
TSH stimulates adipogenesis in mouse embryonic stem cells

Min Lu1 and Reigh-Yi Lin1,2,3,4

1Department of Medicine, Mount Sinai School of Medicine, Box 1055, One Gustave L Levy Place, New York,
New York 10029, USA

2Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York,
New York 10029, USA

3Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA

4Mount Sinai School of Medicine, The Leon D Black Family Stem Cell Institute, New York, New York 10029,
USA

Abstract
Although TSH is the main regulator of thyroid growth and function, TSH binding activity in fat has
long been reported. Since the TSH receptor (TSHR) has been detected in both preadipocytes and
adipocytes, we hypothesized that it may play a role in adipose differentiation. Here, we use an in
vitro model of adipogenesis from mouse embryonic stem (ES) cells to define TSH function. Directed
differentiation of ES cells into the adipose lineage can be achieved over a 3-week period. Although
adipocyte differentiation is initiated early in the development of cultured ES cells, TSHR up-
regulation is precisely correlated with terminal differentiation of those adipocytes. The adipocytes
express TSHR on the cell surface and respond to TSH with increased intracellular cAMP production,
suggesting the activation of the protein kinase A signaling pathway. To determine whether TSH
impacts adipogenesis, we examined how adipocytes responded to TSH at various points during their
differentiation from cultured ES cells. We found that TSH greatly increases adipogenesis when added
in the presence of adipogenic factors. More importantly, our data suggest that TSH also stimulates
adipogenesis in cultured ES cells even in the absence of adipogenic factors. This finding provides
the first evidence of TSH being a pro-adipogenic factor that converts ES cells into adipocytes. It
further highlights the potential of ES cells as a model system for use in the study of TSH’s role in
the regulation of physiologically relevant adipose tissue.

Introduction
It is well known that overt hypothyroidism is associated with obesity (Hoogwerf & Nuttall
1984) and overt hyperthyroidism with weight loss (Baron 1956). Obesity caused by
hypothyroidism can be distinguished from that resulting primarily from physical inactivity and
a reduced resting metabolic rate by virtue of the accompanying dramatic elevations of thyroid-
stimulating hormone (TSH) levels. Sub-clinical hypothyroidism, characterized by elevated
TSH levels but normal thyroid hormone levels, is associated with dyslipidemia and an increased
risk of ischemic heart disease and mortality (Danese et al. 2000, Hak et al. 2000, Visscher &
Seidell 2001, Imaizumi et al. 2004, Moulin de Moraes et al. 2005). Previous studies have shown
that, when adjusted for body mass index, leptin levels are positively correlated with TSH
(Iacobellis et al. 2005). Likewise, Iacobellis reported that TSH and body mass index were
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positively correlated in obese populations with normal thyroid function (Iacobellis et al.
2005). Together, these observations prompt us to speculate that TSH acts directly on the
adipose tissue independent of its effect on thyroid function.

TSH binding activity in fat tissue has long been reported (Gorman et al. 1975, Mullin et al.
1976, Davies et al. 1978, Konishi et al. 1982). Since the TSH receptor (TSHR) has been
detected in both preadipocytes and adipocytes (Trokoudes et al. 1979, Haraguchi et al.
1996b, 1999, Crisp et al. 1997), we hypothesize that it may play a role in adipose tissue
differentiation. Most current strategies rely on primary cultures of adipose tissues or
preadipocyte cell lines (Haraguchi et al. 1996a, Bell et al. 2002). Because preadipocytes
differentiate from multipotent stem cells of mesodermal origin, this approach precludes the
study of anything other than terminal differentiation. In contrast, we have developed a murine
embryonic stem (ES) cell-based differentiation model to investigate whether TSH directly
regulates differentiation of the earliest stages of adipose development. Murine ES cells are
pluripotent stem cell lines isolated from the inner cell mass of 3·5-day blastocysts that can be
propagated indefinitely in an undifferentiated state (Evans & Kaufman 1981, Martin 1981).
When ES cells are induced to differentiation in vitro, they form three-dimensional cellular
aggregates called embryoid bodies (EBs) that contain derivatives of the three embryonic germ
layers and have the potential to differentiate into all cell types of an entire organism(Keller
1995). Using the ES/EB differentiation models, cells with hemangio-blast potential have been
identified (Choi et al. 1998). ES cell-derived hematopoietic precursors (Keller et al. 1993,
Keller 1995), neural precursors (Bain et al. 1995, Kawasaki et al. 2000), insulin-producing β
cells (Lumelsky et al. 2001), and cardiomyocytes (Kehat et al. 2004) have been characterized
and transplanted into recipient animals. The first observation of adipocyte-like cells derived
from ES cells was reported by Field et al. (1992). Importantly, adipogenic gene expression
profiles in differentiating ES cells suggest that they encompass the entire spectrum of adipocyte
development in vivo (Phillips et al. 2003) and in vitro differentiation ofES cells provides an
accessible model system to study adipose progenitor cells that rarely occur in existing primary
and immortalized adipocyte cell lines.

Adipocyte differentiation of ES cells can be carried out through a four-stage strategy separated
into permissive and terminal differentiation phases (Phillips et al. 2003). Commitment of ES
cells to the adipogenic lineage during the permissive phase requires all-trans retinoic acid, the
biologically active form of vitamin A (Phillips et al. 2003). Preadipocytes are then induced to
differentiate into mature adipocytes during the terminal differentiation phase through treatment
with the adipogenic factors insulin, 3,5,3′-triiodo-L-thyronine (T3) and the peroxisome
proliferation-activated receptor-γ (PPARγ) agonist rosiglitazone (Phillips et al. 2003). This
protocol produces significant EB outgrowths with lipid droplet-containing adipose cells.

To determine whether TSH plays a critical role in adipogenesis, we investigated i) whether the
expression and function of TSHR in ES cell-derived adipocytes correlates with cellular
differentiation and ii) whether TSH can replace adipogenic factors and stimulate adipocyte
differentiation. We found that TSHR is expressed in a time- and adipogenic-dependent manner
in our ES cell differentiation model. In addition, our data suggest that TSH stimulates
adipogenesis in cultured ES cells even in the absence of adipogenic factors. This finding
provides the first evidence that TSH functions as a pro-adipogenic factor to convert ES cells
into adipocytes. It further highlights the potential of cultured ES cells to contribute to the
understanding of how TSH regulates physiologically relevant adipose tissue.
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Materials and Methods
Growth and maintenance of ES cells

W9.5 ES cells were maintained on irradiated mouse embryonic feeder cells as previously
described (Lin et al. 2003, Arufe et al. 2006) in Dulbecco’s modified Eagle medium (DMEM,
Gibco-BRL) supplemented with 15% fetal calf serum (FCS), penicillin–streptomycin (100 U/
ml, Gibco-BRL), 10 ng/ml leukemia inhibitory factor (StemCell Technologies Inc.,
Vancouver, Canada), and 1·5 × 10−4 M monothioglycerol (Sigma). Cultures were maintained
in a humidified chamber in a 5%CO2/air mixture at 37 °C. ES cell cultures were monitored
daily and the cells were passaged at 1:3 ratios every 2 days.

Differentiation of ES cell-derived EBs into adipocytes
To induce formation of EBs, ES cells were trypsinized into a single-cell suspension and plated
at varying densities (103–8×104 cells/ml) in 60 mm Petri-grade dishes in EB differentiation
medium containing Iscove’s modified Dulbecco’s medium supplemented with penicillin/
streptomycin, 15% fetal bovine serum (FBS), 2 mM L-glutamine, 5% protein-free hybridoma
medium (Gibco-BRL), 0·5 mM ascorbic acid (Sigma), transferrin (200 µg/ml, Boehringer
Mannheim), and 1·5×10−4 M monothioglycerol for 2 days. Day 2 EBs were then harvested and
transferred to new Petri-grade dishes containing DMEM supplemented with 15% FBS and 1
mM retinoic acid (Fisher Scientific, Pittsburg, PA, USA). Day 5 EBs cultured in the indicated
conditions were replated on gelatin-coated six-well plates in DMEM with 15% Knock-Out
Serum Replacement Media (SR, Gibco/BRL) supplemented with 0·5 mg/ml insulin (Sigma),
2 nM T3 (Sigma), and 0·5 mM rosiglitazone (GlaxoSmithKline) for 15 days. In some
experiments, TSH induction was carried out with 1 mU/ml human recombinant TSH
(Fitzgerald Industries, Concord, MA, USA).

Gene expression analysis
Total RNA was isolated with an RNeasy kit (Qiagen) and treated with RNase-free DNase
(Qiagen). Two micrograms of total RNA were reverse transcribed into cDNA using
Thermoscript First-Strand Synthesis System (Invitrogen). PCR was performed using standard
protocols with 2·5 U Platinum Taq polymerase (Invitrogen). Amplification conditions were as
follows: initial denaturation at 94 °C for 2 min followed by 35–40 cycles of denaturation at 94
°C for 30 s, annealing at 50–61 °C for 45 s, extension at 72 °C for 45 s, and final extension at
72 °C for 7 min. In all cases, the annealing temperatures were set at 2 °C below the calculated
denaturation temperature. The amount of cDNA in each sample was normalized using β-actin
as a control. RNA controls were included to monitor genomic contamination. The amplified
PCR products were separated on 2% agarose gels and visualized by ethidium bromide staining.
The identity of related PCR products was confirmed by direct sequencing. The primers used
in this study were as follows:

Adipocyte lipid-binding protein (ALBP; forward) 5′-
GATGCCTTTGTGGGAACCTGG-3′

ALBP (reverse) 5′-TTCATCGAATTCCACGCCCAG-3′

CCAAT/enhancer-binding protein (C/EBPα; forward) 5′-
CGCAAGAGCCGAGATAAAGC-3′

C/EBPα (reverse) 5′-GCGGTCATTGTCACTGGTCA-3′

PPARγ (forward) 5′-ATCATCTACACGATGCTGGAA-3′

PPARγ (reverse) 5′-CTCCCTGGTCATGAATCCTTG-3′

TSHR(forward) 5′-GAGTGTGCGTCTCCACCCTGTGA-3′
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TSHR (reverse) 5′-TTCCAGCCGCTGCAGAGTTGCAT-3′

Oct4 (forward) 5′-GGCGTTCTCTTTGGAAAGGTGTTC-3′

Oct4 (reverse) 5′-CTCGAACCACATCCTTCTCT-3′

β-actin (forward) 5′-ATGAAGATCCTGACCGAGCG-3′

β-actin (reverse) 5′-TACTTGCGCTCAGGAGGAGC-3′

Oil red O staining and lipid accumulation assay
Cells were fixed in 4% paraformaldehyde in PBS for 15 min at room temperature. The fixed
cells were washed with PBS twice at room temperature. Cells were then stained with 0·5% oil
red O (Sigma) for 30 min at room temperature. Next, cells were washed twice with H2O for
15 min to remove the staining solution. Images were captured using a Nikon Eclipse TE2000-
S microscope (Morrell Instrument Company Inc., Melville, NY, USA). To evaluate lipid
accumulation during differentiation, stained lipids were extracted by 100% isopropyl alcohol
for 5 min, and the optical density of the solution at 540 nm was measured.

Immunofluorescent microscopy
Cells were fixed in 4% paraformaldehyde in PBS. Immunofluorescent staining was carried out
using standard protocols as described previously (Lin et al. 2003). In brief, fixed cells were
pre-blocked with 3% BSA in PBS, followed by 1-h incubation with goat anti-mouse TSHR
antibody (M-20; 1:500; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) at room
temperature. For detection of primary antibody, the cells were washed and then incubated with
Cy3 affinipure donkey anti-goat IgG (1:10 000; Santa Cruz Biotechnology Inc.) for 30 min at
room temperature. The stained cells were washed before mounting with 10 µl Vectashield
mounting media (Vector Laboratory, Burlingame, CA, USA). Images were captured using a
Nikon Eclipse TE2000-S microscope.

Intracellular cAMP measurement
cAMP responses were measured with the Biotrak cAMP enzyme immunoassay system
(Amersham Pharmacia Biotech), as previously described (Lin et al. 2003). Briefly, cells were
seeded at 4 × 104 cells/well on flat-bottomed 96-well microtiter plates (tissue-culture grade) 1
day before the assay. The plates were incubated overnight in a 5% CO2/air mixture at 37 °C.
Cells were stimulated with TSH for 1 h at 37 °C. Next, 20 µl lysis buffer (2·5%
dodecyltrimethylammonium bromide) was added to each well. Following the addition of lysis
buffer, cells were incubated at room temperature for 10 min and agitated by vigorous,
successive pipetting to facilitate cell lysis. Aliquots (100 µl) of lysed cells were transferred to
the donkey anti-rabbit Ig coated plate for cAMP assay. Intracellular cAMP was measured with
the Biotrak cAMP enzyme immunoassay system according to manufacturers’ protocol
(Amersham Pharmacia Biotech). A dose-dependent working standard curve (ranging from 12·5
to 3200 fmol) was generated according to manufacturers’ instruction.

Statistical analysis
Numerical data are expressed as mean±S.E.M. An unpaired, two-tailed t-test was used for
comparison. P<0·05 were considered significant.
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Results
TSHR gene expression and function correlate with adipocyte differentiation in cultured ES
cells

Although ES cells have been shown to differentiate spontaneously into adipocytes in culture,
this occurs relatively rarely. It was necessary to optimize the culture conditions to enhance
adipocyte differentiation before ES cells could serve as a useful experimental model. We used
a four-stage, two-phase differentiation protocol to direct the differentiation of murine ES cells
into adipocytes. We began with the expansion of undifferentiated ES cells in the presence of
leukemia inhibitory factor (stage 1). When leukemia inhibitory factor is withdrawn, ES cells
spontaneously differentiate into three-dimensional cellular aggregates or EBs in suspension
(stage 2). Between 2 and 5 days later, the EBs are treated with all-trans retinoic acid. This stage
(stage 3), known as the permissive phase, is a prerequisite for commitment of ES cells to the
adipose lineage. The final stage (stage 4), known as the terminal differentiation phase, begins
when the cells are exposed to the classic adipogenic factors: insulin, T3, and rosiglitazone. This
method allows the efficient production of mature adipocyte colonies from the center of EB
outgrowths, which are easily identified by oil red O, a specific stain for triglycerides. Figure
1A shows photomicrographs depicting the four stages and two phases of adipocyte
differentiation from ES cells.

In order to assess the function of TSH in adipogenesis, we first used semi-quantitative RT-
PCR to examine the expression patterns of both TSHR and adipose lineage-associated genes
at each stage of the differentiation process. We found that stage 1 ES cells and stage 2 EBs
expressed the undifferentiated stem cell marker Oct4 but not TSHR or any of the adipogenic
genes (Fig. 1B). After 5 days of differentiation, stage 3 EBs expressed C/EBPα, PPARγ, and
TSHR. C/EBPα, a member of the C/EBP family, is a pleiotropic transcription factor for
adipocyte-specific genes. PPARγ, the main regulator of adipogenesis, is induced during
differentiation and is responsible for activating a number of genes involved in fatty acid binding
and storage. Because C/EBPα and PPARγ act synergistically to activate the transcription of
genes that produce the adipocyte phenotype, these findings suggest that subpopulations of stage
3 EBs consist of adipocyte progenitor cells committed to the adipose lineage. Further analysis
of cells from stage 4 EBs revealed that C/EBPα PPARγ, and TSHR gene expression is up-
regulated during terminal differentiation (Fig. 1B). Stage 4 EBs also express ALBP (also named
adipocyte fatty acid-binding protein, or a-FABP; Matarese & Bernlohr 1988,Baxa et al.
1989), a marker of terminal differentiation in adipogenesis (Fig. 1B). Our data indicate that
adipocyte differentiation and the expression of TSHR are initiated as early as stage 3 in the
development of cultured ES cells and that up-regulation of the TSHR gene correlates with the
terminal differentiation of adipocytes.

To investigate the time course of lipid accumulation, we performed oil red O staining followed
by extraction of stained lipids with isopropyl alcohol. The optical density (540 nm) of the
solution was measured after 7, 10, 12, 16, and 20 days of differentiation (Fig. 1C). Oil red O
as indicator of triglyceride accumulation increased significantly over the 20-day period,
reaching 0·81 ± 0·01 (arbitrary unit) at day 10 (P<0·005), 0·89 ± 0·03 at day 12 (P<0·005),
1·04 ± 0·05 at day 16 (P<0·005), and 1·10 ± 0·06 at day 20 (P<0·005). Consistent with adipose
gene expression profile (Fig. 1B), our results demonstrate a steady and time-dependent increase
in extracted lipids in adipocytes during terminal differentiation.

TSHR protein is expressed and localized on the cell surface of adipocytes
We next used indirect immunofluorescence to determine whether TSHR protein is detectable
in day 20 EB-derived mature adipocytes. We stained these cells with goat anti-mouse TSHR
antibody followed by cy3 affinipure-labeled donkey anti-goat IgG and observed them with
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fluorescent microscopy. As shown in Fig. 2, TSHR-positive cells were evident on the surface
of the adipocytes that contained lipid droplets, but not in surrounding cells. No
immunofluorescence was detected in a control experiment (Fig. 2). It should be noted that ES
cell-derived mature adipocytes contain one large lipid droplet.

Adipogenic factors stimulate adipocyte differentiation and TSHR function
Treatment with adipogenic factors during stage 4 EB differentiation caused a profound increase
in adipocyte differentiation (Fig. 3). To investigate how adipogenic factors regulate the
expression of TSHR and genes related to adipocyte differentiation, we compared mRNA levels
of adipocyte differentiation markers in cells treated with adipogenic factors with those in
untreated cells. Semi-quantitative RT-PCR analysis revealed an intense increase in ALBP gene
expression in cells treated with adipogenic factors (Fig. 4). Levels of TSHR gene expression
in these cultures were also increased relative to control cultures (Fig. 4) but C/EBPα and
PPARγ gene expression levels did not differ significantly between treated and untreated
cultures (Fig. 4). Next, we assessed the functionality of TSHR in these adipocytes. EB-derived
adipocytes from cultures treated with or without adipogenic factors were challenged with TSH
and assayed for intracellular cAMP production using the Biotrack cAMP immunoassay system
as described in Materials and Methods. Our results show that cells cultured in the terminal
differentiation phase without adipogenic factors had a higher intracellular cAMP content when
challenged with TSH than did the non-TSH-challenged group (51·1 ± 2.0 vs 24·2 ± 0·7 fmol/
cell×10−3, P<0·0005; Fig. 5). Likewise, cells cultured with adipogenic factors during terminal
differentiation achieved higher intracellular cAMP levels when challenged with TSH than did
the non-TSH-challenged group (84·4 ± 3·4 vs 20·2 ± 2·0 fmol/cell×10−3, P<0·0005). More
importantly, the cells cultured with adipogenic factors showed nearly 1·5-fold higher
intracellular cAMP content than cells cultured without adipogenic factors (P<0.005). This
finding implies that adipogenic factors stimulate TSH-dependent cAMP production, perhaps
due to more abundant TSHR expression in the adipocytes in these cultures. Our data also
suggest that adenylyl cyclase is involved in the activation of TSH via the protein kinase A
signaling pathway in mature adipocytes. Together, these results suggest that adipogenic factors
play an important role in the conversion of ES cells to adipocytes. Furthermore, our data suggest
that TSH signaling contributes to adipocyte differentiation via TSHR function.

Effect of TSH treatment on adipocyte differentiation in the presence of adipogenic factors
To investigate the role of TSH signaling in adipocyte differentiation, we added human
recombinant TSH to ES cell cultures at various time points during stage 4 differentiation. After
20 days of differentiation, we measured lipid accumulation in these cultures and compared it
with untreated cultures. Our results show that cultures treated with TSH at days 7, 10, 12, 16,
and 18 of differentiation accumulated more lipids than did control cultures, indicating that TSH
stimulates adipocyte differentiation at this stage (Fig. 6). We next assessed expression of
ALBP, TSHR, and PPARγ genes to determine whether TSH-induced changes in lipid
accumulation were reflected in the mRNA levels of adipogenic and TSHR genes. We found
that although ALBP and TSHR genes exhibited the greatest changes at day 12 (Fig. 6), no
significant differences were observed for PPARγ. These observations suggest that TSH is most
able to stimulate adipocyte differentiation in the presence of adipogenic factors, and that TSH
significantly increases the expression of TSHR and ALBP (P<0·05), but not PPARγ in these
cultures after 12 days of differentiation. Therefore, TSH stimulates adipocyte differentiation,
resulting in enhanced adipogenesis and increased ALBP and TSHR gene expression.

Effect of TSH treatment on adipocyte differentiation in the absence of adipogenic factors
To investigate whether TSH can replace adipogenic factors in the conversion of ES cells into
adipocytes, we added TSH to ES cell cultures at various time points during stage 4 EB
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differentiation in the absence of adipogenic factors (Fig. 7). We found a significant increase
in the lipid accumulation assay when TSH was added at day 12 (P<0·05; Fig. 7). We also found
that ALBP, TSHR, and PPARγ gene expression were enhanced when TSH was added at days
7, 10, and 12 of differentiation; however, these differences were not significant (P>0·05; Fig.
7). Together, this finding suggests that TSH signaling either directly or indirectly impacts major
pathways for adipocyte differentiation.

Discussion
In vitro differentiation ofES cells is a valuable model to study the commitment and
differentiation of embryonic adipose cells. The technology to rapidly generate adipocytes has
been described, but the use of in vitro differentiation of ES cells to analyze the physiological
role ofTSH and TSHR in this process is just beginning. In the present study, we use RT-PCR
analysis, oil red O staining, lipid accumulation assays, immunofluorescent staining, and
intracellular cAMP assays to document the expression and function of TSHR in adipocytes
derived from ES cells. The current approach relies on a murine ES cell line and a four-stage
differentiation strategy that enables the efficient production of adipocytes in a reproducible
and developmentally regulated manner. Although TSHR has not been reported in ES cell-
derived adipocytes, we have previously reported that murine ES cells can differentiate into
thyrocyte-like cells in vitro and that the expression of TSHR may be important in this
differentiation (Lin et al. 2003, Arufe et al. 2006, Lin & Davies 2006). We now report that this
ES cell-based system – in addition to producing cells in the thyroid lineage – can generate cells
in the adipose lineage that express functional TSHR.

The experimental approach described here emphasizes the power of appropriate stimulatory
factors in the generation of adipocytes from ES cells. We have shown that retinoic acid
treatment followed by stimulation with insulin, T3, and rosiglitazone generates many EB
outgrowths containing adipocytes with fat droplets. RT-PCR analysis of the differentiating EB
cells revealed the temporal appearance of mRNA transcripts for a number of adipocyte
differentiation genes including ALAP, C/EBPα, and PPARγ. Importantly, we found that EB-
derived preadipocyte differentiation is closely correlated with TSHR expression and function.
This finding is consistent with previous studies of 3T3-L1 preadipocytes and rat preadipocyte
primary cultures (Haraguchi et al. 1996a, Bell et al. 2002). Our immunofluorescent
observations confirmed TSHR expression on the cell surface of mature, ES cell-derived
adipocytes. Intracellular cAMP assays further revealed that this TSHR mediates a signal upon
TSH stimulation. Our results indicate that TSH is important for late adipogenic differentiation.
TSH treatment of differentiating ES cell-derived EBs increased adipogenesis either in the
presence or absence of classic adipogenic factors. Together, these observations suggest a pro-
adipogenic role for TSH in the conversion of ES cells into adipocytes.

TSH has been implicated in the induction of lipolysis (Vizek et al. 1979). It is known that TSH
peaks within the first hours after birth at levels 50–100 times higher than that found in adults
(Janson et al. 1998). In vitro studies have demonstrated that TSH can induce lipolysis in
adipocytes from neonates, and that this lipolysis can be completely blocked by TSH antiserum
and inhibitory TSHR antibodies (Marcus et al. 1988, Janson et al. 1998). The TSHR is a G-
protein-coupled glycoprotein hormone receptor with a large extracellular domain fused to a
seven-membrane-spanning segment (Nagayama et al. 1989). Since TSHR was first cloned in
1989, it has been believed to be responsible solely for the control of thyroid follicular cell
growth and thyroid hormone synthesis (Nagayama et al. 1989, Laugwitz et al. 1996). However,
it is becoming increasingly clear that expression of TSHR is not confined to the thyroid gland,
but is widely expressed in a variety of tissues (Francis et al. 1991, Endo et al. 1993, Feliciello
et al. 1993, Heufelder et al. 1993). TSHR protein expression has been reported in fibroblasts
and adipose tissue from the retro-orbital space of Graves’ patients, where it may play a role in
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thyroid-associated ophthalmopathy (Bahn et al. 1998a,b, Starkey et al. 2003, Bahn 2004). A
series of reports demonstrated that the orbital preadipocyte fibroblast is the primary target cell
for immune response in the orbits of patients with Graves’ ophthalmopathy (GO; Valyasevi
et al. 1999, 2002, Starkey et al. 2003, Bahn 2004, Kumar et al. 2004). Although orbital
preadipocyte fibroblasts do not express the TSHR, a significant increase in functional TSHR
expression is evident in differentiating cells and mature adipocytes derived from GO patients
(Valyasevi et al. 1999, Starkey et al. 2003, Kumar et al. 2004). Given that the expanded adipose
tissue volume is attributable to de novo adipogenesis, these facts imply a possible link between
adipogenesis and induction of the TSHR expression in orbital preadipocyte fibroblasts in GO.
Recently, Zhang et al. (2006) reported that TSHR activation induces morphologic changes and
lipid content in orbital preadipocytes derived from GO patients. TSHR activation also increases
intracellular cAMP accumulation in preadipocytes. Their model suggests that TSHR activation
stimulates the early stages of adipogenesis but inhibits the terminal stages of differentiation on
human orbital preadipocytes in vitro (Zhang et al. 2006).

TSHR expression has also been detected in brown and white adipose tissues in the guinea pig
(Roselli-Rehfuss et al. 1992). Moreover, Bell et al. (2000) have detected the expression of
TSHR mRNA and protein in human preadipocytes from abdominal subcutaneous and omental
tissues. Despite these observations, the specific role of TSHR in adipose biology remains to
be elucidated. Haraguchi et al. (1996a) previously reported that preadipocyte differentiation
in rats is accompanied by TSHR expression. Although cultured rat preadipocytes are a good
model system for studying the physiological role of TSHR in adipose tissues, they have
limitations. In particular, because rat preadipocytes are prepared directly from epididymal,
perirenal, and subcutaneous fat from the inguinal regions of male SD rats (Haraguchi et al.
1996a), they are often contaminated with other cell types and can be difficult to maintain. In
addition, both rat preadipocytes and the murine 3T3-L1 preadipocyte cell line, a well-
established model of adipogenesis, consist of already committed adipose progenitor cells and
permit study of terminal differentiation only (Bell et al. 2002). To better understand the
mechanisms that control adipocyte differentiation, it is essential to generate an enriched
population of proliferating adipose progenitor cells and identify genes and factors specifically
involved in regulating adipocyte activity. In vitro differentiation of ES cells toward the
adipogenic lineage could provide an alternative source of adipocytes for study and offers the
possibility to study the regulation of the first steps of adipogenesis. This ES cell differentiation
approach has significantly impacted on the field of basic research, in which the contributions
of key molecules and signaling pathways to the adipogenic differentiation program can be
investigated. Furthermore, the ability to genetically engineer stem cell may allow clinicians to
test the effects of current drugs and to develop clinically relevant screening assays that would
not otherwise be possible. ES cell differentiation model represents an important model system
to study the development of adipocytes. The expression of TSHR during early preadipocyte
differentiation in our ES cell-based differentiation could provide an ideal cellular model system
to delineate the role of TSHR in adipose development.

Our results indicate that TSH can induce differentiation of murine ES cells to adipocytes in
the absence of adipogenic factors at a high level. The in vitro concentration of TSH in our study
is lower than what was reported in literature in mice (60 mU/ml; Abe et al. 2003). However,
this concentration is much higher than those in humans (0·4–4·2 mU/dl). Although we suggest
that this observation may be physiologically relevant, clearly, more studies are needed to
elucidate these probabilities as well as to clarify the precise maturation stage of ES cell-derived
adipocytes under the effect of TSH. Furthermore, we found that adipocyte differentiation along
with ALBP and TSHR gene expression were greatly enhanced when cultures were treated with
TSH at day 12. This finding indicates that TSH stimulates adipocyte differentiation and
TSHR expression. As reported in literature, TSH in human fetal thyroid cells positively
regulated the TSHR in vitro (Huber & Davies 1990). We have previously reported that TSH
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was necessary to maintain the expression of the TSHR gene during EB differentiation into
thyrocytes in culture (Lin et al. 2003). It is conceivable that a positive feedback cycle is present
between TSH and TSHR in this ES cell differentiation model.

In order to further characterize the role of TSHR in adipocyte differentiation, we studied TSH
signaling in ES cell-derived adipocytes. Bell et al. (2002) reported that TSH acts as a survival
factor in 3T3-L1 preadipocytes; although it does not stimulate cAMP accumulation in these
cells, TSH activates a PI3K-PKB/Akt-p70 S6 Kinase (S6K) signaling pathway. With respect
to the present study, although it is clear that TSH stimulates cAMP accumulation in
differentiated adipocytes, it is not clear whether TSH modulates preadipocyte survival and
whether TSH signaling leads to p70 S6K activation. Further characterization of these ES cell-
derived preadipocytes and adipocytes might help us understand the TSH signaling pathway
and the mechanisms by which TSH regulates adipogenesis in these cells.

In summary, the present work demonstrates that TSHR is expressed in a time- and adipogenic-
dependent manner in differentiating ES cells. Generation of adipocytes from ES cells can be
achieved in 20 days using culture conditions previously established for the growth and
differentiation of murine ES cells. Based on our studies, this murine ES cell-based system may
be an ideal way to optimize adipocyte production and analyze TSH’s function in adipose
development. In addition, this murine ES cell-based system may allow the dissection of the
fine controls of lipolysis, a complex metabolic process occurring during times of stress or
nutrient deprivation.
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Figure 1.
In vitro differentiation of murine ES cells into the adipocyte lineage. (A) Schematic
representation of the strategy for differentiation of murine ES cells into adipocytes.
Photomicrographs depicting the four stages of ES cell differentiation: undifferentiated ES cells
(stage 1), EBs in suspension (stage 2), EBs in the permissive phase (stage 3), and terminally
differentiated adipocytes (stage 4). Note stage 4 adipocytes containing lipid droplets developed
on an EB outgrowth, visualized by oil red O staining, and shown at two different magnifications
(left, 40×, right, 200×). (B) Gene expression analysis by RT-PCR shows the differentiation of
adipocytes from ES cells. RNA was isolated from undifferentiated ES cells (stage 1), and from
the cells grown for 2 days (stage 2), 5 days (stage 3), and 20 days (stage 4), and analyzed for
expression of TSHR and the adipocyte marker genes ALBP, C/EBPα, and PPARγ. Oct4 is an
undifferentiated ES cell marker. β-Actin serves as an internal control. Control experiments
contained no reverse transcriptase (−RT). (C) Time course of lipid accumulation. Oil red O-
stained lipids were extracted with 100% isopropyl alcohol from individual cultures, and the
absorbance at 540 nm was measured. Data are expressed as mean±S.E.M. Values are from three
separate experiments each done in duplicate. **P<0.005 compared with d7.
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Figure 2.
TSHR is expressed on the cell surface of differentiated adipocytes. The presence of TSHR after
20 days of differentiation was detected by immunofluorescent staining with an antibody to
TSHR (red). Note that TSHR is in adipocytes that contained lipid droplets, but not in
surrounding cells (b). Immunofluorescence was not detected when the experiment was done
with an isotype control (d). Note that a and c are phase contrast images. Experiments were
carried out thrice independently, and each time the same results were obtained. Representative
photomicrographs are shown. Magnification, ×200.
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Figure 3.
Effects of adipogenic factors on adipocyte differentiation. Examination of oil red O-stained
adipocytes cultured for 15 days in adipocyte differentiation medium containing insulin, T3,
and rosiglitazone (+) by phase contrast microscopy. The cultures not treated with adipogenic
factors (−) are used as controls. Experiments were separately carried out at least thrice for each
culture condition, and each time the same results were obtained.
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Figure 4.
Adipogenic factors stimulate ALBP and TSHR gene expression. After 20 days of
differentiation, the expression of adipocyte markers (ALBP, C/EBPα, and PPARγ) and TSHR
were analyzed by RT-PCR in cultures treated with adipogenic factors (+). Untreated cultures
(−) serve as controls. Experiments were separately carried out at least thrice for each culture
condition, and each time the same results were obtained.
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Figure 5.
cAMP response in TSH-stimulated differentiated adipocytes. After 20 days of differentiation,
intracellular cAMP levels were measured in cell lysates from cultures treated with adipogenic
factors (+) using the Biotrak cAMP immunoassay system as described in Materials and
Methods. Untreated cultures (−) were used as controls. Data represent the mean±S.E.M. of three
independent experiments, each performed in duplicate. **P<0·005, ***P<0·0005.

Lu and Lin Page 17

J Endocrinol. Author manuscript; available in PMC 2009 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Effect of TSH treatment on adipocyte differentiation in the presence of adipogenic factors.
Cells in duplicate wells were exposed to 1 mU/ml human recombinant TSH in the presence of
adipogenic factors at indicated time points and harvested after 20 total days of differentiation.
(A) Stained lipids were extracted with isopropyl alcohol and the absorbance at 540 nm was
measured. Data are expressed as mean±S.E.M. The values shown are the average from three
separate experiments each done in duplicate. *P<0·05. (B) RT-PCR was performed to detect
the expression of ALBP, TSHR, and PPARγ genes. Numbers on the bottom of each figure
indicate the day on which TSH was added. Relative gene expression was determined by
normalization to that of β-actin control (Y-axis). Each experiment was performed with its own
control, so to normalize between experiments, the fold increases were divided by the fold
increase for each specific control. Error bars represent the standard deviation of triplicate
experiments. *P<0·05.
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Figure 7.
Effect of TSH treatment on adipocyte differentiation in the absence of adipogenic factors. Cells
in duplicate wells were exposed to 1 mU/ml human recombinant TSH in the absence of
adipogenic factors at indicated time points and harvested after 20 total days of differentiation.
(A) Lipid accumulation by extraction of stained lipid with isopropyl alcohol and the absorbance
at 540 nm was measured. Data are expressed as mean±S.E.M. The values shown are the average
from three separate experiments each done in duplicate. *P<0·05. (B) RT-PCR was performed
to detect the expression of ALBP, TSHR, and PPARγ genes. Numbers on the bottom of each
figure indicate the day on which TSH was added. Y-axis indicates relative gene expression
normalized with β-actin control. Each experiment was performed with its own control, so to
normalize between experiments, the fold increases were divided by the fold increase for each
specific control. Error bars represent the standard deviation of triplicate experiments. *P<0·05.
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