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Abstract
Previous studies have shown that (E)-8-(3-chlorostyryl)caffeine (CSC) is a specific reversible
inhibitor of human monoamine oxidase B (MAO-B) and does not bind to human MAO-A. Since the
small molecule isatin is a natural reversible inhibitor of both MAO-B and MAO-A, (E)-5-styrylisatin
and (E)-6-styrylisatin analogues were synthesized in an attempt to identify inhibitors with enhanced
potencies and specificities for MAO-B. The (E)-styrylisatin analogues were found to exhibit higher
binding affinities than isatin with the MAO preparations tested. The (E)-5-styrylisatin analogues
bound more tightly than the (E)-6 analogue although the latter exhibits the highest MAO-B
selectivity. Molecular docking studies with MAO-B indicate that the increased binding affinity
exhibited by the (E)-styrylisatin analogues, in comparison to isatin, is best explained by the ability
of the styrylisatins to bridge both the entrance cavity and the substrate cavity of the enzyme.
Experimental support for this model is shown by the weaker binding of the analogues to the Ile199Ala
mutant of human MAO-B. The lower selectivity of the (E)-styrylisatin analogues between MAO-A
and MAO-B, in contrast to CSC, is best explained by the differing relative geometries of the aromatic
rings for these two classes of inhibitors.
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The oxidative deamination reaction catalyzed by monoamine oxidase B (MAO-B) is one of
the major catabolic pathway of dopamine in the brain. Inhibitors of this enzyme lead to
enhanced dopaminergic neurotransmission and are currently used in the symptomatic treatment
of Parkinson’s disease (PD).1–4 Furthermore, MAO-B inhibitors also may exert a
neuroprotective effect by reducing the concentrations of potentially hazardous by-products
produced by MAO-B-catalyzed dopamine oxidation.5 Considering that the human brain
exhibits an age-related increase in MAO-B activity, inhibition of this enzyme is especially
relevant in the treatment of PD.6–8 The endogenous small molecule isatin (1) (Fig. 1) has been
reported to be a moderately potent inhibitor of human MAO-B with an enzyme-inhibitor
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dissociation constant (Ki value) of 3 μM. Isatin also inhibits human MAO-A with a Ki value
of 15 μM.9 The three-dimensional structure of a complex between isatin and human
recombinant MAO-B shows that isatin binds within the substrate cavity with the dioxoindolyl
NH and the C-2 carbonyl oxygen hydrogen bonded to ordered water molecules in the active
site (Fig. 2).10 This binding mode leaves the entrance cavity of MAO-B unoccupied. The
structure of isatin bound to MAO-A has not yet been determined.

Another small molecule, caffeine (2), is a weak inhibitor of MAO-B with a Ki value of 3.6
mM. The inhibition potency of caffeine is substantially increased by substitution at C-8 of the
caffeinyl ring with a styryl side-chain. For example, (E)-8-(3-chlorostyryl)caffeine [CSC, (3)]
(Ki = 0.086 μM) is approximately 45000 fold more potent as an inhibitor of baboon liver MAO-
B than is caffeine.11,12 Also of interest is the observation that CSC does not bind to MAO-
A.9 The improved inhibition potency and selectivity of CSC compared to caffeine has been
explained by the possibility that (E)-styrylcaffeines span both the substrate and entrance
cavities of MAO-B. This would allow for more productive van der Waals contacts with active
site residues in both cavities that would lead to more potent inhibition.11,13 In contrast,
caffeine is expected to bind to either the substrate or entrance cavity, leaving the other cavity
unoccupied. Human MAO-A has a single active site cavity whose geometry differs from that
of MAO-B.14 Data in the literature support the proposal that reversible inhibitors that span
both cavities of MAO-B are more likely to exhibit selectivity for MAO-B over MAO-A. For
example the crystal structures of relatively large reversible inhibitors, such as 1,4-diphenyl-2-
butene,10 farnesol9 and safinamide15 in complex with human MAO-B show that these
inhibitors exhibit such a dual binding mode. In the present study we investigated the extent to
which styryl substitution of isatin also may enhance isatin’s MAO-B inhibition potency.

Inspection of the complex between isatin and human MAO-B10 reveals that, in the substrate
cavity, the dioxoindolyl ring is orientated with the 2-oxo group pointing towards the flavin
cofactor while C-5 is directed in the general direction of the entrance cavity (Fig. 2). These
structural features suggest that styryl substitution at C-5 would result in structures that traverse
both cavities with the isatin moiety located in the substrate cavity with the C-5 styryl substituent
extending into the entrance cavity. In contrast to the C-5 position, the C-6 position of isatin is
directed towards the bottom of the substrate cavity. Extension of a C-6 styryl side chain into
the entrance cavity would only be permitted if the isatin moiety adopted a different binding
mode from that of isatin as observed in the human MAO-B crystal structure.10

To provide additional insights, molecular docking studies of (E)-5-styrylisatin (4a) and (E)-6-
styrylisatin (5) (Scheme 1) in the active site of MAO-B were performed. For this purpose, the
crystallographic structure of the complex of the reversible inhibitor safinamide and human
recombinant MAO-B was selected (2V5Z.pdb).15 This selection was based on the observation
that the side chain of Ile-199, which acts as a “gate” that separates the entrance cavity from the
substrate cavity,10 is rotated out of its normal conformation to allow for the fusion of the two
cavities and the accommodation of the larger structures. This fused cavity model of MAO-B
allows for the possibility that 4a and 5 may span both the entrance and substrate cavities. The
docking calculations were performed using the LigandFit application of Discovery Studio 1.7
according to a previously reported protocol.16,17 The top-ranked docking solution obtained
for 4a indicates that the styryl side chain extends beyond the boundary defined by the side
chain of Ile-199 into the entrance cavity, while the dioxoindolyl ring is located in the substrate
cavity (Fig. 2). The binding orientation of the dioxoindolyl ring of 4a is similar to that of isatin
with the 2-oxo and NH functional groups hydrogen bonded to water molecules present in the
active site.10 Structure 5 also spans both cavities with the styryl side chain located in the
entrance cavity while the dioxoindolyl ring binds within the substrate cavity. In contrast to
isatin and 4a, the dioxoindolyl ring of 5 is rotated through ~180° to allow for access of the C-6
styryl side chain to the entrance cavity (Fig. 2). Based on these considerations, (E)-5-
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styrylisatin (4a–c) and (E)-6-styrylisatin (5) analogues (Scheme 1) were synthesized and
evaluated initially as inhibitors of baboon liver mitochondrial MAO-B and then as inhibitors
of purified recombinant human MAO-B and MAO-A. Their respective inhibition potencies
are compared to that of isatin.

Analogues 4a–c of (E)-5-styrylisatin and (E)-6-styrylisatin (5) were synthesized in three steps
(Scheme 1). Diethyl 4- or diethyl 3-nitrobenzylphosphonate (6a,b)19 was condensed with the
appropriate benzaldehyde (7) in the Wittig reaction to yield the 4- or 3-nitrostilbenes (8a,b),
respectively.20 Reduction of the nitrostilbenes with Sn/HCl led to the corresponding
aminostilbenes (9a,b)21 that, in turn, were treated with diethyl ketomalonate in the presence
of acetic acid according to the literature description.22 Following oxidative decarboxylation
of the resulting 3-hydroxy-2-oxindolyl intermediate, the target (E)-styrylisatin analogues (4–
5) were obtained.22,23

The MAO-B inhibitory properties of the (E)-styrylisatin analogues 4–5 initially were
investigated using baboon liver mitochondrial fractions as a source of MAO-B and 1-methyl-4-
(1-methylpyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP) as substrate.12 These procedures
have been documented in literature.12 The baboon liver mitochondrial fractions were prepared
according the procedure described in literature for the preparation of beef liver mitochondrial
fractions.24 In order to determine if the test compounds acted as time–dependent inactivators
or reversible inhibitors of the enzyme, 4b (40 nM) was preincubated with the mitochondrial
fractions for periods of 0, 15, 30, and 60 minutes.17 Since MAO-B activity remained
unchanged, irrespective of the preincubation period (results not shown), it may be concluded
that these (E)-styrylisatins interact reversibly with the active site of MAO-B. The inhibition
potencies towards baboon liver mitochondrial MAO-B are presented in Table 1. All of the
(E)-styrylisatin analogues were found to be more potent inhibitors of baboon liver MAO-B
than isatin. For example, (E)-5-styrylisatin (4a) (IC50 = 41.7 nM) and (E)-6-styrylisatin (5)
(IC50 = 444 nM) were approximately 200 and 19 fold more potent than isatin (IC50 = 8566
nM), respectively.

The MAO-B inhibitory properties of the (E)-styrylisatin analogues were also investigated using
purified recombinant human MAO-B.25 For all analogues tested, the modes of inhibition were
found to be competitive (Fig. 3). As shown in Table 2 the (E)-styrylisatin analogues are 3 to
10-fold more potent than isatin as inhibitors of recombinant human MAO-B. These data
provide evidence that potent MAO-B inhibitors result from structures that bind to both the
entrance and substrate cavities. It was previously reported that the Ile-199 “gate” residue has
significant functional importance in inhibitor binding and may be a determinant for the
specificity of reversible MAO-B inhibitors.9 The role of Ile-199 in the binding of 4–5 and of
isatin to MAO-B was investigated using the human MAO-B I199A mutant protein. The results
(Table 2) document that isatin and all of the (E)-styrylisatin analogues are slightly weaker
inhibitors of the human MAO-B I199A mutant enzyme when compared to wild-type MAO-
B. The Ile-199 residue therefore plays an important role in the binding interactions of these
analogues. These data are consistent with the binding of (E)-styrylisatins in close proximity to
Ile-199, a binding mode possible if the inhibitors traverse both active site cavities. Since the
binding affinity of isatin to the I199A mutant protein is also reduced, hydration and/or structural
alterations to the binding site cannot be ruled out and must await structural studies on this
mutant form of MAO-B. According to the molecular docking studies, the functional groups of
the inhibitors that may interact with Ile-199 are the styryl moieties of compounds 4–5.

Interestingly, the (E)-styrylisatin analogues are also competitive inhibitors of recombinant
human MAO-A,26–28 with 4a exhibiting the most potent inhibition (Ki = 0.78 μM). (E)-6-
Styrylisatin (5) was the least potent inhibitor of MAO-A (Ki = 22 μM), and displayed the highest
selectivity for MAO-B (39 fold) of all the isatin analogues tested. These results are surprising
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since relatively large reversible inhibitors, such as 1,4-diphenyl-2-butene and CSC that occupy
both the entrance and substrate cavities of MAO-B, exhibit selective inhibition of the MAO-
B isoform and do not to bind to MAO-A.9 To provide additional insights into this problem,
molecular docking of 4a and 5 in the active site of MAO-A were performed using
LigandFit16 as described before.17 For this purpose, the crystallographic structure of the
complex of human recombinant MAO-A with the reversible inhibitor harmine was selected
(2Z5X.pdb).14 As shown in figure 4, in the top-ranked docking solutions the dioxoindolyl
rings of 4a and 5 are positioned close to the FAD with the stryryl side chains extending towards
the entrance of the active site cavity. These binding modes are similar to those observed with
MAO-B. Also analogous to the docking results obtained with MAO-B is the dioxoindolyl ring
of 5 which is rotated through ~180° compared to that of 4a. Comparison of the structures of
CSC with those of 4a and 5 after energy minimization shows that CSC exhibits a planar
structure where both rings occupy the same planar orientation (Fig. 5). In contrast, the
styrylisatin analogues show the aromatic styryl ring is not coplanar with the isatin ring. For
MAO-A inhibition by styrylisatins and styrylcaffeines a relatively larger degree of
conformational freedom may be a requirement since the aromatic rings of 4a and 5 (Fig. 4)
adopt non-coplanar conformations in the MAO-A active site. Rigid coplanar styrylcaffeines
such as CSC are therefore not expected to be MAO-A inhibitors.

In conclusion, (E)-5-styrylisatin and (E)-6-styrylisatin analogues have been identified as
promising new probes of the binding sites of MAO-B and of MAO-A. The findings of this
study support the hypothesis that the inhibition potencies of small molecule inhibitors of these
flavoenzymes may be improved by substitution with side chains that promote binding to both
the entrance and substrate cavities of MAO-B. The side chain of the Ile-199 “gate” in MAO-
B appears to play an important role in the recognition of reversible inhibitors possibly by
interacting with the styryl side chains of compounds 4–5 as well as other factors that will require
additional structural information to identify. The surprising finding that (E)-styrylisatins are
also competitive inhibitors of MAO-A, in contrast to results with CSC, shows that
consideration of the relative geometries are factors important in the design of MAO inhibitors.
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Figure 1.
The structures of isatin (1), caffeine (2) and CSC (3).
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Figure 2.
The binding modes of isatin, 4a and 5 in the active site of MAO-B. The three-dimensional
structure of isatin in complex with human recombinant MAO-B (1OJA.pdb) is displayed in
panel A10 while the docking solutions of 4a and 5 obtained with LigandFit are displayed in
panel B and C, respectively. The models were generated in Yasara.18
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Figure 3.
Lineweaver–Burk plots of the recombinant human MAO-A (left) and MAO-B (right). The
activity of MAO-A (Left) was assayed at varied concentrations of p-CF3-benzylamine with
constant inhibitor concentrations of: (■) 0.0 M of 4a, (○) 1.0 M of 4a, (▲) 2.0 M of 4a, (▼)
3.0 M of 4a.The activity of MAO-B (right) was assayed at varied concentrations of
benzylamine with constant inhibitor concentrations of: (■) 0.0 M of 4a, (○) 0.3 M of 4a, (▲)
0.7 M of 4a, (▼) 1.0 M of 4a.
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Figure 4.
The docking solutions obtained with LigandFit for the binding of 4a (A) and 5 (B) in the active
site of MAO-A (2Z5X.pdb).14 The models were generated in Yasara.18

Van der Walt et al. Page 10

Bioorg Med Chem Lett. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Energy-minimized structures of 4a (top), 5 (middle) and CSC (bottom). These structures and
their energy-minimized conformations were constructed using Chem-3D (CambridgeSoft).
The relative conformations of all structures are pictured with the isatin or caffeine rings being
perpendicular to the plane of the page. Oxygen atoms are in red, nitogen atoms in blue and
chlorine atoms in green.

Van der Walt et al. Page 11

Bioorg Med Chem Lett. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
Synthetic pathway to analogues 4a–c of (E)-5-styrylisatin and (E)-6-styrylisatin (5). Reagents
and conditions: (a) NaOEt (b) SnCl2/HCl, reflux (c) NaOH (d) diethyl ketomalonate,
CH3CO2H, 120 °C (e) air, 120 °C.
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Table 1
The IC50 values for the inhibition of baboon liver mitochondrial MAO-B by isatin (1) and (E)-styrylisatin analogues
(4–5)

IC50 valuea (nM)

1 Isatin 8566 ± 530

4a (E)-5-Styrylisatin 41.7 ± 1.8

4b (E)-5-(3-Chlorostyryl)isatin 20.7 ± 0.6

4c (E)-5-(3-Fluorostyryl)isatin 30.1 ± 4.6

5 (E)-6-Styrylisatin 444 ± 12.2

a
The IC50 values were determined as described previously12 and are expressed as the means ± SEM of duplicate determinations.
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