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Abstract
The FMR1 gene is involved in three different syndromes, the Fragile X syndrome (FXS), premature
ovarian insufficiency (POI) and the Fragile X-associated tremor/ataxia syndrome (FXTAS) at older
age. Fragile X syndrome is caused by an expansion of a CGG repeat above 200 units in the FMR1
gene resulting in the absence of the FMR1 mRNA and protein. The FMR1 protein is proposed to act
as a regulator of mRNA transport and of translation of target mRNAs at the synapse. FXS is seen as
a loss of function disorder. POI and FXTAS are found in individuals with an expanded repeat between
50–200 CGGs and are associated with increased FMR1 mRNA levels. The presence of elevated
FMR1 mRNA in FXTAS suggests that FXTAS may represent a toxic RNA gain-of-function effect.
The molecular basis of POI is yet unknown. The role of the FMR1 gene in these disorders is discussed.

Introduction
Fragile X syndrome (FXS) is the most prevalent cause of inheritable mental retardation often
presenting as an autism spectrum disorder with a frequency of 1:4000 males and 1:6000 females
(for review [1]). FXS is an X-linked disorder and is notable for its unusual inheritance pattern,
showing increased penetrance as the mutant gene passes to subsequent generations (the
Sherman paradox) [2]. In 1991 the responsible gene was identified by positional cloning and
named the fragile X mental retardation-1 gene (FMR1) [3] FXS is almost exclusively caused
by an expansion of a CGG repeat in the 5′ untranslated region of the FMR1 gene and was the
first example of a trinucleotide repeat expansion mutation (Figure 1). In the normal population,
the CGG repeat is polymorphic and ranges from 5–55 CGGs with an average length of 30 CGG
units [4]. In Fragile X patients, however, the CGG repeat is found to be expanded beyond 200
repeats known as the full mutation (FM), that is usually hypermethylated and the methylation
extends to the adjacent promoter region of the FMR1 gene [3,5,6]. As a consequence the gene
is transcriptionally silenced and the gene product, the fragile X mental retardation protein
(FMRP), is absent.

Unmethylated expansions of 55–200 CGG units, called premutations (PM), are unstable in
meiosis and are found in both males and females and may expand to a full mutation only upon
maternal transmission to the next generation. The risk of transition is dependent on the size of
the premutation, which accounts for the Sherman paradox [4]. The smallest CGG repeat
number known to expand to a full mutation is 59 repeats to date [7].
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FMR1 protein
The cognitive impairment in FXS is caused by the absence of the fragile X mental retardation
protein (FMRP) in neurons. FMRP expression is widespread with abundant expression in
neurons and with testicular expression in spermatogonia [8–13]. The subcellular distribution
of FMRP is largely cytoplasmic, with high concentrations of FMRP found associated with
(poly)ribosomes attached to the endoplasmic reticulum and with free ribosomes in the
cytoplasm, at the bases of dendrites and within dendritic spines [10,12,14,15]. Interestingly,
both in vitro and in vivo studies illustrated the presence of FMRP in the nucleus [12,14,16–
19]. The association of FMRP with ribosomes is mRNA dependent via large ribonucleoprotein
(RNP) particles, which contain several other proteins including FXR1P and FXR2P, nucleolin,
YB-1, NUFIP1, CYFIP1 and CYFIP2 [20–23].

Expansion of the fragile X mutation
Many models have been proposed to explain the expansion of trinucleotide repeats. One of the
first proposed mechanisms involved in repeat instability at the molecular level was slippage
of the replication fork during replication. Unpaired bases form loops, which result in
expansions or contractions in a next round of replication, depending on whether the looped
repeats are located in the newly synthesized or template strand [24]. However, slippage alone
cannot explain all aspects of repeat expansions, especially large expansions and contractions.
Strong experimental support came from studies in a yeast model deficient in RAD27.
RAD27, like its mammalian homologue FEN1, is involved in removing DNA loops, such as
those arising during displacement synthesis of the Okazaki fragments. As predicted by the
above model, propagation of a CGG repeat in the RAD27 null background results in a highly
significant increase of repeat expansions [25].

Recognition of the unusual structural properties of trinucleotide repeats yielded new insights.
Disease-causing repeats are almost exclusively formed by (CNG)n –triplets. Single-stranded
(CNG)n can form hairpin-like structures that can include both Watson-Crick and mismatched
base pairs. Due to their different sequences, the leading and lagging strand have different
tendencies to form hairpins. The secondary structures are likely to affect recognition and
subsequent repair or recombination of this structure [26,27]. Unusual DNA structures may stall
DNA polymerases. Studies in yeast replication mutants showed a marked increase in frequency
of repeat instability. A complex model based on replication fork stalling and restarting is
described in detail by Mirkin [28].

Unlike other trinucleotide repeat disorders such as DM1 there is absence of repeat instability
in somatic cells. For full mutations it has been proposed that methylation stabilizes the CGG
repeat and prevents expansion or contraction. However, males with an unmethylated full
mutation do not show somatic instability of the repeat [29]. Recently human embryonic stem
cells containing a full mutation have been described [30]. The original embryonic cells show
clear instability of the repeat, but after subcloning the unmethylated repeat becomes stable
while the cells are still displaying all the characteristics typical of embryonic stem cells.
Premutation alleles (that are not methylated) are also stable. What is causing this different
behavior of the repeat in different repeat disorders is still unknown.

As observed for other dynamic mutations, the degree of expansion in humans depends on the
gender of the transmitting parent. Repeat expansion from the premutation to the full mutation
only occurs during maternal transmission. The maternal transmission bias could result from
sex-specific differences in gametogenesis leading to the production of full expansion oocytes
in females and premutation size repeats in sperm in carrier males. This is compatible with the
observation that in sperm from full-mutation male patients only a premutation is found [31].
If the zygote starts development with a fully expanded FMR1 repeat, then somatic mosaicism
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must result form reductional repeat instability limited to a window in early development. Such
reductional instability may be even more pronounced in the fetal testes. This contraction
hypothesis is supported by evidence that in a 17-week old male fetus carrying a FM, germ cells
harbor a premutation, while in the other cells a full mutation is present [32]. However, the
timing of repeat expansion during development remains uncertain. A prezygotic model predicts
that an expansion of PM to FM could occur during maternal meiosis, with the FM contracting
to a PM in gametes of male offspring. PM gametes might have some selection advantage either
due to the presence of FMRP, or against the presence of an expanded CGG-repeat [32].
Furthermore, FMs are responsible for a delay in replication of the FMR1 gene during the cell
cycle [33]. Thus, primordial germ cells with a PM might have a proliferative advantage, thereby
overgrowing FM cells. A second model considers a postzygotic expansion, direct after
separation of the germ line. It assumes that the FM allele has never been present in male or
female gametes [34]. In contrast to this hypothesis, oocytes of a foetal female FM carrier show
only FM alleles [32]. A final conclusion can only be drawn after analysis of oocytes from a
PM carrier. This material is not available for obvious reasons. Expanded (CGG)n knock-in
mouse models have been developed [35,36], that show intergenerational repeat instability
[36,37]. When the CGG repeat in the mouse expands into a full mutation they might be used
to study the timing of repeat instability.

Epigenetic changes in the FMR1 gene
Methylation of the expanded FMR1 CGG repeat occurs early in embryonic development and
is a dynamic process. In early germ cells from female FM fetuses, the FMR1 repeat is fully
expanded and unmethylated [32], whereas in chorionic villus samples from FM fetuses, the
expanded repeat in this extraembryonal tissue is methylated to an increasing degree as
development progresses [38]. The difficulty in studying this biological phenomenon is the
absence of suitable material for study. Transgenic mouse models bearing more than 200 CGG
repeats (human origin) within the murine Fmr1 gene have been generated but they do not show
epigenetic changes up till now [36,37]. Recently, Eiges et al. developed an embryonic stem
cell line that was shown to contain the FM of FMR1 with repeats up to 1000 triplets [30]. In
this pluripotent undifferentiated stem line, the FMR1 gene is unmethylated and
transcriptionally active. When differentiated as embryoid bodies, transcription of FMR1 is
nearly eliminated. The embryoid bodies show a substantial increase in FMR1 DNA
methylation, similar to cells derived from fragile X patients. Chromatin immunoprecipitation
studies show, the epigenetic switch of histone H3 deacetylation and histone H3K9 methylation
which is also seen in fragile X patients [39,40]. The molecular mechanism behind these changes
is not clear and the question remains how the repeat length itself is responsible for DNA
methylation and histone modifications in the FMR1 gene. These embryonic stem cells might
help to unravel the mechanism and timing of gene silencing and to identify the proteins
involved.

Almost all fragile X patients carry an expanded FM and show methylation of the promoter
region of the FMR1 gene and the coding region is intact. Rare individuals with expanded, but
unmethylated repeats have been described. Such individuals are not showing the full spectrum
of the phenotype of fragile X syndrome, demonstrating that methylation and not repeat
elongation per se causes the typical features of FXS [29,41]. This observation prompted to
investigate the possibility of epigenetic reactivation of the FMR1 gene. It was shown that
treatment of fragile X cell lines with 5-azadeoxycytidine (5-azadC) leads to reactivation of the
FMR1 gene (figure 2) [42] and DNA demethylation [43]. As normal methylation in the cell is
followed by deacetylation it was hypothesized that a combination of demethylating and
acetylating drugs might enhance demethylation of the CGG repeat. Indeed, a synergistic effect
of the two types of drugs was demonstrated to enhance the reactivation of the FMRP production
approximately five-fold. Histone acetylating drugs, such as butyrate, can potentiate the
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reactivation induced by 5-azadC [39,40]. Unfortunately, 5-azadC cannot be administered to
fragile X patients because of its toxicity and histone acetylating drugs alone do not reactivate
the FMR1 gene, as DNA methylation appears to be the dominant epigenetic modification
responsible for gene silencing.

Structural domains of FMRP
Two types of RNA binding domains have been identified in FMRP, including two KH domains
and an RGG box containing a conserved Arg-Gly-Gly triplet [44,45]. The biological
significance of the RNA-binding capacities and (poly)ribosomal association of FMRP-
associated RNP particles is demonstrated in cells from a severely affected fragile X patient,
who has a missense mutation (I304N) in the second KH domain within the FMR1 gene [46].
The mutation disrupts the normal folding of the KH domain and the mutant I304N protein no
longer associates with active polyribosomes [47–49].

In addition, a nuclear localization signal (NLS), a nuclear export signal (NES), two coiled coils
and a G-quartet binding structure have been identified. The presence of both a NES and NLS
suggests that FMRP may shuttle into and out of the nucleus. The nuclear export mediated by
the NES of FMRP is exportin1-dependent [50]. In accordance with the shuttling hypothesis,
the protein has been observed in the nuclear pore during transfer between the nucleus and
cytoplasm [10]. Nuclear FMRP has been shown to exit the nucleus through its bound mRNA
[19].

In human cell lines, FMRP co-localizes primarily with polyribosomes and ribosomes at/in the
endoplasmic reticulum membrane. There is strong evidence to support an important role for
FMRP in regulation of translation of specific target mRNAs. Evidence was presented that
FMRP in vitro may function as a repressor of translation of its own mRNA [51]. It is interesting
to note that the Ile304Asn mutant FMRP still is able to interact with polyA-mRNA but loses
its function in vitro as a translational repressor due to a loss of homo-oligomerization. FMRP-
associated target mRNAs contain a sequence that can form an intramolecular G quartet
structure. FMRP binds also to its own mRNA via a G quartet that is found at the C terminal
end of the part coding for the open reading frame [52,53]. A subset of mRNAs containing a
G-quartet has been identified that are potential targets for FMRP, including important neuronal
proteins like microtubule associated protein 1B (MAP1B) and semaphorin [53–55]. A
validated list of targeted FMRP mRNAs can be found in Bassell and Warren [56]. But FMRP
also can bind to mRNAs that do not contain a G quartet. It is still not fully clear what the role
of the different binding regions is and whether they all are important for FMRP functioning.

FMRP and mRNP transport
In 1987 Steward demonstrated that mRNAs were transported into dendrites of cultured
hippocampal neurons [57]. Since then a large number of dendritic localized mRNAs have been
identified and it is suggested that the translation of those mRNAs can be regulated in a spatially
restricted manner in response to stimulation (for review [58]).

The dynamics of the transport of mRNP particles in neurons has been studied by different
experimental approaches and a supramolecular complex was identified containing mRNAs,
translational factors and ribosomal subunits [59–61]. FMRP containing RNP particles have
been observed as RNA granules traveling in the dendritic branching [61,62] (figure 3). The
migration of mRNP particles over long distances within processes towards the growth cone is
established by movement along microtubules [59,63,64]. A similar model has been proposed
in which FMRP binds specific mRNAs and mediates the targeting/transport of these transcripts
into the dendrite using intact microtubules. During transport they remain translationally
inactive until appropriate synaptic input allows translation. Recently, Dictenburg et al have
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shown that FMRP is involved in a stimulus-induced dendritic mRNA transport [65]. FMRP-
positive mRNP granules were associated with KIF5, which is a neurospecific motor protein.
In the absence of FMRP, a number of mRNAs are diminished in their association with KIF5
supporting the role of FMRP as a molecular adaptor to bind mRNA targets during kinesin-
mediated transport along microtubules to synaptic sites.

It is not known whether certain mRNAs can not be transported into the dendrite in the absence
of FMRP. However, it is evident that FMRP plays a role at the synapse in controlling the
translation of certain mRNAs. A role of FMRP in translationally silencing during transport
into the dendrites have been proposed [66,67].

FMRP and spines
Transport and regulated translation of mRNAs in dendrites is important for neuronal function,
including modulation of synaptic plasticity. This is essential in memory consolidation and
learning [68,69]. Altered spine morphology (long and thin dendritic spines) has been observed
in post-mortem brains of fragile X patients [70–72] and in Fmr1 KO mice [73–75]. The
presence of the protein machinery near synaptic connections allows neurons to rapidly respond
to signals at particular synapses through local translation of (specific) mRNAs. Weiler et al
showed that FMRP is synthesized in response to mGluR activation using glutamate [15].
Controlled efficient translation of mRNAs in the vicinity of the synapse is important and herein
FMRP plays a crucial role. It was proposed that FMRP located at the synapse is repressing
translation of mRNAs encoding proteins that regulate endocytic events of AMPA. Upon
synaptic stimulation FMRP may dissociate from these mRNA targets to allow translation and
facilitation of AMPA receptor internalization. The model predicts that in the absence of FMRP
the upregulated translation of a subset of mRNAs would result in the perturbation of AMPA
receptor internalization dynamics.

A model was proposed in which FMRP is regulating mRNA translation upon mGluR
stimulation [76] (figure 4). This mGluR theory states that AMPA receptor internalization
triggered by mGluR5 stimulation [77], is exaggerated in Fmr1 KO mice [78]. Recently it was
shown that FMRP deficient dendrites indeed show aberrant AMPA receptor internalization
resulting in a significantly reduced number of AMPA receptors at the postsynaptic membrane
[79]. Moreover, Fmr1 KO mice that are crossbred with mice that have a 50% reduction in
mGluR5 expression were shown to be rescued in several phenotypic aspects [80], This
illustrates that reducing the mGluR5 signaling pathway potential can rescue some phenotypic
features such as Inhibitory Avoidance Extinction test and the occurrence of audiogenic seizures
while the macroorchidism was not rescued [80].. Since the amount of AMPA receptors at the
postsynaptic membrane is correlated with protrusion shape, this might also explain the
immature protrusion morphology that has been found in different brain areas of both fragile X
patients and Fmr1 KO mice [70,73–75,81–83]. An antagonist of mGluR5 receptors might
reduce the mGluR5 signaling pathway potential and would theoretically counteract the
increased internalization of AMPA receptor internalization in Fmr1 KO neurons. Behavioral
studies have shown that Fmr1 KO mice treated with the mGluR5 antagonist MPEP (2-
methyl-6-(phenylethynyl)-pyridine hydrochloride) clearly display less sensitivity to
audiogenic seizures and show more wild type-like behavior in an open field test compared with
untreated mice [84]. A similar rescue of the phenotype of the Prepulse Inhibition (PPI)
paradigm in Fmr1 KO mice was seen upon treatment with different mGluR antagonists
including MPEP and fenobam [75] (figure 4). Treatment with these two mGluR antagonists
also rescued the immature spine morphology in cultured hippocampal neurons [75]. Since spine
shape is correlated with the number of AMPA receptors at the postsynaptic membrane [85],
these data are in line with the rescue effect of MPEP on AMPA receptor trafficking as shown
by Nakamoto et al [79]. Recently, Phase I clinical studies in fragile X patients have been started
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with different mGluR antagonists, including fenobam and AFQ056. [86]. Thus far, no site-
effects have been described both in mice and men.

Translation of FMRP target mRNAs at the synapse
Protein kinases are crucial for the regulation of neuronal development and synaptic
transmission upon response to extracellular or intracellular signals. The mGluR theory is in
line with in the translation control pathways within the dendritic spines: a simplified version
is depicted in figure 5. Compelling evidence supports the postsynaptic FMRP signaling model.
Ceman et al [19] showed that unphosphorylated FMRP associated with actively translating
polyribosomes while a fraction of phosphorylated FMRP is associated with apparently stalled
polyribosomes. The data suggest that dephosphorylation of FMRP may regulate FMRP and
that the release of FMRP-induced translational suppression may involve a dephosphorylation
signal. Rapid dephosphorylation of FMRP allows target mRNAs to be translated, whereas
rephosphorylation represses translation. Subsequent experiments identified protein
phosphatase 2A (PP2A) as an FMRP phosphatise. Rapid FMRP dephosphorylation has been
reported after mGluR stimulation (<1 min) in neurons caused by enhanced PP2A enzymatic
activity. On the other hand, extended mGluR activation (1–5 min) resulted in mammalian target
of rapamycin (mTOR)-mediated PP2A suppression and FMRP rephosphorylation [66,67].
Ribosomal protein S6 kinase (S6K1) was identified as an important kinase involved in FMRP
phosphorylation in the mouse hippocampus. It was shown that activity-dependent
phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of
rapamycin (mTOR), ERK1/2, and PP2A. FMRP rephosphorylation is known to partly involve
mTOR-dependent PP2A suppression (and thus suppression of dephosphorylation) and
phosphorylation by S6K1. TSC1 and TSC2 proteins have been shown to negatively regulate
cell growth through inhibition of the mTOR pathway.

Deficiency of one of these proteins results in Tuberous Sclerosis, a syndrome which may
include intellectual disabilities. In cells lacking either TSC1 or TSC2 protein, the downstream
targets of mTOR, including p70 S6 kinase (S6K) and ribosomal protein S6, are constitutively
phosphorylated [87] resulting in activation of protein synthesis. Hu et al [88] showed that MEK
and ERK signaling appears normal, and phosphoinositide 3-kinase (PI3K)-protein kinase B
(PKB; or Akt) signaling is compromised in Fmr1 knock-out mice. Enhancing Ras-PI3K-PKB
signaling restores synaptic delivery of GluR1-containing AMPA-receptors and normal LTP in
Fmr1 knock-out mice

Further research is needed to characterize the cascade of signaling upon mGluR activation and
the mechanism whereby FMRP phosphorylation regulates translation of target mRNAs.

Primary ovarian insufficiency
Furthermore, it became apparent that 20% of female PM carriers manifest premature ovarian
failure (POF: cessation of menstruation at or before 40 years of age)[89]. It has been proposed
that primary ovarian insufficiency (FXPOI) is a more accurate term for the disorder, to describe
the broad range of clinical manifestations associated with what used to be classified as POF
[90]. Hundscheid et al. [91] reported evidence for a paternal-parent-of-origin effect on FXPOI
(fragile X associated primary ovarian insufficiency) in female PM carriers; however,
subsequent studies by others did not support this observation [92,93]. Differences between the
different data sets may be related to the observed discrepancy. Women with the PM, even if
they are still cycling, have higher levels of follicle stimulation hormone (FSH) than do healthy
women [94]. It has recently been suggested that Anti-Müllerian Hormone (AMH) may be a
better marker of ovarian decline. AMH is expressed in granulose cells of growing follicles,
thus serves as a marker for the size of the primordial follicle pool in women. Indeed, female
PM carriers, with (CGG) repeat lengths beyond 70, had lower AMH levels than did female
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PM carriers with (CGG) repeat shorter than 70 repeats. Thus, lower AMH levels are suggestive
of early ovarian decline in women with (CGG)>70 [95]. Penetrance and age of onset of FXPOI,
as well as the increase of FSH levels, correlate with (CGG) repeat length [96]. However, a non-
linear relationship has been described for age at menopause and premutation size, in which
premutations in the mid-size range are at greatest risk for POF, while larger repeat tracts are
associated with a lower risk [97].

Fragile X-associated tremor/ataxia syndrome
Over the past few years, it has become apparent that PM carriers are also at risk of developing
a progressive neurodegenerative disorder, which is clinically and neuropathologically entirely
distinct from FXS [98–100]. This syndrome is called Fragile X-associated tremor/ataxia
syndrome (FXTAS). Although both disorders involve repeat expansions in the FMR1 gene,
the clinical presentation and molecular mechanisms underlying each disease are completely
distinct. The most common clinical features of FXTAS are a progressive action tremor and
ataxia. More advanced or severe cases may show a progressive cognitive decline that ranges
from executive and memory deficits to dementia (for review of clinical symptoms see [101]).
The major neuropathological hallmark and postmortem criterion for definitive FXTAS is
eosinophilic, ubiquitin-positive intranuclear inclusions located in broad distribution
throughout the brain in neurons and astrocytes [102,103] A study of the penetrance of the
tremor and ataxia among PM carriers, ascertained through families with known probands with
FXS, revealed more than one third of carriers, aged 50 years and older, show symptoms of
FXTAS. The penetrance of this disorder exceeds 50% for men over 70 years of age [104].
Since the prevalence of the PM alleles in the general population is approximately 1/800 for
males and 1/250 for females. It has been estimated that 1 in 3000 men older than 50 years in
the general population will develop symptoms of FXTAS [105,106]. It has been suggested that
penetrance increases with CGG repeat length.

An RNA gain of function mechanism has been suggested for FXTAS [98,99,107] based on
the observation of elevated levels of CGG containing FMR1 mRNA [108], along with either
no detectable change in FMRP or slightly reduced FMRP levels, observed in peripheral blood
leukocytes [108,109] and brain regions [110,111]} of PM carriers. The mechanism underlying
the elevated FMR1 mRNA levels is unknown. The observation that increased levels of
transcripts were also measured when constructs bearing the FMR1 5′ UTR with PM-sized
(CGG)n, fused to a luciferase reporter were transfected into two different cell lines [112],
suggests that the expanded (CGG)n itself, rather than the reduced FMRP levels, is responsible
for increased transcription [109,113,114] (figure 6).

Mouse models for FXTAS
Knock-in mouse models have been generated in which the murine (CGG)8 repeat within the
endogenous Fmr1 gene was replaced by a human (CGG)98 or (CGG)118 repeat using a
homologous recombination technique in embryonic stem (ES) cells [35,36]. An expansion bias
was observed, with the largest expansion being 43 CGGs [37]. Although it was expected that
these longer CGG repeat expansions would eventually lead to methylation of the Fmr1 gene,
to date, and despite CGG repeat tracts well over 200 CGGs long, no methylation of the promoter
region has been detected. Biochemical analysis of the brains of these mice revealed elevated
Fmr1 mRNA levels and reduced Fmrp expression. Importantly, elevated Fmr1 mRNA levels
were detected throughout development from 1–72 weeks of age [115]. Since Fmr1 mRNA
levels were already elevated by 1 week of age, the potential exists for as yet undocumented
developmental consequences of excess transcript production in human FXTAS. On average,
a two-fold increase of Fmr1 mRNA levels in brain tissue was reported.
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Both CGG repeat mouse strains showed an inverse correlation between CGG repeat length and
Fmrp expression in brain using quantitative Western blot analysis [36,116]. The degree of
change in Fmrp expression in the brain appears to be brain region-specific with significant
reduced expression throughout the brain and relatively high expression in the hippocampus
[36,37]. Thus, in spite of the elevated levels of Fmr1 transcripts reduced Fmrp expression was
found. This apparent paradox was explained by a hypothetical model in which the CGG
expansion in the 5′ UTR of the transcript hampers the initiation of translation (figure 6).

The knock-in model shows ubiquitin positive intranuclear inclusion formation in several
neurons [115]. A comprehensive study for the presence of these intranuclear neuronal
inclusions in different brain regions at different ages demonstrated the occurrence of
intranuclear neuronal inclusions throughout the brain with high percentages of inclusions in
specific brain structures, including olfactory nucleus, parafascicular thalamic nucleus, medial
mammillary nucleus, colliculus inferior, cerebellum, amygdala and pontine nucleus at 72
weeks of age [115,116]. Furthermore, the average size of the inclusions within one specific
brain area correlated significantly with the age of CGG repeat mice. In younger mice, smaller
sized inclusions were found compared to older mice. Interestingly, the gradual increase in the
size of the inclusions and the percent of ubiquitin-positive neurons over lifetime probably
parallels the progressive development of the neurological phenotype of FXTAS in humans
[100]. In an attempt to further characterize the constituents of the inclusions, a systematic
analysis was performed to localize a panel of protein candidates (related to FMRP or other
disorders with inclusions) using double-labeling immunohistochemistry. Next to ubiquitin,
molecular chaperone Hsp40, 20S proteasome complex and DNA repair-ubiquitin-associated
HR23B accumulated in the inclusions [115,117]. Importantly, Fmrp could not be detected in
the inclusions, although FMR1 mRNA is detectable.

Further evidence of the role of rCGG came from fly models and from transgenic mice [107,
118]. An rCGG transgenic fly study in which a DNA fragment containing 90 CGG repeats
with a downstream EGFP coding sequence used as a reporter system, reported the first evidence
that rCGG outside of the context of FMR1 could induce neurodegeneration and inclusion
formation [107]. Given that the fragile X PM rCGG repeat itself is sufficient to cause
neurodegeneration in Drosophila it has been hypothesized that specific rCGG binding may
sequester rCGG-repeat-binding proteins from their normal function [119]. Using biochemical
and genetic approaches, three proteins, Pur α, hnRNP A2/B1 (two protein isoforms from one
gene), and CUGBP1 were found to bind rCGG repeats either directly (Pur α and hnRNP A2/
B1) or indirectly (CUGBP1, through the interaction with hnRNP A2/B1) [120,121]. These
proteins are RNA-binding proteins, and have been shown to play a role in transcription, mRNA
trafficking, splicing and translation. Furthermore, in vivo Purα was found to be present in the
inclusions of both human and fly tissues, suggesting that expression of the fragile X PM rCGG
repeats can sequester the rCGG-binding proteins from their normal cellular function(s) and
cause neurodegeneration [120] (figure 6). This idea is further supported by the fact that over-
expression of either Pur α or hnRNP A2/B1 ameliorated neurodegeneration in the fly model
of FXTAS. For Myotonic Dystrophy (DM1) it is proposed that CUG-binding proteins (CUG-
BP) are sequestered by expanded DMPK-(CUG)n mRNAs and this is causing aberrant
expression of other transcripts that are normally regulated by these proteins [122]. MBNL1 is
a specific CUG-BP, homologous to the Drosophila muscleblind protein, which is essential in
terminal differentiation of muscle and photoreceptor cells. It accumulates in the nuclear foci
in DM1 cells, such that MBNL1 cannot exert its normal function during a critical period of
cell differentiation and mRNA splicing [123]. In a similar way proteins can be sequestered by
the expanded CGG repeat in FMR1 mRNA and the lack of these proteins can contribute to the
FXTAS phenotype.
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PM carriers (with or without FXTAS) may develop a variety of neuropsychological symptoms,
including mood and anxiety disorders [100,124–127]. Elevated stress hormone levels have
been suggested as a possible explanation. Additional evidence for an elevated stress response
and thus aberrant hypothalamo-pituitary-adrenal (HPA) axis function in PM carriers comes
from reports demonstrating ubiquitin-positive intranuclear inclusions in the pituitary gland of
autopsy brain material from patients with FXTAS [128,129]. Similarly, studies in expanded
CGG mice at 72 weeks of age point to an increased anxiety phenotype in the open field behavior
test [130]. Further characterization of the HPA axis physiology in CGG repeat mice revealed
dramatically elevated corticosterone levels in serum in response to a mild stressor, as well as
intranuclear ubiquitin-positive inclusions in both the pituitary and adrenal gland of 100-week-
old mice [116].

Future directions
For Fragile X syndrome research will focus on the cellular function of FMRP, especially in
spines of neurons. Based on the current knowledge the first attempts have been started to treat
Fragile X patients with drugs that are counteracting the lack of FMRP and the control of protein
synthesis at the synapse. The first signs in animal studies are very promising. A next question
is the repeat instability leading to FM. The availability of human embryonic stem cells opens
the door for studies about the timing and the mechanism underlying repeat instability. This
knowledge can form the basis for intervention in repeat instability from generation to
generation.

For FXTAS the main question remains however; namely how the (CGG)n RNA leads to
formation of inclusions and how this relates to cellular dysfunction originates, ultimately
leading to neurodegeneration and clinical problems. Future studies should focus on the
identification and role of (CGG)n-BP, and the cellular consequences of their depletion. If these
proteins are indeed sequestered away from their normal cellular function, as the toxic RNA
gain-of-function model predicts, their function might provide important links between the
mutant RNA and clinical symptoms.

The mouse model will remain valuable since the onset as well as the course of disease can be
studied. Furthermore, the (CGG)n mice will furthermore be valuable in attempts at reversing
the neurodegenerative phenotype. Therapeutic strategies will likely focus on diminishing
(CGG)n mRNA levels. The initial studies conducted in Drosophila are promising in this light,
as reversing the negative effect of the expanded (CGG)n RNA by co-expressing an anti-sense
repeat or by overexpressing the proteins sequestered by the repeat RNA, rescued the
neurodegenerative phenotype. Hence, strategies involving the siRNA pathway might prove
beneficial in the future. In addition, when more (CGG)n-BPs will be identified, this might
provide new therapeutic targets.

Conclusion
FMR1 gene expression is involved in three important disorders with distinct entities. The fragile
X syndrome, a neurodevelopmental disorder and the most prevalent cause of heritable mental
retardation is caused by the total lack of the FMR1 gene product, FMRP. Thus, in FM carriers
the disease is caused by a loss-of-function mechanism. In contrast, PM carriers show increased
transcription of the FMR1 gene that results in elevated levels of FMR1 mRNAs and causes a
new progressive neurological syndrome, called FXTAS. Although most data is reported about
male FM and PM carriers, but female FM and PM carriers can be affected as well. The
molecular basis of FXTAS is unknown; however, a toxic RNA gain-of-function mechanism
has been proposed and is currently under study. The third disorder is Premature Ovarian
Insufficiency which is seen in female PM carrier. The molecular basis of POI is yet unknown.
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Figure 1. The CGG repeat in the FMR1 gene
Schematic representation of normal, PM (premutation) and FM (full mutation) alleles of the
FMR1 gene and the effect of the expansion on transcription and translation. Methylation due
to extensive elongation of the CGG repeat in the 5′-ÚTR of the FMR1 gene is depicted as a
lock.
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Figure 2. Schematic representation of the chromatin structure of the FMR1 gene
In the normal situation the active gene has an open chromatin structure. When the CGG repeat
(red line) is expanded, deacetylation and methylation of the promoter and CGG region takes
place leading to a packaged and less accessible chromatin structure causing inactivation of the
FMR1 gene. Treatment with 5-azadC results in demethylation and acetylation leading to an
open chromatin structure and transcription will be (partly) restored.
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Fig. 3. Localization of EGFP-FMRP in dendritic spines
Primary hippocampal mouse neurons of E18 Fmr1 KO mice were co-transfected with β-actin-
EGFP-Fmr1 (A) and β-actin-mCherry (B). The dendrite, including many spines, of one neuron
is depicted. Note the presence of EGFP-FMRP in a spinehead in the overlay (arrow in C).
Images were acquired using a Zeiss LSM510 confocal microscope (scalebar= 5 μm). Courtesy
by Femke de Vrij.
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Figure 4. The mGluR theory
Hypothetical model for the action of FMRP at the synapse, adapted from reference [76].
Treatment with MPEP, an mGluR5 antagonist, results in the rescue of some phenotypic features
because mGluR5 stimulation is reduced and subsequently local translation at the synapse is no
longer exaggerated. Ultimately, the number of internalized AMPA receptors is reduced and
restored to normal levels. A. Stimulation of mGluR5, a metabotropic glutamate receptor,
induces local mRNA translation. This results in novel protein synthesis that on its turn
stimulates the internalization of the ionotropic AMPA receptor, essential for in long-term
plasticity. FMRP acts as a negative regulator of transcription [51,76], reducing the
internalization of the ionotropic glutamate receptor. B. In neurons from fragile X patients the
absence of FMRP leads to an increase internalization of the ionotropic glutamate receptors
which results in enhanced LTD. C. Rescue of normal translation due to the mGluR antagonist
MPEP, slowing down the internalization of the ionotropic glutamate receptors.
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Figure 5. Simplified model of the translation control pathways at the dendritic spines
Stimulation of mGluR leads to active PP2A (<1min) which dephosphorylates FMRP, and this
results in rapid translation of FMRP-associated mRNAs. Within 5 min, mTOR is activated,
inhibiting PP2A and activating S6K1, leading to FMRP phosphorylation and translational
inhibition of FMRP target messages. Based on [66,67].
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Figure 6. A schematic representation of the RNA gain of function mechanism proposed for the
pathogenesis of FXTAS
The FMR1 gene is transcribed in the nucleus and transported to the ribosomes. The expanded
CGG repeat present in the 5′ UTR of the FMR1 mRNA hampers translation, leading to lower
levels of FMRP. The presence of the expanded CGG repeat results in enhanced transcription
via a thusfar unknown mechanism and leads to elevated FMR1 mRNA levels. In an attempt to
get rid of the excess of FMR1 mRNAs, the cell might attract chaperones or elements of the
ubiquitin/proteasome system. Also CGG-binding proteins might be recruited. These processes
could lead to the formation of intranuclear inclusions. Sequestration of proteins into the
inclusion might prevent them from exerting their function, thereby disturbing normal cellular
function, which in the end might cause neurodegeneration. However, it cannot be excluded
that the formation of inclusions has a neuroprotective effect, such that neurons that are capable
of capturing the toxic transcripts in the inclusions are the cells that survive.
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