 0.308

Asymptote -0.124 1.000 0.622

Rate 0.308 0.622 1.000

Note. Table shows Pearson correlation values.

*
p < .05.
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Table 3
General Linear Models Predicting Each of the Three Fit Parameters

Variable Full Reduced Simple

x-intercept

Group 0.72 0.77 0.96

Education 0.22 0.23

NART IQ 0.44 0.47

Vocabulary 0.96 0.47

Group × Education 0.25

Group × NART IQ 0.94

Group × Vocabulary 0.91

Asymptote

Group 0.78 0.31 0.07

Education 0.44 0.41

NART IQ 0.42 0.40

Vocabulary 0.87 0.66

Group × Education 0.63

Group × NART IQ 0.48

Group × Vocabulary 0.21

Rate

Group 0.62 0.00

Education 0.05 0.06

NART IQ 0.02 0.01

Vocabulary 0.16 0.19

Group × Education 0.00 0.01

Group × NART IQ 0.13

Group × Vocabulary 0.59

Note. Cells show p values for each predictor’s significance in the corresponding model. The full model includes all covariates and interactions. The reduced
model drops all nonsignificant interactions but maintains all covariates. The simple model measures only the effect of age group, without any covariates.
All probabilities were determined nonparametrically via the method of permutations (see Method section). The simple model is the final model for the
x-intercept and asymptote parameters, and the reduced model is the final model for the rate parameter. NART = National Adult Reading Test
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