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Abstract
Trauma to the central nervous system (CNS) triggers intraparenchymal inflammation and activation
of systemic immunity with the capacity to exacerbate neuropathology and stimulate mechanisms of
tissue repair. Despite our incomplete understanding of the mechanisms that control these divergent
functions, immune-based therapies are becoming a therapeutic focus. This review will address the
complexities and controversies of post-traumatic neuroinflammation, particularly in spinal cord. In
addition, current therapies designed to target neuroinflammatory cascades will be discussed.
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Introduction
Central nervous system (CNS) trauma, either in the form of traumatic brain injury (TBI) or
spinal cord injury (SCI), causes marked neuropathology and limited functional recovery. While
mechanical trauma rapidly kills neurons and glia, an insidious and delayed secondary
pathology follows. The latter may be amenable to therapy and is characterized by neuronal and
glial apoptosis, increased blood-CNS barrier permeability and a complex and poorly
understood neuroinflammatory response that can persist for months or years after the initial
trauma (44;122;140).

The role of neuroinflammation is controversial. Both beneficial and detrimental effects have
been ascribed to microglia/macrophages (CNS macrophages), lymphocytes, antibodies and
cytokines. The goal of this review is to address the complexities and controversies of this
response with an emphasis on SCI. In addition, we will discuss pre-clinical and clinical
therapies that target neuroinflammation, addressing those that suppress or enhance the immune
response.
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Traumatically-injured brain and spinal cord elicit distinct neuroinflammatory
reactions

Although inflammation is a ubiquitous consequence of CNS trauma, the temporal sequence,
composition and magnitude of this response in brain are distinct from spinal cord. Schnell and
colleagues proved this point by comparing the inflammatory responses elicited by identical
injuries delivered to mouse brain and spinal cord (147). Following a parasagittal incision to
the cortex or a similar incision to the dorsal spinal cord, marked differences in cellular
inflammation were observed. In the brain, neutrophil infiltration was minimal and was
restricted to the lesion site. In contrast, twice as many neutrophils infiltrated the spinal cord
lesion within 24 hours with large numbers of cells infiltrating into the surrounding parenchyma.
Similarly, activation and recruitment of CNS macrophages was attenuated and restricted in
distribution after brain injury relative to SCI. Lymphocyte numbers also were 2–3 times greater
in the spinal cord with increased infiltration into surrounding tissue.

Similar changes were noted when neuroinflammation was elicited by non-traumatic
microinjection of IL-1β or TNFα (148). In response to these cytokines, the recruitment of
neutrophils and CNS macrophages was always greater in spinal cord. Following IL-1β
microinjection, lymphocytes infiltrated the spinal cord but never the brain. TNFα
microinjections into brain elicited a response comprised only of CNS macrophages while
identical injections into spinal cord elicited neutrophils and macrophages. Molecular and
anatomical differences between brain and spinal cord may explain the regional differences in
leukocyte recruitment (170;171). Microvascular injury and serum extravasation in the inflamed
spinal cord is increased in magnitude and duration relative to the brain (54;147) and is more
susceptible to the permeabilizing effects of cytokines (148). Unique patterns of chemokine
expression may also explain differential leukocyte recruitment. Specifically, neutrophil-
attracting chemokines (e.g., CINC) are up-regulated to a greater extent in the injured spinal
cord than in the brain (27).

There is a tendency for researchers to categorically lump mechanisms of brain and spinal cord
neuroinflammation together; however, it is becoming clear that the spinal cord should not be
considered simply an extension of the brain. Given the pivotal role played by immune cells in
orchestrating cellular and molecular cascades of tissue injury and repair, future studies should
explore the extent to which brain and spinal cord inflammation differ and define the
mechanisms responsible for these differences. By doing so, novel site-specific therapies should
be possible.

Species and strain-dependent differences in the neuroinflammatory
response to spinal cord injury

Neuroinflammatory responses to SCI vary between species and strains of a given species. These
differences are unlikely to be due to variable degrees of primary trauma between small and
large animals. Spinal contusion and compression injury cause acute central hemorrhagic
necrosis in all mammals and are accompanied by prominent glial activation and leukocyte
infiltration (see Fig. 1B) (44;63;136;159). However, the onset, duration and composition of
infiltrating leukocytes is distinct between humans and rodents, between rodent species (rat vs.
mouse) and between different rat and mouse strains (44;81;136;159).

In all species, neutrophils accumulate within the lesion over the course of hours to days then,
in most species, are rapidly cleared during the first week post-injury. In mice, elevated numbers
of neutrophils persist in the lesion for months (81). In rats, lymphocytes infiltrate the lesion
with monocytes 3–7 days post-injury. In contrast, lymphocyte entry is delayed in humans and
mice with peak numbers evident after a delay of months post-injury (81;159). Unique to mice
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is the formation of a dense connective tissue matrix in the lesion in parallel with lymphocyte
accumulation (44;81;136;159).

It is clear that genetics are an important determinant of post-traumatic neuroinflammation.
After SCI, the MRL and 129X1/SvJ mouse strains mount a diminutive neuroinflammatory
response that is associated with enhanced tissue repair and endogenous axonal plasticity (34;
99). In contrast, dense fibrosis accompanies a robust inflammatory response in C57BL/6 mice
but without significant axonal growth (81;99). A detailed comparative analysis in four common
strains of mice after SCI failed to reveal a strict correlation between neuroinflammation,
functional recovery and lesion pathology (81). Strain differences also extend to SCI rats, with
increased numbers of leukocytes found in Lewis rats compared to Sprague-Dawley rats
(136). The extended time course of macrophage accumulation in Lewis rats has also been
described after optic nerve crush injury (154). These strain differences underscore the fact that
within a genetically heterogeneous human population, attempts to manipulate inflammation to
promote repair or minimize secondary injury will undoubtedly yield variable results. As diverse
strains and species will continue to be used to extrapolate the human condition, future studies
need to define how leukocyte populations vary between strains/species in the context of
outcomes that are relevant to CNS repair. For example, do macrophages from C57BL/6 and
MRL mouse strains release similar quantities of axon growth promoting proteins? Should the
inflammatory contributions to remyelination be studied in BALB/c mice where post-injury
inflammation is minimal relative to most other strains?

Changes in microvascular permeability after CNS injury: relationship to
intraparenchymal inflammation

A prelude to the inflammatory response elicited by CNS trauma, and perhaps a consequence
of this response at later times post-injury, is an increase in blood-brain barrier permeability
(see Fig. 1E) (54;106;120;133;136;147;179). Using a rat model of spinal contusion injury,
Noble and Wrathall initially described injury-induced changes in permeability to horseradish
peroxidase (HRP) (120). They found that HRP extravasation correlated with injury severity;
mild injury resulted in focal extravasation in spinal gray matter while severe injury involved
gray and white matter. HRP extravasation was maximal within 1 day, with closure of the barrier
by 14 days. Whetstone et al. described similar changes in acute permeability in SCI mice with
a secondary rise in permeability 3–7 days post-injury (179). Interestingly, this secondary
change parallels a time when blood monocytes infiltrate the injured spinal cord. A correlation
between microglia activation and changes in microvascular permeability has been described
in spinal cord white matter in SCI rats (133). While mechanical forces contribute to initial
disruption of the blood-brain barrier, inflammatory mediators undoubtedly influence later
changes in endothelial function, including maintenance of blood-to-tissue transfer.

The proinflammatory cytokines TNFα and IL-1β, which are up-regulated immediately after
injury (see below and Fig. 1C), can enhance vascular permeability (148). A number of other
vasoactive substances released by glia and leukocytes, including reactive oxygen species,
kinins, histamines, nitric oxide and elastase, may also play a role (4;25;28;40;113;146;172).
Furthermore, matrix metalloproteinase (MMP)-9, which is produced by neutrophils and
endothelia, facilitates leukocyte diapedesis and may be a vascular permeabilizing factor
(106). These data indicate that pathological alterations in blood-brain barrier function may be
regulated by manipulating inflammatory cells and their release products. Alternatively, if
properly controlled, these vasoactive properties of neuroinflammation could be harnessed to
facilitate delivery of drugs to the chronically injured brain or spinal cord.
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Immune-mediated injury in the traumatically injured CNS
Neutrophils and macrophages

Via the release of cytokines, free radicals, eicosanoids and proteases, activated neutrophils and
macrophages can cause neuronal and glial toxicity (see Fig. 1A) (9;22;29;31;97;109;117;
155). This toxic potential has been demonstrated repeatedly in various models of SCI. Protocols
to deplete or neutralize neutrophils and macrophages or inhibit their functions, have provided
consistent neuroprotection and improved neurological recovery (15;19;41;49;50;52;119;131;
166).

Neurons and glia synthesize pro-inflammatory cytokines (e.g., TNFα and IL-1β) as part of
normal intercellular communication (69;139). However, sustained elevations of TNFα and
IL-1β evoke inflammation and dysregulate cytokine release causing neuron and
oligodendrocyte death (see Fig. 1C) (26;66;91;98;155). Blocking TNFα or IL-1β confers
neuroprotection in models of SCI, TBI and stroke (48;116;145;156). IL-6 and LIF also have
been implicated in secondary neurodegeneration after CNS injury (see Fig. 1C) (77;89;100;
124). Over-expression of IL-6 or LIF in spinal cord enhances leukocyte infiltration, decreases
axonal growth and impairs locomotor recovery (89). Clearly, cytokines are important for
maintaining homeostasis in the CNS but after injury they can become pathological.

Oxidative stress, caused by ischemia-reperfusion and inflammatory byproducts, contributes to
cell death cascades after traumatic and ischemic CNS injury (5;57;94;157;180;183).
Neutrophils, microglia and macrophages produce superoxide anion and nitric oxide which
combine to form the highly reactive and toxic compound peroxynitrite (32;36;96;102;177;
180). Free radicals produced during these processes induce apoptosis in neurons and glia via
the irreversible oxidation of proteins, lipids and nucleic acids (42;92;95;109;180).

Glutamate is the chief excitatory neurotransmitter in the CNS; however, excess glutamate
causes excitotoxicity in gray and white matter (33;93;107;123). Normally, glutamate is cleared
from the extracellular space by astrocytes and to a limited degree by microglia (105;144;
174). After injury, glutamate metabolism by astrocytes is impaired and clearance is inhibited
further by TNFα and IL-1β (30;130;164), reactive oxygen species (128;175) and arachidonic
acid (187). Activated microglia and macrophages are also likely to increase glutamate levels
in the extracellular cleft (121;126;127). These latter changes in glutamate may be undetectable
via conventional detection systems (e.g., microdialysis) but could still sensitize neurons to the
effects of other substances in the microenvironment. Indeed, a feed-forward mechanism of
glutamate excitotoxicity is feasible given that pro-inflammatory cytokines (e.g., TNFα)
modulate the expression of synaptic AMPA and GABA receptors rendering neurons more
susceptible to excitotoxicity (13;160).

Activated neutrophils and macrophages also produce neurotoxic enzymes. Phospholipase A2,
a key enzyme in eicosanoid synthesis, is up-regulated in microglia, neurons and
oligodendrocytes (97). Arachidonic acid and eicosanoids can be neurotoxic due to their ability
to promote cyclooxygenase and free radical synthesis and by enhancing vascular permeability
and leukocyte influx (3;38;76;88;103;173). Extracellular matrix-degrading enzymes (e.g.,
MMPs) produced by neutrophils, macrophages and endothelia also have been implicated in
secondary injury (44;119;178;186).

Lymphocytes
Like microglia and macrophages, activated lymphocytes have conflicting effects on the injured
CNS. Decades of experimental and clinical research in multiple sclerosis have shown the
pathological potential of neuroantigen-reactive T and B lymphocytes, mostly those that
recognize and mount reactions against myelin proteins (e.g., myelin basic protein; MBP)
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(47;55;65;68;161;176). These autoimmune responses amplify CNS macrophage effector
functions resulting in blood-brain barrier injury and toxicity to oligodendrocytes and neurons
(14;149;158). The result is widespread edema, axonal injury and loss of function (see Fig. 1A).
The notion that traumatic or ischemic CNS injury can trigger pathological autoimmunity is a
relatively new concept (1;135). Still, a growing body of evidence in animal models and human
SCI has confirmed this potential (43;51;74;82). Using transgenic mice and rats vaccinated to
expand MBP-reactive T cells, we have shown that autoimmune reactions exacerbate
demyelination and axonal pathology, effectively increasing the size of the contusion lesion and
causing loss of supraspinal neurons (73;74). This destructive potential is not restricted to MBP-
reactive cells or SCI as T cells reactive with myelin oligodendrocyte glycoprotein (MOG) or
ovalbumin (OVA; a non-CNS protein) exacerbate neuron loss in a model of peripheral nerve
injury (2). The fact that OVA immunizations increased neuropathology indicates that T cells
need not be myelin-reactive to contribute to secondary neurodegeneration. Indeed, mice and
rats without T-lymphocytes (RAG knockout and athymic nude rats) have attenuated
neuropathology after TBI and SCI (43;137). Also, antibody-mediated blockade of lymphocyte
chemokines inhibits T cell infiltration and attenuates secondary injury after SCI (51).

Implicit to most T cell reactions is parallel activation of B cells and antibody secretion.
Evidence that B cells are activated after SCI is implied from clinical data showing elevated
levels of CNS autoantibodies in the serum of individuals with chronic SCI (64). We recently
confirmed this potential in a mouse model of spinal contusion injury showing that SCI induces
the production of autoantibodies directed against CNS proteins and systemic antigens including
DNA (1). Interestingly, anti-DNA antibodies can cross-react with glutamate receptors (37). If
these cross-reactive anti-DNA antibodies are pathological, then B cell-mediated pathology may
transcend the spinal cord. Indeed, in systemic lupus erythematosus, anti-DNA antibodies cause
cognitive deficits and widespread organ pathology. These latter parameters are not usually
considered in paraplegic or quadriplegic individuals; however, SCI autoantibodies injected
into intact hippocampi induced neuroinflammation and neuronal apoptosis (1).

Immune cell-mediated neuroprotection and regeneration
Neutrophils and macrophages

Given their primary function as bactericidal cells, it is doubtful that neutrophils exert
neuroprotection in the CNS. This is not true for CNS macrophages. Despite being adept killers
of neurons and glia, microglia may be intrinsically neuroprotective; they regularly survey the
CNS and provide trophic support to neurons and glia (6;87;118). Indeed, it makes little sense
to have evolved a homogeneously distributed network of cells capable of destroying the CNS
from within. Instead, both microglia and macrophages derived from infiltrating monocytes
produce neuroprotective cytokines and growth factors (see Fig. 1D). For example, TGFβ1
produced by macrophages after injury (90;108) has beneficial effects on neurons (79) and limits
oligodendrocyte toxicity (110). Classical neurotrophic factors including CNTF, IGF, HGF,
PDGF, NGF, BDNF, GDNF and NT-3 also are synthesized and released by activated CNS
macrophages (39;60;78;83;114;115).

CNS macrophages may protect and repair the injured CNS by modulating glutamate
excitotoxicity and by promoting the growth of injured axons (see Fig. 1A). Better known for
their ability to release glutamate, microglia and macrophages increase transporters that are able
to take up extracellular glutamate (144;174). Several lines of evidence suggest that CNS
macrophages can promote axon growth and perhaps long-distance regeneration. Arguably the
most convincing of the recent data illustrating this potential was described in a model of optic
nerve injury. In that study, a novel protein called oncomodulin (OM), released by activated
macrophages, was shown to be responsible for promoting regeneration of injured retinal
ganglion cells (185). Interestingly, the same mode of macrophage activation that produces OM,
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causes the release of neurotoxic molecules (184). Thus, even though macrophages can promote
axon regeneration, the potential for causing simultaneous injury exists. This will make it
difficult to exploit CNS macrophage functions as a therapy in any form of CNS injury. Still,
the rapid and enduring turnover of CNS macrophages from bone marrow makes it hard to
ignore the possibility that these cells could be genetically-modified ex vivo and act as vehicles
for drug delivery (17).

Lymphocytes
Although there is overwhelming evidence that lymphocytes can initiate and exacerbate injury
to neurons and glia, recent data show that B and T cells may be an important and perhaps
necessary component of CNS repair. Indeed, B and T cells can secrete a bioactive form of the
neurotrophin BDNF (78). Moreover, Schwartz and colleagues have championed the idea of
“protective autoimmunity” stating that autoreactive T cells, specifically those responding to
myelin proteins, are an advantageous but inefficient response to CNS injury (151;152). As a
result, they propose therapeutic vaccines to treat neurological disorders including SCI, TBI,
glaucoma, and amyotrophic lateral sclerosis (150). Although this notion is in conflict with the
prevailing dogma that autoreactive T cells are neurodestructive, the Schwartz laboratory has
shown that passive or active MBP immunization limits secondary neurodegeneration in injured
spinal cord and optic nerve (45;61;111). This neuroprotection is attributed to the expression
of neurotrophins and antithrombin III by MBP-specific T cells (see Fig. 1D) (45). Because
these protective effects are not evident in all rat or mouse strains, the application of therapeutic
vaccines in humans will require a better understanding of how genetics influences
autoimmunity (62;85). B cells also can exert beneficial effects in the traumatized CNS. In
addition to providing neurotrophic factors, autoantibodies specific for myelin protein can
promote axon regeneration and improve locomotor recovery after SCI (70).

Protective autoimmunity, as defined by Schwartz et al., requires proinflammatory myelin-
reactive T cells (84). However, other investigators have suggested that neuroprotection is
conferred by T cells that are not CNS-reactive after central and peripheral nerve injury (58;
75;153). Importantly, these latter cells are activated along with T cells specific for MBP
(112). Clearly, our understanding of lymphocyte functions in the injured nervous system is
incomplete.

Immunomodulatory and cell-specific therapies for SCI
Methylprednisolone (MP), a potent immunosuppressive glucocorticoid, can successfully
suppress various indices of neuroinflammation in experimental SCI models (10;46;181;182).
Although MP is the current standard of care for human SCI, the effectiveness and safety of
this drug have recently been questioned (35;71;141). Because immune responses in the CNS
can have dual effects, global immune suppression is unlikely to yield long-term benefits.
Instead, optimal treatments should be tailored to augment the beneficial functions of
neuroinflammation while simultaneously minimizing those that cause injury. Currently, an
immunomodulatory therapy of this type does not exist. However, a number of promising pre-
clinical studies and clinical trials have been completed illustrating the therapeutic potential of
cell-specific therapies after SCI.

Several groups have confirmed the therapeutic potential of activated microglia and monocyte-
derived macrophages in the injured spinal cord (21;138;142;143). Two studies revealed that
microglial transplants placed into lesioned spinal cord promoted neurite growth (138;142).
Although functional recovery was not documented in these latter reports, partial recovery was
provided by transplanting activated monocytes into the caudal stump of transected rat spinal
cord (143). The success of these pre-clinical models prompted a Phase I clinical trial. This trial
was completed without any adverse effects associated with macrophage transplantation (86).
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For more information about this trial and its implications, readers are directed to a recent review
(80).

Other studies have illustrated the neuroprotective capacity of acute macrophage depletion.
Indeed, studies in various species and models of SCI have independently verified that
secondary loss of neurons (axons) and myelin is reduced after inhibition of monocyte, and in
some cases, neutrophil, infiltration. This has been accomplished using macrophage-specific
toxins (19;131), antibody-mediated blockade of integrins (7;8;52;101), chemokine antagonists
(41) and pharmacological agents that inhibit microglia and/or monocyte migration and
secretion (20;49). More importantly, these anatomical indices of recovery were paralleled by
significant but variable improvements in motor, sensory and autonomic function.

Despite the pre-clinical success of therapeutic CNS vaccines, the safety of intentionally
expanding autoreactive lymphocytes to repair the injured spinal cord remains questionable
(134). Although, this type of therapy has been applied in humans with Alzheimer’s disease
with some evidence of efficacy (12;53;104;168), Phase II trials were suspended due to the
onset of autoimmune meningoencephalitis in a small cohort of patients (18;125).

In addition to cell-specific therapies, a number of pharmacotherapies that target the immune-
CNS axis have been investigated. Systemic treatment with the anti-inflammatory cytokine
IL-10 limits secondary neurodegeneration and improves locomotor recovery in some but not
all SCI rodents (16;23;165). Similarly, the antibiotic minocycline, known for its ability to
inhibit microglia and macrophages, has been shown to be neuroprotective and reduce
neuropathic pain in rat and mouse models of SCI (56;162;167).

Conclusions
Despite extensive experimental data implicating inflammation as a pathogenic component of
SCI, inflammation also appears to be pivotal for tissue repair. A challenge for researchers is
to learn how to control cross-talk between the nervous and immune systems to minimize
delayed neurodegeneration while promoting axonal plasticity and regeneration. Moreover, a
greater appreciation for how SCI influences leukocyte development, activation and
mobilization within and from peripheral lymphoid tissues is needed. Armed with this new
knowledge, more effective and safer immune-based strategies will become available to treat
spinal cord trauma and other CNS injuries.
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Figure 1.
Temporal correlation between inflammatory cascades, secondary neurodegenerative events
and functional recovery in SCI rodents. A) Anatomical and functional outcomes, including de-
and remyelination, axonal sprouting/plasticity and locomotor recovery. B) Activation of
resident microglia and intraspinal accumulation of circulating leukocytes. Dashed lines
departing from solid curves depict data from SCI mice whereas continuing solid curves indicate
data from SCI rats. Solid curves before these break points are from both species. C) Expression
of proinflammatory cytokines and reactive oxygen species (ROS). D) Expression of
neurotrophic cytokines. E) Blood-brain barrier permeability to α-aminoisobutyric acid (AIB;
104 Da), horseradish peroxidase (HRP; 44000 Da), and luciferase (61000 Da). All AIB and
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HRP data were obtained from rat SCI models while luciferase data was from mice. Dashed
curve departing from AIB solid curve indicates secondary rise in AIB permeability in white
matter whereas continuing solid curve indicates permeability in gray matter. Solid curve before
this break point represents permeability in both white and gray matter. Values on the vertical
axis represent relative changes and are not to scale. Curves were generated using data from the
following references: A) (11;67;169); B) (81;132;136;159;188): C) (129;163;180); D) (24;
59;72;108); E) (120;133;179).
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