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Compact stellarator designs with modular coils and only two or
three field periods are now available; these designs have both
good stability and quasiaxial symmetry providing adequate trans-
port for a magnetic fusion reactor. If the bootstrap current as-
sumes theoretically predicted values a three field period configu-
ration is optimal, but if that net current turns out to be lower, a
device with two periods and just 12 modular coils might be better.
There are also attractive designs with quasihelical symmetry and
four or five periods whose properties depend less on the boot-
strap current. Good performance requires that there be a satisfac-
tory magnetic well in the vacuum field, which is a property lack-
ing in a stellarator–tokamak hybrid that has been proposed for a
proof of principle experiment. In this paper, we present an analy-
sis of stability for these configurations that is based on a moun-
tain pass theorem asserting that, if two solutions of the problem
of magnetohydrodynamic equilibrium can be found, then there
has to be an unstable solution. We compare results of our theory
of equilibrium, stability, and transport with recently announced
measurements from the large LHD experiment in Japan.

W e shall be concerned with the theory of stellarators and
tokamaks, which are toroidal devices for the confinement

of plasma in magnetic fusion research (1). Three-dimensional
computer codes have been run efficiently to design compact stel-
larators with modular coils whose physical properties compare
favorably with those of tokamaks. Quasiaxial symmetry (QAS)
of the magnetic spectrum ensures that there will be satisfactory
confinement of hot particles at reactor conditions. However, the
similarity to tokamaks that are prone to current driven disrup-
tions has caused concern in the fusion community about the
magnetohydrodynamic stabilty of the new configurations. It is
primarily the issue of stability that we address in the present
paper by applying the NSTAB computer code, which has been
benchmarked carefully against both experimental measurements
and other mathematical methods (2, 3). We study the equilib-
rium and stability of stellarators that have been proposed for
a proof of principle experiment to help select one with a good
prospect for success, and to put the results in perspective we
also examine a model of the LHD configuration.†

Bifurcated Equilibria and Nonlinear Stability
Linear stability of stellarators is hard to treat numerically be-
cause the equilibrium problem in three dimensions does not
in general possess smooth solutions without islands or current
sheets. Accurate spectral computations involve approximating
divergent Fourier series that can only be summed by filtering
them in ways that are not easy to specify in advance. The diffi-
culty becomes especially damaging if the nonexistence of a so-
lution of finite difference equations has resulted in failure to
drive the residuals toward zero in the numerical calculations
�2; 4�. We circumvent this problem of singularities by applying
the minimax theory of critical points to replace the question of
stability by the question whether there are bifurcated equilibria.
Thus, we apply an intuitively appealing mountain pass theorem
for the energy landscape to assert that, if several solutions of
a conservation form of equations derived from the variational
principle of magnetohydrodynamics can be found, then there
must be at least one that is unstable. Nonlinear estimates of
pressure limits obtained in this fashion tend to be as much as
1% larger than standard predictions for ballooning modes (5).

A similar discrepancy occurs in comparisons of other computa-
tional work with ballooning theory, so something may be wrong
with the way the local analysis is done.

To explain our method better, we recall that an elementary
form of the mountain pass theorem states that, if a function of
several variables, such as the potential energy of a mechanical
system, has two minima, or equilibria, then it also has another
critical point that can be described as a saddle point. To locate
the saddle point one first draws a curve that joins the two min-
ima on the surface defined by the function and finds a maximum
on the curve. Then one chooses the curve so as to minimize that
maximum. The minimax point obtained this way is the desired
saddle point, or mountain pass, at which the corresponding me-
chanical equilibrium is unstable.

The design of advanced stellarators is based on analysis of the
Fourier expansion

1
B2 =

∑
Bmn�s� cos�mθ− nφ�

of the magnetic field strength in terms of renormalized flux co-
ordinates s, θ; and φ. The corresponding spectrum of Fourier
coefficients Bmn controls most physical properties of the config-
uration (6). They are in turn directly related to Fourier coeffi-
cients 1mn in a representation,

r + iz = eiu
∑

1mne
−imu+inv;

of the plasma surface, where r, ϑ; and z are cylindrical coordi-
nates and u and v = Qϑ are poloidal and toroidal angles. Good
equilibrium, stability, and transport are achieved by a reduction
in the size of Bmn for selected values of the indices m and n.
At the same time, there is to be little change in the location of
the plasma or in the rotational transform ι as the dimensionless
measure β = 2p/B2 of the pressure p increases. We call the
spectrum Bmn quasisymmetric if a single row Bm0 or diagonal
Bmm of elements becomes dominant.

Experimental work is in progress to assess quasihelically sym-
metric stellarators with four or five field periods as a fusion con-
cept �7; 8�. Recently we have developed a Modular Helias-like
Heliac (MHH2) with only Q = 2 field periods that has the low
plasma aspect ratio A = 2:5, has good QAS, and has an exter-
nal magnetic field generated by just 12 modular coils. Nonlinear
stability seems to be satisfactory up to an average β of 5%,
and islands near a dangerous resonance at ι/2 = 1/4 are sup-
pressed by controlling the corresponding term B41 in the mag-
netic spectrum. However, if the bootstrap current assumes val-
ues predicted by transport theory this configuration might not
be optimal for a proof of principle experiment because of that
resonance (9).

Abbreviations: LHD, Large Helical Device; QAS, quasiaxial symmetry; MHH2, Modular
Helias-like Heliac; NIFS, National Institute for Fusion Science; NBI, Neutral Beam Injec-
tion; MHD, magnetohydrodynamics.
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Fig. 1. Asymmetrical cross sections of a bifurcated equilibrium of the MHH2 stel-
larator at β = 0:06 with net current putting the rotational transform in the range
0:60 , ι , 0:56. The existence of more than one equilibrium ensures that there
is a minimax solution at these conditions which is unstable. Notice the ballooning
structure of the mode, which is localized in a region of bad curvature and decays
dramatically along a magnetic line in as little as half a field period.

There are runs of the NSTAB computer code showing that
when the rotational transform of the MHH2 is increased to ac-
count for a contribution from bootstrap current, the most dan-
gerous magnetohydrodynamic modes remain stable for β below
5%. Fig. 1 displays a bifurcated solution with a broad pressure
profile of the form p = p0�1 − s1:5�1:5 establishing instability of
a mode with ballooning structure at larger β. The shape of the
magnetic surfaces indicates that there is little problem with the
existence of the equilibrium.

A set of just 12 modular coils has been designed to gener-
ate the external magnetic field for the MHH2 stellarator of low
aspect ratio A = 2:5. A control surface like that of the plasma
boundary was obtained on which filaments specifying the coils
would have minimal curvature and twist. The Biot–Savart law
was used to calculate a current distribution,

ϕ = 5v/π +
∑

ϕmn sin�mu− nv�;

on that surface without superfluous oscillations introduced by
least squares approximation of the equilibrium field. It was
possible to arrive at a robust configuration with ample spacing
among the filaments and with a sufficient gap between the coils
and the separatrix.

A new code called NWIND has been applied to find shape
factors 1mn specifying a surface that fits closely to some mag-
netic line traversing the separatrix. This enabled us to further
modify the coils so as to obtain a better match with the original
equilibrium computed at β = 0. In Table 1, we present Fourier
coefficients defining this solution of the problem, which we be-
lieve to be suitable for the construction of a proof of principle
experiment. Fig. 2 displays the three-dimensional geometry of
the coils. The data indicate how Fourier series have been fil-
tered to get rid of extraneous harmonics. Special attention has
been given to the choice of resonant terms to avoid trouble with
magnetic islands, but there is evidence that a similar device of
higher aspect ratio might have magnetic surfaces that are more
robust because the coefficient B41 becomes smaller than 0.1%

Table 1. Fourier coefficients âb
mn defining the boundary of the

plasma, Fourier coefficients âc
mn defining the control surface for

the coils, and Fourier coefficients �mn defining the Biot–Savart cur-
rent distribution for the MHH2 stellarator

m n 1b
mn 1c

mn ϕmn

−2 −1 0.000 −0.200 0.000
−1 −1 0.170 0.320 0.000
−1 0 0.150 0.210 0.000
−1 1 −0.010 0.000 0.000

0 0 1.000 1.790 0.000
0 1 0.000 0.020 −0.591
0 2 0.000 0.000 −0.137
0 3 0.000 0.000 −0.101
1 −2 0.000 0.000 −0.013
1 −1 0.050 0.060 −0.039
1 0 2.500 2.700 0.237
1 1 0.160 0.090 0.644
1 2 0.010 0.030 0.100
1 3 −0.010 0.000 −0.076
2 0 −0.060 −0.090 0.145
2 1 −0.450 −0.260 −0.769
2 2 −0.060 0.000 −0.050
3 0 0.000 0.000 −0.053
3 1 −0.040 0.000 0.173
3 2 0.090 0.100 0.181
3 3 0.000 0.000 −0.176
3 4 0.000 0.000 0.038
4 0 0.020 0.020 −0.054
4 1 0.030 0.100 0.012
4 2 −0.020 −0.030 −0.067
4 3 −0.020 −0.020 −0.013
4 4 0.000 0.000 0.068
5 1 0.000 0.000 −0.075
5 2 0.000 0.000 0.020
5 3 0.000 0.000 0.006
6 1 0.000 0.000 0.018
6 3 0.000 0.000 0.017

Fig. 2. Twelve modular coils generating the external magnetic field of the MHH2
stellarator. Fourier series for the filaments defining the coils have been filtered
judiciously to eliminate superfluous curvature and twist.
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of the magnetic field strength. In an experiment, one would pre-
sumably add auxiliary coils to control the m = 4; n = 1 island
that can appear when there is net current so that ι/2 = 1/4
inside the plasma.

Larger values of the bootstrap current can be exploited in
QAS stellarators with three field periods to contribute rotational
transform improving the equilibrium. The QAS3 is a configura-
tion of this kind that we have designed as a stellarator–tokamak
hybrid �5; 6�. The plasma has aspect ratio A = 4 and 24 mod-
ular coils are required to produce the external field. In runs of
the NSTAB computer code, symmetric cross sections of the flux
surfaces establish nonlinear stability up to an average β of 6%,
where the solution is unique, and there is no damaging ripple
in the surfaces, so neither the equilibrium nor the stability β
limit is exceeded.

The mountain pass analysis of stability is most convincing
when a bifurcated solution with asymmetrical flux surfaces can
be calculated that is fully converged. That is easy to accomplish
at a β of 1% for a configuration modeled on one proposed by
the fusion community for a proof of principle stellarator exper-
iment (10). Like the QAS3, it has three field periods, and its
aspect ratio is only A = 3:4, but unfortunately there is a 15%
magnetic hill in the vacuum field when no plasma is present.
Despite a nested surface hypothesis, the NSTAB calculation of
the vacuum solution shows that it has an m = 2; n = 0 island
shaped like a peanut at the magnetic axis. Further computa-
tions of bifurcated equilibria suggest that there may be trouble
accessing a second stability regime in this configuration, which
does not seem to be robust. Better results can be obtained if
there is reversed shear generated by bootstrap current. Some of
the trouble with stability comes from trying to operate the sys-
tem as a stellarator–tokamak hybrid at low β when there is too
much induced current.

For a concept exploration experiment that would be less am-
bitious, the fusion community has designed a quasiomnigeneous
stellarator that has three field periods and an aspect ratio 3.5,
but is closer to quasihelical than quasiaxial symmetry (10). The
geometry of the separatrix is not unlike that of the MHH2, but
the vacuum magnetic field does not have such a good well. We
have run the NSTAB code for a model of this configuration, and
a solution has been found at a β of 5% with flux surfaces that
have a rectangular shape because the resonant term B41 in the
magnetic spectrum is not small at ι/3 = 1/4. This indicates that
there may be a problem with the equilibrium at high β.

Conventional Stellarators
To validate our theory, numerical studies have been made of the
CHS stellarator constructed at the National Institute for Fusion
Science (NIFS) in Japan so that NSTAB calculations can be
compared with the experimental measurements that are avail-
able �6; 11�. When the vertical field is adjusted to shift the mag-
netic axis inward, the stability limit drops to a β of 0.5%, which
was the highest value observed in the CHS experiment for such
a case. With the magnetic axis in an outward position the equi-
librium and stability limit seems to be near a β of 3%, but that
conclusion has some sensitivity to geometry and profiles.

More recently, measurements have been announced from the
much larger LHD experiment.† Broad pressure profiles were ob-
tained, and values of average β have been observed between 2%
and 3% with the magnetic axis at an inward location with a large
radius of 3.6 m. Even nonlinear NSTAB calculations led us to ex-
pect a lower β limit in such circumstances. However, Fig. 3 dis-
plays a bifurcated equilibrium with p = p0�1− s1:8�1:2 that mod-
els the new data and shows that the most unstable mode remains
localized near a resonant surface, so it is relatively harmless.
An island chain becomes visible that demonstrates the ability of
the NSTAB code to simulate this phenomenon despite a nested

Fig. 3. Poincaré sections over two field periods of the magnetic surfaces of a
bifurcated LHD equilibrium with a broad pressure profile at a β of 2.5% in the
range observed by the experiment. The ripple at a resonance where ι = 5/7 rep-
resents a nonlinearly saturated unstable mode that does not damage the solution
significantly. This example shows how the NSTAB code captures small islands.

surface hypothesis that has been made. Fig. 4 describes conver-
gence of the bifurcated solution. More specific predictions of
a β limit based on these computations require one to decide
more precisely when the amplitude of the ripple in the mag-
netic surfaces is big enough to imply destruction of the plasma.
Our overall conclusion is that some predictions of both local
and global stability theory may have been too pessimistic and

Fig. 4. Plots of the residuals, the rotational transform, and a Fourier coefficient of
the localized m = 7; n = 5 mode as functions of the iteration cycle in the NSTAB
calculation of a bifurcated LHD equilibrium shown in Fig. 3. Convergence of the
iterative scheme to a solution without helical symmetry is demonstrated by the
numerical data.
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caution is called for in interpreting the results of ideal MHD
calculations.

The convergence of the NSTAB runs we have described for
the LHD stellarator is very good. However, for the compact
MHH2 configuration of aspect ratio A = 2:5; the numerical
calculations are much more difficult. It becomes necessary to re-
zone the coordinate system carefully and to rotate it one circuit
in the poloidal direction as the toroidal angle increases through
a field period. To implement the rotation, we replace u by u+ v
in our formula for the plasma surface. Too few harmonics do
not provide satisfactory resolution in the spectral method, and
too many result in divergence of the preconditioned iterative
scheme that is employed. Most of our conclusions have been
based on using Fourier terms of degree m < 20 in the poloidal
direction and of degree n < 16 in the toroidal direction. Be-
cause the physics of the low aspect ratio MHH2 is interesting,
further study of the mathematical problems that arise is called
for. More specifically, one must ask whether estimates of bal-
looning stability use equilibria that have been computed with
sufficient accuracy.

Transport of Ions and Electrons
The most effective way to calculate transport in stellarators is
to apply the Monte Carlo method, which is motivated by the
problem of tracking orbits. We have implemented a test particle
model from kinetic theory which consists of placing a particle in
the plasma and asking how long it takes to leave. Because the
effect of a single particle on macroscopic quantities is negligible,
the electromagnetic field and the flow field of the background
remain fixed, so the momentum of the test particle need not be
conserved during collisions. Statistical estimates of the confine-
ment time are calculated by our TRAN computer code, which
treats the problem as a random walk among drift surfaces whose
complicated geometry plays an important role (12). Details of
the geometry are handled computationally by an appropriate
ordinary differential equation solver that tracks guiding center
orbits.

In plasma equilibria where the mean free path extends hun-
dreds of times around the torus, conservation of momentum is
not a plausible mechanism to account for quasineutrality, which
is required to solve for the magnetic field. In our work, we
introduce three-dimensional perturbations of the electrostatic
potential

8 = P00�s� +
∑

Pmn cos�mθ− nφ�
that simulate turbulence triggered by the displacement current.
In the TRAN code, we compute not only the ion confinement
time but also the electron confinement time, which enables us
to determine the coefficients Pmn from quasineutrality �6; 12�.
Thus, a truncated quasineutrality condition rather than Ohm’s
law is used to determine 8.

Numerical calculations show that two-dimensional models do
not adequately explain experimental measurements of transport
in a plasma. The Monte Carlo method takes into account the
complex geometry of the drift surfaces and computes neoclas-
sical transport dominated by complicated banana orbits. In our
work, the three-dimensional perturbations of 8 are selected it-
eratively to impose a truncated version of the quasineutrality re-
quirement. Whenever this is accomplished successfully, it turns
out that the numerical results agree well with observations. The
physics of the model would be more consistent if we chose the
flow velocity U to ensure conservation of momentum in the colli-
sion operator, just as we find the electrostatic potential 8 by im-
posing quasineutrality. However, that would lead to a far more
tedious computation that does not in practice affect the results
enough to justify the effort, so we simply put U = 0. Thus the fi-
nal formulation of our method is based on both theoretical and
practical considerations (12).

Fig. 5. TRAN calculation of the energy confinement time τE in milliseconds for
an NBI shot of the LHD experiment using a quasineutrality algorithm to determine
the electric potential 8. Oscillations of 8 along the magnetic lines model turbu-
lence and anomalous transport so that good agreement with the measured value
is obtained. If the oscillations are suppressed the computed value increases by a
factor of two.

The TRAN implementation of the quasineutrality algorithm
is only effective at low collision frequencies such that the first
few harmonics Pmn suffice to approximate the electrostatic po-
tential 8. Hence only tokamak data were used in our first
comparisons of the theory with experiment. That was perhaps
unconvincing because as a model of turbulence, we introduced
bifurcated three-dimensional equilibria whose physical rele-
vance was not universally recognized. Recently measurements
of confinement time in the LHD stellarator at NIFS have been
announced that are at the required level of collisionality, so a
more satisfactory comparison becomes feasible.† More specif-
ically, we have run the TRAN code to model an observation
using NBI (Neutral Beam Injection) heating that produced a
peak electron temperature of 3.3 keV and a peak ion tem-
perature of 3.1 keV at density 1:5 3 1013 cm−3. The central
magnetic field was 2.8 tesla, the radius of the magnetic axis
was 3.6 m, and the small radius of the plasma was 65 cm. Both
the experimental measurement and the mathematical compu-
tation gave the value τE = 160 ms for the energy confinement
time, with a margin of error comparable to uncertainties con-
nected with an estimate near 2 of the effective charge number
Z, which occurs in TRAN formulas for the collision freqency
(12). This preliminary result is displayed in Fig. 5, but a more
detailed analysis would be desirable to validate the theory.

We are developing the MHH2 as a reactor concept with large
radius 8 m, plasma radius 3.2 m, and a gap of 2 m between the
separatrix of the plasma and the filaments defining the mod-
ular coils, which are to have relatively small curvature. There
is enough flexibility in the system to allow for corrections that
may become necessary after more detailed studies of alpha
particle confinement and the divertor are made. Monte Carlo
simulations of the MHH2 reactor using the TRAN computer
code show that the energy confinement time τE scales like ρ−2:5

L ,
where ρL is the ion gyroradius measured in units of the plasma
radius. More specifically, with a magnetic field of 5 tesla in
the plasma, average temperature 14 keV and average density
1:4 3 1014 cm−3, we estimate that τE = 3 s. For a more conven-
tional stellarator like the LHD the corresponding estimate of
τE turns out to be significantly smaller so that the size of the re-
actor becomes quite large. This is because asymmetric Fourier
coefficients Bmn in the spectrum for a conventional stellarator
are so much bigger than those of an optimized helias.
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Conclusions
New QAS configurations with two or three field periods called
the MHH2 and the QAS3 have been found for a proof of princi-
ple stellarator experiment. Our mathematical theory, which cap-
tures islands by calculating weak solutions of the MHD (mag-
netohydrodynamic) equilibrium equations, suggests that these
are better candidates than those developed by other methods
with less resolution. We have collaborated with NIFS to de-
sign a modular stellarator experiment based on the new MHH2
configuration. In recent LHD experiments, very good measure-
ments of the energy confinement time have been reported at
low collision frequencies near those of a reactor. Monte Carlo
simulations suggest that in the more compact MHH2, a peak

temperature as high as 3 keV might be attained at density
1013 cm−3 for a magnetic field of 1.5 tesla and a major ra-
dius of only 1.5 m. To raise the temperature above 5 keV in a
conventional stellarator like the LHD may require major heat-
ing power, but no comparable difficulty should occur in the
MHH2 because two-dimensional quasisymmetry of the mag-
netic spectrum is predicted to provide good transport at low
collisionality.
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