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Abstract
Regulation of gene expression occurs largely through the binding of sequence-specific
transcription factors (TFs) to genomic binding sites (BSs). We present a rigorous scoring scheme,
implemented as a C program termed “ModuleFinder”, that evaluates the likelihood that a given
genomic region is a cis regulatory module (CRM) for an input set of TFs according to its degree
of: (1) homotypic site clustering; (2) heterotypic sie clustering; and (3) evolutionary conservation
across multiple genomes. Importantly, ModuleFinder obtains all parameters needed to
appropriately weight the relative contributions of these sequence features directly from the input
sequences and TFBS motifs, and does not need to first be trained. Using two previously described
collections of experimentally verified CRMs in mammals and in fly as validation datasets, we
show that ModuleFinder is able to identify CRMs with great sensitivity and specificity.

1. Introduction
Recent technological advances have enabled both the sequencing of a large number of
genomes and the generation of expansive gene expression datasets. Still, little is known
about how these gene expression patterns are precisely regulated through the binding of
sequence-specific transcription factors (TFs) to their DNA binding sites (BSs). Of particular
interest is the organization of TF binding sites (TFBSs) into cis regulatory modules (CRMs)
that coordinate the complex spatio-temporal patterns of gene expression, and to use that
information to identify the CRMs themselves. Mapping TFs to their target CRMs, however,
is significantly complicated in higher eukaryotic genomes by the large proportion of non-
protein-coding sequence. Since a typical TFBS can be as short as ∼5 base pairs (bp),
matches to its motif occur frequently by chance alone, with many of these occurrences
presumably not acting to modulate gene expression. Therefore, a central challenge that must
be overcome is distinguishing functional TFBSs from spurious motif matches.
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To date, three indicators have been used to identify functional TFBSs. First, functional BSs
for some TFs tend to occur in clusters, with multiple BSs occurring in close proximity
(homotypic clustering). Second, searching for clusters containing BSs for 2 or more TFs that
are believed to co-regulate can enrich for likely CRMs (heterotypic clustering). Finally,
functional TFBSs are frequently conserved across evolutionarily divergent organisms1.
Cross-species sequence conservation in particular has enormous potential for filtering
sequence space, as many genomes have recently been sequenced, and many more are slated
to be sequenced (http://www.genome.gov/10002154). The discriminatory power of
phylogenetic footprinting for identifying cis regulatory elements is therefore expected to
continue to increase through the use of more genomes2-6. In order to appropriately
incorporate information on conservation across multiple genomes, however, a measure of
TFBS conservation is required that weights each alignment genome according to its
evolutionary distance not only from the query genome, but also relative to the other
alignment genomes. For example, given a candidate TFBS in the human genome, observing
conservation in chicken should be weighted more heavily than conservation in mouse, as
mouse is evolutionarily closer to human. Moreover, if the candidate site were also conserved
in rat, then this additional conservation should be weighted only slightly, given the
evolutionary proximity of mouse and rat.

While numerous groups have developed approaches for the prediction of CRMs, none is
optimized for practical applications. Specifically, many approaches7-9 have been based on
binary scoring schemes, wherein all regions containing a threshold number of occurrences
for a given combination of TFBSs are returned. These approaches suffer from the limitation
that they do not prioritize among the predictions, an important feature for experimentalists
as only a limited number of candidate CRMs can feasibly be validated. Additionally, the
threshold value determined in any given biological system is unlikely to be generalizeable
from one set of TFs and CRM type to another; thus, the appropriate discriminatory criterion
must be re-discovered with each application. Alternatively, among existing continuous
scoring schemes, many require large training sets10,11. Such approaches cannot be applied
to a system in which there are only a handful of known examples, as is frequently the case in
practical applications. Finally, among approaches that employ continuous scoring schemes
and do not require training12-15, most do not systematically integrate BS clustering and
conservation. We are aware of only one other approach that combines all three indicators16,
but it is computationally rather slow and requires the user to specify a single sequence
window size for the search. Since CRMs are known to vary greatly in size, a scoring scheme
is needed that evaluates clustering and conservation over windows of varying sizes15.

We have developed a statistically rigorous scoring scheme that for any given genomic
region integrates into a single score the degree of: (1) homotypic clustering; (2) heterotypic
clustering; and (3) evolutionary conservation across multiple genomes. Similar to programs
such as BLAST17, our score is an objective measure of the statistical significance of the
observed degree of clustering and conservation that is independent of the genome and
TFBSs under consideration. Thus, the scoring scheme obtains all parameters needed to
appropriately weight the relative contribution of each input alignment and TFBS motif
directly from the sequences and motifs themselves, and so does not need to first be trained.
We have implemented this scoring scheme as a C program called “ModuleFinder,” that is
algorithmically efficient and has an intuitive interface. Using two previously described
collections of experimentally verified CRMs (mammalian skeletal muscle18 and D.
melanogaster segmentation genes7), we show that ModuleFinder is able to identify CRMs
with ∼95% sensitivity and ∼95% specificity.
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2. Methods
Methods that evaluate the overall degree of conservation for a given region have been
successful in identifying cis regulatory elements in metazoan genomes2,6; they do not,
however, necessarily identify the CRMs through which a given set of TFs exert their
regulatory roles (i.e., the TFs’ “target” CRMs). Since our ultimate goal is to identify
candidate CRMs that are bound by a given set of TFs, we have developed a scoring scheme
that specifically considers the conservation of a particular set of TFBSs comprising a given
transcriptional regulatory model. For this, we developed a novel statistical framework that
builds on earlier work. Blanchette et al. stated the substring parsimony problem and
presented a rigorous and efficient algorithmic procedure for solving it19; this model was
applied to the identification of candidate DNA motifs. Moses et al. used mixture models to
evaluate conservation within a tree, and applied it to the identification of candidate DNA
motifs from sets of co-expressed genes20; this was similar to an approach given by Prakash
et al.21 Here we present a related approach for identifying candidate CRMs from input
TFBS motifs.

2.1. Scoring Scheme
We define a word to be a short sequence on the DNA alphabet {A,C,G,T}, and a motif to be
a collection of words all of the same length. ModuleFinder takes as input a collection of
arbitrarily many motifs {m1…mm}, where each motif mi is composed of arbitrarily many
words of length li. It also takes as input a set of sequences G = {g1,…gn} corresponding to
genomic regions that are to be searched for instances of these motifs, as well as two sets of
genomic sequences, A = {a1,…,an} and B = {b1,…,bn}, extracted from evolutionarily
divergent organisms and then aligned to the sequences of G. Here, we primarily illustrate the
scoring scheme for the case of two alignment genomes, but include comments on the
extension to fewer or more alignments. For any gj, let gj,k denote the base at the kth position
and (gj,k…gj,k+l) denote the subsequence of length l beginning at position k. If there is a
match to a given motif mi at position k of sequence gj, we define it to be conserved in A
(respectively, B), if it is true that the subsequence (aj,k…aj,k+l) (respectively, (bj,k…bj,k+l)) is
also a word in motif mi. Note that we are not assuming that gj,k…gj,k+l = aj,k…aj,k+l, but
merely that they are both words in mi.

Our basic approach is to scan each sequence in G with a series of nested windows (i.e.,
overlapping windows of differing sizes). In each window we count the number of
occurrences of each motif and the number of these that are conserved in A and B. We then
evaluate the likelihood of observing this number of matches and conserved matches under
the appropriate null hypothesis, and return those windows that are statistically significant.
Specifically, let X = (X1,…,Xm) be the vector whose components indicate the number of
occurrences for each motif individually in a given window, and let Y = ( Y1,…, Ym) and Z =
( Z1,…, Zm) be the corresponding vectors indicating that Yi and Zi out of Xi occurrences are
conserved in A and B, respectively. The window score is obtained by finding the probability
of observing (X,Y,Z). This quantity will vary according to the likelihood of conservation in
A and/or B, the motif frequency, and the window width. Thus, this probability can be
represented by:

(1)

where Γ parameterizes conservation likelihood, α parameterizes motif frequencies, and w is
the window width. Observe that:

(2)
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where the relevant parameters can be split between terms in the Markov decomposition, as
Pα,w(X) is unaffected by conservation likelihood, and PΓ(Y, Z | X) is unaffected by motif
frequency and window size.

For a single motif mi, the term Pαi,w(Xi) of Eq. (2) is the likelihood of observing Xi
occurrences under the null hypothesis that the motif matches are distributed at random. This
has been proved to be well-approximated by a Poisson distribution, provided the motif
occurs infrequently and the words comprising it do not exhibit extensive self-overlap.22
Thus, Pαi,w(Xi)= e-λi(λi

Xi/ Xi!), where λi=αi*w. The value of αi will itself be determined
by both the words comprising mi, as well as genomic word frequencies. To obtain it, we
estimate the frequency of each word in mi by a seventh order Markov approximation based
on genomic word frequencies, and then sum these frequencies for all words in the motif.

For multiple motifs, the joint probability is given by assuming independence:

This is a simplifying assumption to make the computation tractable; the error in this
approximation has, however, been proved to be bounded22.

The computation of the second term of Eq. (2), PΓ(Y , Z | X), is complicated by two factors.
First, the score must reflect not only the evolutionary distances of A and B to G, but also the
distances of A and B to each other. Thus, Γ must re-parameterize PΓ(Y ,Z | X) so that it
becomes smaller as A and B grow more distant from G, and as the correlation between A
and B decreases. Second, the quantity PΓ(Y ,Z | X) will depend not only on the phylogeny of
A, B and G, but also on the degeneracy of the motifs mi. Since we have defined a given
motif match to be conserved in A or B if there is a motif occurrence (but not necessarily an
exact word match) at the same position in these aligned sequences, a more degenerate motif
has a greater likelihood of being conserved.

We account for these difficulties as follows. Define  to be the covariance matrix

representing the relative proportions of A and B that can be aligned against G; thus, 

gives the proportion of sequence in G for which neither A nor B could be aligned,  and

 and give the proportion for which either A or B (but not both) could be aligned, and 
gives the proportion for which both A and B could be aligned. Similarly, for each motif mi,

define  to be the covariance matrix representing the relative likelihoods of exact
conservation of li positions (i.e., (gj,k…gj,k+l) = (aj,k…aj,k+l)) in A and/or B. Here, we have
observed non-independence of exact conservation likelihood between adjacent positions, so
we model it as a first order Markov chain.

Conservation of a completely degenerate motif is parameterized by , and conservation of

a motif composed of a single word is parameterized by . The parameterization of a
generic motif is between these extremes; for this, let Pi,j,k be the matrix giving the frequency
of nucleotide j∈{A,C,G,T} at position k∈{1,…,li} in motif mi, and let Ei be the average
entropy of the motif:
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Hence, Ei=1 for a completely degenerate motif, Ei=0 for a motif composed of a single word,
and Ei increases monotonically and smoothly between these extremes as the motif
degeneracy increases. Therefore, we take our parameterization of Γi for mi to be a weighted

average of  and :

We then use Γi to compute PΓi(Yi, Zi | Xi). In a sequence window containing Xi matches to
motif mi, let ai be the number that are not conserved in either A or B, let bi and ci be the
number conserved in either A or B (but not both), and let di be the number that are
conserved in both A and B. The following equations hold:

(3)

(4)

(5)

P(Yi,Zi|Xi) is therefore given by the following multinomial:

(6)

where the summation is performed over all values of ai, bi, ci and di satisfying Eqs. (3)-(5).
To achieve computational efficiency, we make use of the following 1-dimensional
parameterization, where Xi, Yi and Zi remain fixed as di is varied:

(7)

(8)

(9)

Thus, the summation of Eq. (6) can be performed by simply taking each value of di in the
range 0 ≤ di ≤ min(Yi, Zi).

If one desires to only input one genome, it is sufficient to set A=B. The relevant parameters
then simplify, and the preceding multinomial distribution collapses to a binomial

distribution with parameter :
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This parameterization can also be easily generalized to more than 2 alignment genomes by
replacing the matrix Γi with an appropriate tensor.

This derived value of PΓ,α,w(X,Y,Z) alone is insufficient for determining statistical
significance, since a measurement of distance into the appropriate tail of the distribution is
also required. Therefore, we perform a summation of PΓ,α,w (X,Y,Z) extending from the
observed value of (X,Y,Z) and including all values of (X,Y,Z) with an increased degree of
clustering and conservation (we use log values to simplify the numerical analysis):

(10)

Therefore, the output score SΓ,α,w(X,Y,Z) for a given window is the linear sum of scores for
the input motifs, SΓi,αi,w(Xi,Yi,Zi) , where each such term has been i automatically weighted
so that more degenerate motifs contribute less. Observe also that SΓi,αi,w(Xi,Yi,Zi)=0 if and
only if Xi=0, and that SΓi,αi,w(Xi,Yi,Zi) increases monotonically with increasing values of
(Xi,Yi,Zi), as desired.

2.2. Implementation and Availability
ModuleFinder has been implemented in C. To minimize runtime, we pre-process each
sequence of G with suffix arrays23 for efficient searching; additionally, as the algorithm
proceeds, a look-up table is kept that contains a list of scores for all observed window sizes
w and motif matches (X,Y,Z). ModuleFinder can scan ∼120 Mb/hr using window sizes of
300-700 bp with an increment size of 50 bp and one alignment genome on a Pentium 4
computer. The compiled code, along with README files and appropriately formatted
genomes and alignments for human, mouse, rat, fly, worm and yeast based on the latest
UCSC assemblies24 are available for download at our website
(http://the_brain.bwh.harvard.edu).

Two additional features were included for improved practical applicability. First, it is known
that TFs frequently bind to DNA as homo- and hetero-dimers. We have added to
ModuleFinder the ability to take pairs of TFBSs as input, along with minimum and
maximum spacer lengths between sites. The score of the dimer is computed by evaluating
the probability of each component motif as in Eq. (1), then taking the product of these
probabilities and summing them over all input spacings. Second, ModuleFinder allows a
certain amount of ‘wiggle room’ to compensate for the potential existence of local
misalignments. Specifically, given an input value r, a motif match (gj,k….gj,k+l) is
considered conserved in A if there is any subsequence of (aj,k-r…aj,k+r+l) that is a word in
mi. Although this does increase the likelihood of conservation, the effect is miniscule for
small values of r (1≤ r ≤ 5) and has frequently identified potentially conserved sites that
would have been missed otherwise.

3. Results
3.1 Validation of ModuleFinder on human skeletal muscle CRMs

In order to evaluate ModuleFinder, we used a set of positive control regions previously
compiled by Wasserman et al.18 This test dataset comprises 27a skeletal muscle CRMs that
have been demonstrated to direct transcription in skeletal muscle or a suitable cell-culture
model system18. Each region contains a validated BS for at least one of the following 5 TFs:
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the Myf family (total of 39 TFBSs in the positive control set), Mef2 (26 TFBSs), SRF (20
TFBSs), Tef (12 TFBSs) and Sp1 (13 TFBSs). Of these 27 regions, 23 are located within 5
kb upstream of translational Start, and 2 within introns. As negative controls, 1000 regions
of size 200 bp were randomly selected to positionally match the positive control regions:
852 (=(23/27)*1000) regions were within 5 kb of translational Start for a randomly chosen
RefGene24 gene, and the remaining 148 were within introns. This matching of
chromosomal locations was performed as ModuleFinder accounts for local word
frequencies, which vary throughout the genome; in particular, promoter regions are known
to be GC-rich.

We ran ModuleFinder on the positive and negative control regions with window sizes of
100-200 bp (increment size = 10 bp), using human sequence alone, human/mouse/rat (H/M/
R) alignments and human/mouse/chicken alignments (H/M/C) obtained from UCSC
Genome Browser (hg16, mm3, rn3, galGal2)24. Currently, two alternative strategies for
representing TFBSs have been used by various groups in computational searches for CRMs:
exact word matches to known BSs9,15, and position weight matrices (PWMs)7,10-13,
which allow for extrapolation to additional BSs. To determine which of these
representations had greater discriminatory power, we performed our searches both ways,
using a PWM threshold value of 1 standard deviation (SD) below the motif average25. We
used a “jack-knife” strategy11 for these searches, whereby the BSs for each CRM were
excluded from the construction of the PWM used to search that CRM, and similarly the
exact word matches from each CRM were excluded in the search of that CRM. In addition,
since in vitro binding experiments had been performed for Mef226 and SRF27, we also
added those BSs to both searches.

The results of these evaluations are shown in Table 1. Here, we have reported those values
for sensitivity and specificity which maximally discriminate between the positive and
negative control sets (i.e., using the threshold score such that the difference between the
sensitivity and specificity is minimized). Since there was great variability in score among
the positive control regions (see Figure 1; i.e., the top positive control region received a
score of -11.23 and the worst positive control region scored only -1.22 (positive controls:
mean = -4.69, SD = 2.24; negative controls: mean = -0.42, SD = 0.81)), we also performed a
t-test on the positive and negative control region means, in order to measure the
effectiveness of ModuleFinder on regions falling far from the threshold score.

On this dataset, ModuleFinder achieved a maximum sensitivity of 96.3% and specificity of
94.4% on the H/M/R PWM searches. Moreover, the PWM approach consistently gave better
discrimination than exact word matches. Much of this improved discrimination, however, is
an artifact of the jack-knife procedure, which has a stronger effect on exact match searches.
Here, using the complete set of BSs (i.e., without the jack-knife), exact word matching
achieves 100% sensitivity and 95.1% specificity (we removed degenerate flanking
sequences for all searches with exact words). In addition, these results indicate that the H/M/
R searches reliably outperformed the H/M/C searches. There are two possible explanations
for this: 1) the chicken genome is not yet complete, and the appropriate alignment regions
may not have been sequenced yet; 2) the underlying mechanisms of transcriptional
regulation are not actually conserved in an organism as distant as chicken. Neither of these
hypotheses can be ruled out until the completion of the chicken genome.

Since ModuleFinder was specifically developed to integrate homotypic clustering,
heterotypic clustering, and conservation, we wanted to determine which of these features
were most contributory to discriminatory power. In order to assess this, we ran

aThe original collection gave 28 genes, but we removed the gene Rb1 as there were no confirmed TFBSs for the listed TFs.
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ModuleFinder on the positive and negative control regions using no alignments, one
alignment (each of mouse, rat and chicken), and two alignments (H/M/R and H/M/C). These
searches were repeated with each TF individually, as well as with all 5 TFs together. In
Figure 2, we show the negative logarithm of the p-values obtained from t-tests on the
positive versus negative control regions for each of these searches. Here the mouse and rat
alignments improved discriminatory power, but little was gained by using both genomes,
because of their evolutionary proximity. Somewhat surprisingly, using chicken actually
reduced discrimination relative to human alone. This was unexpected, as it implies that our
negative controls are more likely to be conserved than these 27 regions. However, this effect
could be an artifact of the small size of the positive controls and gaps in the chicken genome
(only 13/27 positive controls had any alignable chicken sequence).

Finally, at least four other algorithms have used overlapping subsets of this dataset as
positive controls11-13,28, achieving sensitivities between 59% and 66%, and specificities
between 95.3% and 97.1% (see Table 2). Thus, ModuleFinder appears to have comparable
specificity but greater sensitivity. However, note the following caveats for this comparison.
First, because ModuleFinder uses evolutionary conservation as a central component and
because few vertebrate genomes have been sequenced, we limited our searches to the subset
of the original compilation for which human/rodent alignments were available18. The other
algorithms tested on this dataset did not consider conservation, and thus used the original,
larger compilation that included CRMs obtained from diverse organisms including chicken,
hamster, rabbit, pig and cow11. Frith et al.12,13 trimmed this larger set11 to a subset of 27
regions, but their subset overlapped with ours by only 15 genes. Second, each group used a
different set of negative controls. The original paper by Wasserman et al.11 used a set of
negative control regions similar to our set; it was composed of 200 bp regions selected from
the Eukaryotic Promoter Database. Comet and Cister were each tested on 300 bp regions
that were selected to overlap well-characterized transcriptional Starts12,13. Finally,
MSCAN28 measured specificity by looking at the “hit rate” in contiguous stretches of the
Fugu genome.

3.2 Other validations of ModuleFinder
In addition to the mammalian skeletal muscle set, we have also tested ModuleFinder on a D.
melanogaster dataset that comprises 20 transcriptional enhancers from 9 genes known to be
co-regulated during anterior-posterior segmentation of fly embryos7. Using the D.
melanogaster/D. pseudoobscura alignments and a protocol similar to that described in
Section 2.1, ModuleFinder was able to discriminate this collection of CRMs from randomly
chosen noncoding regions with 95% sensitivity and 95% specificity (Philippakis et al.,
manuscript in preparation). In addition to these in silico confirmations, we have also
successfully applied ModuleFinder to predict CRMs in three biological systems: (1)
development of the fly pericardium (Michaud et al., manuscript in preparation), (2)
development of fly muscle founder cells (Philippakis et al., manuscript in preparation), and
(3) mammalian myogenesis (Warner et al., manuscript in preparation). For mammalian
myogenesis, we applied the same 5 TFs and their BSs as described above; indeed much of
the work presented here was done for the explicit purpose of selecting optimized BSs and
sequence alignments before attempting to predict novel mammalian CRMs.

4. Discussion and Future Directions
We have presented a statistically rigorous approach for scoring windows of genomic
sequence according to their likelihood of containing BSs for a collection of input TFs. The
approach systematically integrates homotypic clustering, heterotypic clustering and
evolutionary conservation across multiple genomes into a single, objective scoring scheme
that does not require training. Additionally, our algorithm, implemented as a C program
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called “ModuleFinder,” is publicly available for download, along with pre-processed
genomes and alignments for yeast, worm, fly, mouse, rat, and human, at our lab website
(http://the_brain.bwh.harvard.edu). The current version of ModuleFinder considers up to
two alignment genomes as input, and we are currently expanding it to accept arbitrarily
many genomes.

We have tested ModuleFinder on a set of human skeletal muscle CRMs using a variety of
genome alignments and TFBSs, and have achieved a maximum sensitivity and specificity of
96% and 94%. On this dataset, improved sensitivity and specificity were achieved by using
mouse and rat alignments in the searches, whereas chicken alignments actually decreased
sensitivity and specificity. Furthermore, PWMs resulted in improved sensitivity and
specificity over exact TFBS matches. Preliminary results indicate that ModuleFinder can
successfully predict novel CRMs in human myoblasts (Warner et al., manuscript in
preparation). In addition, on a D. melanogaster segmentation gene dataset with D.
pseudoobscura as the alignment genome, ModuleFinder achieved sensitivity and specificity
of 95% and 95%. We have also predicted and experimentally validated several novel CRMs
in the developing fly mesoderm (Philippakis et al., manuscript in preparation). We expect
that in the future we and others will use ModuleFinder to further refine transcriptional
regulatory models for CRMs in particular biological systems and thus discover how the
associated TFBSs are organized to confer specific gene expression patterns.
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Figure 1.
Sensitivity and specificity of ModuleFinder on skeletal muscle test regions, versus randomly
selected control regions.
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Figure 2.
Negative log of p-values obtained from t-test on means between positive and negative
controls. ModuleFinder was run with various combinations of mouse, rat, and chicken
alignments (indicated by +/-), using all 5 TFs together, and each TF alone.
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Table 2

Relative performance of ModuleFinder: Sensitivities and specificities, as reported by groups using
overlapping subsets of the skeletal muscle dataset. Logistic regression, Cister, Comet and ModuleFinder
specificities refer to 200-300bp portions of the human genome; the MSCAN specificity was ascertained using
large stretches of Fugu sequence.

Algorithm Sensitivity Specificity

Logistic Regression11 60% 96%

Cister12 59% 97.1%

COMET13 59% 95.3%

MSCAN28 66% NA

ModuleFinder 96% 94%
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