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Abstract
Information about the stress distribution on contact surfaces of adjacent bones is indispensable for
analysis of arthritis, bone fracture and remodeling. Numerical solution of the contact problem based
on the classical approaches of solid mechanics is sophisticated and time-consuming. However, the
solution can be essentially simplified on the following physical grounds. The bone contact surfaces
are covered with a layer of articular cartilage, which is a soft tissue as compared to the hard bone.
The latter allows ignoring the bone compliance in analysis of the contact problem, i.e. rigid bones
are considered to interact through a compliant cartilage. Moreover, cartilage shear stresses and strains
can be ignored because of the negligible friction between contacting cartilage layers. Thus, the
cartilage can be approximated by a set of unilateral compressive springs normal to the bone surface.
The forces in the springs can be computed from the equilibrium equations iteratively accounting for
the changing contact area. This is the essence of the discrete element analysis (DEA). Despite the
success in applications of DEA to various bone contact problems, its classical formulation required
experimental validation because the springs approximating the cartilage were assumed linear while
the real articular cartilage exhibited non-linear mechanical response in reported tests. Recent
experimental results of Ateshian and his co-workers allow for revisiting the classical DEA
formulation and establishing the limits of its applicability. In the present work, it is shown that the
linear spring model is remarkably valid within a wide range of large deformations of the cartilage.
It is also shown how to extend the classical DEA to the case of strong non-linearity if necessary.
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1 Introduction
Cartilage is not an easy material to model its physical behavior under load. It is soft, multiphase,
anisotropic, and inhomogeneous and its mechanical response to applied loads is essentially
time-dependant (Huang et al, 2005). Nonetheless, attempts to describe mechanical behavior
of the cartilage in a diarthrodial joint may not be hopeless and they are necessary for
understanding the distribution of contact pressure. The latter is important for revealing the
mechanisms of osteoarthritis, bone fracture and remodeling.
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Mow et al (1980) treated cartilage as a biphasic material in their seminal work where a
continuum mixture theory was used for mathematical modeling. Alternatively, a poroelasticity
theory (Cowin, 1999; Coussy, 2004) can be used to describe articular cartilage. Both
approaches are technically sophisticated and numerically complex. Analytical and semi-
analytical solutions of the bone contact problems including cartilage (Ateshian et al, 1994;
Ateshian and Wang, 1995; Donzelli et al, 1999) are restricted to simple geometries and linear
materials what makes the problems tractable, while numerical solutions for more realistic
contact surfaces that use commercial software (Wu et al, 1998; Han et al, 2005) are expensive
and time-consuming.

Development of a reasonably simple numerical framework for modeling cartilage on the
realistic contact surfaces should rely upon physically motivated simplifications of the
mathematical model. The cartilage deforms in three stages: first – the early stage of
instantaneous deformation, when the cartilage fluid bears most contact pressure; second – the
transient stage, when the fluid starts moving; third – the steady stage, when mainly the solid
phase of the cartilage supports the applied load. According to Mow et al (1980), the fluid flows
out of the compressed region in about 5 seconds after loading, while Ateshian et al (1994),
Ateshian, and Wang (1995) conclude that the fluid phase of cartilage plays a major role in
providing load support during first 100−200 seconds after contact loading. Such diversity in
the prediction of the fluid outflow is affected by the specific conditions of experiments and
restrictive assumptions of analysis. What stage of the cartilage deformation, instantaneous,
transient, or steady, dominates a load-bearing activity? This question has no simple answer.

Consider, for example, a hip joint under conditions of standing up, normal walking, and
running. At the time of standing up an instantaneous pressure is applied at the top of the femoral
head, which is supported by the cartilage fluid. If the standing position is not changing during
few seconds then the fluid flows out of the compressed region and the steady state occurs.
When a walking starts, an additional instantaneous load is applied to the hip joint producing
extra instantaneous response of the remaining fluid, which starts flowing out of the compressed
region. Since the period of the gait-cycle is shorter than the time of fluid transition then the
steady response of the cartilage is achieved after a number of cycles when an additional amount
of the cartilage fluid leaves the contact region of the femoral head with the acetabulum. When
a running starts, additional inertia forces are applied to the hip joint producing further
instantaneous response of the remaining fluid, which flows out of the compressed region and
so on. Summarizing this example qualitatively it is possible to state that instantaneous and
fluid-supported deformation of the cartilage occurs when the loading is changing while a steady
and solid-supported deformation occurs when the loading is also steady – constant or cyclic.
The time proportion of these two types of deformation depends on the character of the
functional activity. Those, who are exposed to a monotonic and steady physical activity, seem
to be more susceptible to the direct loading of the cartilage solid phase.

Since the transient stage gives intermediate contact pressure, it can be omitted from the analysis
and only the initial, instantaneous, and the final, steady, stages are to be analyzed providing
the bounds for contact pressure. It is important that while the instantaneous response, which is
dominated by the elasticity of the fluid phase, can be considered linear, the steady response,
which is dominated by the elasticity of the solid phase, should allow for finite elastic strains
of the cartilage. The latter is the focus of the present work. Based on experimental results of
Ateshian and his co-workers a ‘non-linear spring’ model of the articular cartilage is developed.
It is found that the linearization of the nonlinear model is applicable to a surprisingly wide
range of the engineering strain varying from zero to 25−30%. Normally, these strains cover
the physiological range of the cartilage deformation. Nonetheless, we show how to modify the
classical DEA to account for strains larger than 30%.
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2 Discrete Element Analysis
2.1 Non-linear spring model

Ateshian et al (1997) and Huang et al (2005) performed experimental and theoretical analyses
of the one-dimensional confined compression of articular cartilage. They found that the axial
stress-stretch law for non-linear behavior of the specimen could be approximated as follows

(1)

where σ is the axial Cauchy stress in the solid phase; λ is the axial stretch (other principal
stretches equal unity); HA0 and β are material parameters. These material parameters can be
roughly estimated for the human and bovine articular cartilage: 0.3 ≤ HAO ≤ 0.6; 0.05 ≤ β ≤
0.6. Based on the analysis of Ateshian et al (1994), we assume that stretches are essentially
uniform with depth of the cartilage layer. This allows introducing a non-linear spring with a
uniform deformation along its length. Let the average spring stress be designated σ and the
relative elongation of the spring is ε = Δh/h where h and h + Δh is the cartilage thickness before
and after deformation accordingly. Then λ = ε + 1 and Eq. (1) takes the form

(2)

The graph of this formula is presented in Fig. 1 for the material parameters taking the limit
values of the range 0.05 ≤ β ≤ 0.6. The positive values of the relative elongation (engineering
strain) and the corresponding stresses are irrelevant, of course, because the springs are
unilateral and they do not resist tension. However, the tension of the springs should be taken
into account to provide robustness of the computational algorithm described below. The
negative values of strains and the corresponding compressive stress are of interest. It is
remarkable that the stress-strain curve is almost linear up to 30% strain while a slight deviation
from the linearity emerges in the strain range of 30−40%, i.e. at the limits of the physiologically
reasonable values of engineering strain. This observation gives an experimental validation for
the classical discrete element analysis based on the linear spring approximation when
engineering strains do not exceed 30%. If, however, the strains are about 30% or more the
classical discrete element analysis should be modified as follows.

Remark 1. We use the experiment with the confined compression for calibration of the spring
model. The confined compression means that the cross-section of the specimen does not change
during its mechanical response and the stretches of the specimen are unit in the cross-sectional
plane. This condition seems to ideally fit the spring model, which does not undergo cross-
sectional changes during the deformation. The unconfined compression experiments would be
difficult to interpret in the terms of the spring model because, in this case, there should be an
interaction between the adjacent springs.

2.2 Numerical implementation
The original form of the non-linear spring definition presented by Eq. (2) is not attractive for
computations. It can be expressed in a more attractive form by using power series about ε = 0:

(3)
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Equations (2) and (3) almost coincide with each other on the segment −0.4 ≤ ε ≤ 0.4 as can be
easily observed in Fig.1 for the limit values of β. Of course, it is much simpler to manipulate
Eq. (3) than Eq. (2) in all analytical transformations. Particularly, the density of the strain
energy of the springs can be readily written down

(4)

(5)

where w(0) = 0 was assumed. There is no contact when the spring is in tension. This means
that deformations with ε > 0 should be excluded from the considerations. The latter can be
done by excluding the springs in tension from the contact zone. Changing the contact area
iteratively it is possible to find the equilibrium state where all springs are compressed. It is
important to emphasize, however, that the use of all formulae in the extended range of
deformations (ε > 0) makes the intermediate computations robust.

Consider two rigid bodies 1 and 2, which are connected along the contacting surfaces by a
layer of normal springs mimicking cartilage (Kawai, 1977; Genda et al, 2001). The total energy
of the system can be written in the following form

(6)

where the sum is over N surface elements with area Si each; εi = Δhi/hi is a relative elongation
of the normal spring associated with the ith element; Δhi is the ith spring elongation and hi is
the ith element thickness – spring initial length; α1, α2, α3 are material parameters defined in
Eq. (5); u is a generalized vector of displacements and rotations of the considered rigid bodies,
which takes the following form in the Cartesian coordinate system (x, y, z)

(7)

and r is a vector of the corresponding forces and moments, which may include the inertia forces
as well,

(8)

The relative displacement δi of the ith contact point (xi, yi, zi) on the boundary surface of bodies
1 and 2 can be expressed as a linear function of the small relative displacements of the bodies

(9)

where
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(10)

where

and I is the identity matrix.

Here (x1, y1, z1) and (x2, y2, z2) are the coordinates of the centroids of body 1 and 2 accordingly.
It should not be missed that small displacements of the rigid bodies-bones (as compared to
their size) can produce large elongations of springs-cartilage (as compared to their size).

Using Eq. (9) it is possible to find the relative spring elongations included in Eq. (6) as follows

(11)

where ni is a unit normal at the ith point.

Substituting Eq. (11) in Eq. (6) and differentiating with respect to u it is possible to get the
equilibrium equation

(12)

(13)

Substituting from Eqs. (11) and (13) in Eq. (12) it is possible to obtain a nonlinear system of
discrete equations with respect to displacements u. The Newton-Raphson method can be used
to solve this system. In order to do that we need to compute the tangent stiffness matrix

(14)

It is possible to get the closed form expression for the tangent stiffness matrix. Indeed,
considering Eq. (12) we have
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(15)

It is useful to rewrite this matrix in a more compact form

(16)

where

(17)

(18)

The Newton-Raphson method for solution of Eq. (12) takes the following form

(19)

The process can be terminated, for example, when

(20)

where the norm is defined for any vector a as .

Remark 2. Strictly speaking there is a slight deviation of the third-order polynomial (3) from
the original curve (2) in the limit case of parameter β = 0.6 in Fig.1. This deviation can be taken
into account by using higher-order polynomials in the series expansion in (3). For the sake of
simplicity we do not consider the higher-order polynomials though technically it can be readily
done.

3 Discussion
Based on the experimental results of Ateshian and his coworkers we developed a nonlinear
spring model for discrete element analysis of contact in diarthrodial joints. We showed, on the
grounds of the nonlinear model, that the linear spring approximation is reasonable and,
consequently, preferable for cartilage strains not exceeding 30% while larger strains require
consideration of the physical nonlinearity of the cartilage. The validation of the classical DEA
based on the linear spring approximation is probably the main result of the present work.
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Besides, we described a possible modification of the classical DEA that allow for taking this
nonlinearity into account.

Evidently, the spring model presents a simplification of the real mechanical behavior of
cartilage. This simplification does not allow for consideration of the interaction of fluid and
solid phases within the cartilage. Neither the spring model allows accounting for the electro-
chemo-mechanical coupling which takes place during deformation. In other words, the spring
model is too crude to give insights into physical processes triggering the gross mechanical
response of the cartilage. The drawbacks of the spring model should be stated and realized. It
is crucial, at the same time, not to miss that the spring model is a very important computational
tool concerning practical clinical applications. For example, contrary to more physically based
approaches to modeling cartilage, the spring model allowed us to tackle the problem of the
prediction of the collapse of the femoral head in developing osteonecrosis (Volokh et al,
2006). The collapse prediction required a preliminary massive analysis of the contact pressure
distribution in the hip joint during activities of daily living (Yoshida et al, 2006). No other
modeling approach, to the best of our knowledge, has been applied to a realistic contact problem
to resolve issues occurring in orthopedic practice. It is our viewpoint that various approaches
to modeling cartilage can be interpreted as the optical devices of different resolutions and there
is no need to use a microscope where the naked eye is helpful.

Finally, we should mention that the discrete element method (springs) has been demonstrated
to be accurate and efficient in the Hertzian contact problem as compared to the finite element
method based on the classical elasticity formulation: Shih et al (1993); Stone et al (1996a);
Stone et al (1996b). Even in non-cemented prosthetic implant and bone interface stress analysis,
the discrete element method could readily provide qualitative information without the use of
finite elements (Ide et al, 1989). A method similar to DEA was developed for modeling the
knee contact by Blankevoort et al (1991).
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Figure 1.
Normalized stress versus engineering strain for articular cartilage: graphs of formulae (2) and
(3) for the limit values of parameter β.
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