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Abstract
The natural isotopic composition of 13C and 12C in tissues is largely determined by the diet. Sources
of provitamin A carotenoids (e.g., vegetables) typically have a lower 13C to 12C ratio (13C:12C) than
preformed vitamin A sources (i.e., dairy and meat) from corn-fed animals, which are prevalent in
the US. The 13C:12C of serum retinol (13C:12C-retinol) was evaluated as a biomarker for vegetable
intake in a 3-mo dietary intervention designed to promote weight-loss by increased vegetable
consumption or reduced calorie and fat intake. Subjects were 21–50 y of age with a BMI between
30–40 kg/m2 and were enrolled from one geographic area in the US. The high vegetable group (n =
20) was encouraged to increase daily vegetable and fruit consumption to 0.95 liter vegetables and
0.24–0.35 liter fruits. The caloric reduction group (n = 17) was encouraged to lower caloric intake
by 500 kcal and consume ≤25% kcal from fat daily. Provided meals supplied 75–100% vegetable
and fruit goals and 50–67% kcal and fat g per day. Carotenoid supplementation was discontinued by
subjects during the study. Serum retinol and provitamin A carotenoid concentrations; intake of
preformed vitamin A, provitamin A, and fat; and body weight, fat mass, and lean mass were analyzed
for correlations to 13C:12C-retinol. 13C:12C-Retinol decreased in the vegetable group after
intervention (P = 0.050) and the correlation with provitamin A intake was approaching significance
(P = 0.079). 13C:12C-Retinol did not change in the caloric reduction group (P = 0.43). 13C:12C-
Retinol changes with the vitamin A source in the diet and can be used as a biomarker for increases
in dietary provitamin A vegetable intake.
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Introduction
Stable isotopes as tracers are valuable tools to determine biochemical pathways and
mechanisms and nutrient requirements. In the field of vitamin A, isotopically labeled vitamin
A has been used in kinetic, metabolic, and status assessment studies (1-9). Provitamin A
carotenoids, in both plant and synthetic forms, have also been labeled with stable isotopes to
determine bioconversion rates to vitamin A (10-15).

The natural isotopic composition of carbon in animal tissues is largely determined by the diet
(16). Plants have different photosynthetic mechanisms that discriminate between the 12CO2
and 13CO2 that is incorporated into organic compounds. Most vegetables and temperate grains
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(e.g., wheat and rice) are C3 plants. Typically, C4 plants come from hot, dry climates and
include crops such as maize, sorghum, and sugarcane, as well as many forage grasses. Different
assimilation rates of 13C and 12C by C3 and C4 plants cause the isotopic ratio of plants to differ
by 13 – 15‰, enriching C4 plants with 13C (16-18). Animals consuming primarily C3 feeds
have a different ratio of 13C to 12C (13C:12C) in milk, serum, meat, and liver compared with
animals consuming C4 feeds (16,18). Similarly, the 13C:12C in human hair differs in
vegetarians and omnivores (19-20). Because isotopic differences in tissues are directly related
to the diet, one study suggested using 13C:12C as a marker for specific foods such as sweeteners
derived from C4 plants (21).

Vitamin A can be obtained from the diet as preformed vitamin A in dairy and organ meats, or
as provitamin A carotenoids from vegetables and fruits. Provitamin A is typically in the form
of β-carotene, β-cryptoxanthin, and α-carotene, which are commonly found in orange and
yellow fruits and vegetables. Most plant sources of provitamin A in the human diet are C3
plants (e.g., carrot, sweet potato, pumpkin, and spinach). One exception is corn (C4 plant), but
typical provitamin A concentrations are low (22) and probably do not contribute appreciably
to the vitamin A pool of North Americans. The average 13C enrichment, reported as δ 13C, for
common C3 fruits and vegetables is -27.16‰ (18). Isotope ratios are reported in standard delta
notation relative to Vienna Pee Dee Beleminite (VPDB), where δ 13C = [[Rsample/RVPDB] −
1] × 1000 and R = 13C/12C. All reported δ 13C values are with respect to VPDB and are negative
when 13C:12C of the sample is less than VPDB.

In the US, the cattle and dairy industries rely on corn-based diets, while European growers use
predominantly C3 plants in their feed (18). Because of the difference in feed, meat and dairy
products in the US typically have δ 13C values from -13.5 to -19.2‰, while non-corn-fed
European meat and dairy products typically range from -26.02 to -30.38‰ (18,23). Thus, most
dietary sources of preformed vitamin A in the US are enriched with 13C by 10 – 15‰ compared
to vegetable sources of provitamin A. If the δ 13C values of animal products correlate with
preformed vitamin A in meat and dairy products, altering the ratio of preformed vitamin A to
provitamin A in the diet would change the δ 13C value of serum retinol.

The objective of this study was to evaluate the change in δ 13C value of serum retinol after a
3-mo intensive intervention study to promote weight loss. The two dietary weight-loss
strategies included increased vegetable intake or reduced calorie and fat intake. Serum retinol
and provitamin A carotenoid concentrations; preformed vitamin A, provitamin A carotenoid,
and fat intakes; and body weight, fat mass, and lean mass were analyzed for correlations to the
δ 13C retinol values using gas chromatography-combustion-isotope ratio mass spectrometry.

Materials and Methods
Subjects

This study was part of a larger weight-loss study designed to compare the effects of two dietary
strategies on weight loss, body composition, serum chemistry profile, and serum vitamin A
and carotenoids. The complete weight-loss study monitored subjects for 18 mo. This study
utilized data collected during the controlled feeding period between 0 and 3 mo. The two dietary
strategies were increased vegetable consumption or a 500 kcal/d reduction diet. Of the 60
subjects enrolled in the main trial, those with complete dietary records and adequate serum for
carbon isotope analysis [n = 20 and 17 from the vegetable and caloric reduction groups,
respectively] were evaluated (Table 1). Subjects were between 21 and 50 y of age, had a BMI
between 30 and 40 kg/m2, and visited the study kitchen to collect breakfast and lunch during
the 3-mo feeding period. Exclusion criteria before enrollment included consumption of ≥2.5
c/d (0.6 liter/d) vegetables and/or fruits; history of insulin treatment, drug, or alcohol abuse;
participation in other research studies that may confound results; pregnancy or lactation;

Howe et al. Page 2

Exp Biol Med (Maywood). Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



serious medical or psychiatric illness; unwillingness or inability to discontinue use of
supplements containing carotenoids; use of drugs that might affect weight loss; and weight
change > 3% of body weight during the 3 mo prior to recruitment. Subjects gave written
informed consent. The Health Sciences Institutional Review Board at the University of
Wisconsin – Medical School approved all aspects of this study.

Body composition
Body composition was measured by air displacement plethysmography (BOD POD®, Life
Measurements, Inc., Concord, CA; 24). Weight was measured using the BOD POD® scale,
which was tested with calibration weights each day of use. Height was measured at baseline
using a wall-mounted stadiometer. All body composition and weight assessments were
conducted by BOD POD® certified users. BMI was calculated from the weight and height
measurements.

Diets
The subjects in the vegetable group were educated about vegetable and fruit consumption from
the Food Guide Pyramid (25), which was based on the Dietary Guidelines for Americans,
5th Ed (26). In the Food Guide Pyramid, consumption is defined by servings [1 serving of
vegetable or fruit is equivalent to ½ c (0.12 liter) fresh vegetable or fruit]. Subjects in the
vegetable group were given a daily goal of consuming 8 servings (4 c, 0.95 liter) of vegetables
and 2 – 3 servings (1 – 1.5 c, 0.24 – 0.35 liter) of fruits. Serving sizes were measured using
standard US measuring cups. Subjects were discouraged from consuming potato chips, french
fries, or fruit juices to meet their vegetable and fruit goals. Yellow corn was not excluded from
the diet. Contributions of provitamin A from yellow corn to the vitamin A pool were expected
to be minor due to low provitamin A content of corn and low ratio of corn to C3 vegetables in
the diet.

Subjects in the caloric reduction group were given two daily goals: to reduce daily caloric
intake by 500 kcal from the estimated caloric intake needed for weight maintenance at baseline,
and to consume ≤25% of kcal from fat. Daily caloric need for weight-maintenance at baseline
was estimated by multiplying an individual's estimated resting energy expenditure by an
individually appropriate activity factor. Resting energy expenditure was estimated based on
height, weight, age, and sex using published equations (27). Activity factors were based on
those recommended by the Institute of Medicine (28). They were 1.3 for very light activity,
1.5 for light activity, and 1.6 for moderate activity.

All subjects were provided with 2 meals/d, Monday through Friday (10 meals total). Subjects
in the vegetable group were provided with 75-88% of their daily vegetable goal and 100% of
the fruit goal. The food provided to the caloric reduction group supplied 50-67% kcal and fat
g for the day. The vegetable group received twice as many vegetables as the caloric reduction
group. The provided protein in the meals and fat-free milk (3.6 liter/wk/person) were the same
for both groups.

3-d diet records
Subjects were asked to complete 3-d diet records (2 weekdays and 1 weekend day) at 0 and 3
mo. Completed diet records were analyzed for total vegetable intake (1 c = 0.24 liter) and
vitamin A consumption using Nutritionist Pro™ Version 3.1.0 (Axxya Systems; Stafford, TX,
© 2007). Foods or their ingredients were classified into two groups, those providing preformed
vitamin A and those providing provitamin A derived from carotenoids. Preformed vitamin A
included all vitamin A consumed from meat, dairy, and egg products, as well as synthetic
vitamin A added for fortification. Provitamin A included all vitamin A attributed to plant-
derived and synthetic carotenoids. Foods with multiple sources of vitamin A (e.g., pizza and
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salad) were divided into preformed vitamin A and provitamin A based on ingredients. Several
foods reported in dietary records were not found in the NutritionistPro™ database. Dietary
estimates of these foods were based on nutritional information provided on food labels or by
restaurants.

Analysis of carotenoids and retinol in serum
Whole blood samples were taken at 0 and 3 mo after an overnight fast (≥8 h). Blood was placed
into sterile-interior 6 ml Corvac brand serum separator tubes with clot activator (Tyco
Healthcare Group LP, MA). Samples were centrifuged at 2200 × g for 10 min at 4°C after
clotting for 10 – 20 min at room temperature. Serum was stored at -80°C until analysis. Serum
carotenoids and retinol were analyzed using a modification of a previously published method
(29). Briefly, 600 μl ethanol with 0.1% butylated hydroxytoluene was added to 500 μl serum
and mixed with a vortex. Retinol and carotenoids were extracted three times with 1 ml hexanes
with mixing and centrifugation. The pooled extracts were dried under argon, reconstituted in
100 μl 50:50 (by vol) methanol:dichloroethane, and 50 μl injected into the HPLC system. β-
Apo-8′-carotenyl decanoate was used as an internal standard.

The HPLC system consisted of a Resolve C18 (5 μm, 3.9 × 300 mm) column, a Waters 2996
photodiode array detector, 1525 binary pump, and 717 autosampler injector (Milford, MA).
The mobile phases were 95:5 (by vol) acetonitrile:water (solvent A) and 85:10:5 (by vol)
acetonitrile:methanol:dichloroethane (solvent B), both containing 10 mM ammonium acetate.
Samples were analyzed at a flow rate of 2 ml/min using the following gradient: 100% solvent
A for 3 min, 7-min linear change to 100% solvent B, 100% solvent B for 10 min, 3-min linear
change to 100% solvent A, and 100% solvent A for 1 min. Chromatograms were generated at
450 and 325 nm to quantify carotenoids and retinol, respectively. Standard curves were
prepared with purified α-carotene, β-carotene, lutein, lycopene, retinol, and zeaxanthin.
Concentrations were determined spectrophotometrically using their respective [i.e., 2800
for α-carotene, 2592 for β-carotene, 2550 for lutein, 3450 for lycopene, 1845 for retinol, and
2348 for zeaxanthin (30-31)].

Isotopic ratio of 13C to 12C in serum retinol
The 13C:12C in serum retinol was determined according to a modification of the method by
Tanumihardjo (8). After proteins were precipitated with ethanol (2 ml), retinol was extracted
3 times from serum (1 – 1.5 ml) with hexanes (1 – 2 ml). Extracted layers were combined and
dried under argon, reconstituted in 100 μl methanol, frozen for 5 min at -80°C, centrifuged at
1380 × g at room temperature for 30 s, and injected into a 15-cm Resolve® HPLC column (3.9
× 150 mm, 5 μm, Waters Corporation, Milford, MA) equilibrated with 90:10 methanol:water
(by vol) at 1 ml/min. Retinol was collected, dried under argon, and further purified on a 30-
cm Resolve® HPLC column (3.9 × 300 mm, 5 μm, Waters Corporation) equilibrated with 98:2
methanol:water (by vol) at 1 ml/min. Collected retinol was dried in a Thermo Savant Speed-
Vacuum centrifuge (Thermo Scientific; Waltham, MA), reconstituted in 10 μl hexanes, and
1.5 μl injected into a gas chromatography/combustion/isotope ratio mass spectrometer
(GCCIRMS). The Trace GC (Thermo Scientific) was equipped with a Programmable
Temperature Vaporizing (PTV) injector, a 15-m HP-1MS GC column (Agilent Technologies,
Santa Clara, CA), and a 1-m deactivated fused-silica pre-column (0.53 μm i.d.), and was
connected to a Combustion III and Advantage Plus isotope ratio mass spectrometer (Thermo
Scientific). Samples were injected simulating on-column injection with the PTV injector at
43°C. Temperature of the PTV injector was ramped to 50°C, matching the initial oven
temperature, prior to injection. Oven temperature increased at 15°C/s to 300°C. The δ 13C-
retinol values were analyzed from serum samples by GCCIRMS in duplicate. Synthetic retinol,
prepared by quick saponification of retinyl acetate (Sigma-Aldrich; St Louis, MO), was
purified twice similarly to serum retinol and used as an external standard.
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Isotopic ratio of 13C to 12C in milk retinol
Vitamin A and D fortified fat-free milk was purchased from the same supplier (University of
Wisconsin-Madison Babcock Hall Dairy Store, Madison, WI) that was used during the feeding
period and analyzed. Three ml ethanol with 0.1% butylated hydroxytoluene was added to 2 ml
milk and mixed by vortex. To remove remaining fat in the sample, the samples were saponified
for 30 min at 45°C using 800 μl 500 g/liter potassium hydroxide in water. After saponification,
the retinol was extracted from the sample 3 times with 1.5 ml hexanes. After the pooled extracts
were dried under argon and reconstituted in 100 μl methanol, retinol was purified and analyzed
by GCCIRMS as described for serum retinol.

Isotopic ratio of 13C to 12C in vegetable material
The provitamin A containing C3 plants fed during the intervention were carrots, spinach, and
canned pumpkin. These foods were freeze-dried with a Virtis Benchtop 6K freeze-drier (SP
Industries; Gardiner, NY) and ground into a powder using a coffee grinder. For comparison,
typical yellow field corn (dried), a C4 plant, was provided by the University of Illinois at
Urbana-Champaign and analyzed. It was ground to pass a <1 mm screen prior to analysis using
a hammer mill. Dried plant material (1 to 2 mg) was weighed into tin capsules and encapsulated
into a ball. A Costech ECS 4010 Elemental Combustion System CHNS-O (Costech Analytical
Technologies, Inc., Valencia, CA) equipped with a Conflo III (ThermoScientific) and attached
to an Advantage Plus isotope ratio mass spectrometer (described previously) was used to
determine δ 13C of plant materials. Samples were replicated 10 times.

Statistical analysis
Data were analyzed using Statistical Analysis System software (SAS Institute Inc., Version
8.2, Cary, NC; 2001) to perform paired t-tests, two-sample t-tests, correlations, model building
using backward, forward, and step-wise elimination. Significance was evaluated at P ≤ 0.050,
unless stated otherwise for the elimination procedures.

Results
Body composition

Body weight and fat mass decreased between 0 and 3 mo for both the vegetable (P = 0.002
and P < 0.001 for body weight and fat mass, respectively) and caloric reduction groups (P <
0.001 for both) (Table 1). Although there was no difference in body weight or fat mass between
the groups at either time, there was a significant difference in the change in body weight (P =
0.001) and fat mass (P = 0.020) between the groups. The vegetable group lost -2.2 ± 2.5 kg
body weight and -3.0 ± 3.0 kg fat mass compared to -5.8 ± 3.7 and -7.9 ± 5.4 kg in the caloric
reduction group, respectively. Fat-free mass and BMI did not differ at 0 or 3 mo or between
the dietary groups.

3-d diet records
At baseline, preformed vitamin A and provitamin A intake did not differ between groups (Table
2). Preformed vitamin A intake did not change from 0 to 3 mo in either group, but provitamin
A intake increased in both groups (P ≤ 0.002). At 3 mo, preformed vitamin A intake did not
differ between groups, but provitamin A was greater in the vegetable group compared with the
caloric reduction group (P < 0.001). This corresponded to an increase in total vegetable
consumption by the vegetable group on a volume basis (P = 0.018). Almost all of the provitamin
A provided to and consumed by subjects was from vegetables that were C3 plants, including
carrots, pumpkin, and spinach.
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Fat intake was monitored as a possible co-variant because dietary fat is required for absorption
of vitamin A and carotenoids (32-34). Fat consumption did not differ between the groups at
baseline, and decreased from 0 to 3 mo in both groups (P < 0.001 and P = 0.002 for vegetable
and caloric reduction groups, respectively; Table 2). At 3 mo, the fat intake was higher in the
vegetable group than the caloric reduction group (P = 0.049).

Milk intake estimated from the 3-d records was monitored to ensure changes in δ 13C were not
due to differences in milk intake. Milk intake increased for both groups by approximately 300
± 300 ml/d from baseline to 3 mo due to the feeding study (P < 0.001). Changes in milk intake
did not differ between the groups (P = 0.92).

Serum carotenoids and retinol
From 0 to 3 mo, serum α- and β-carotene increased in both the vegetable (P < 0.001 for both
α- and β-carotene; Table 2) and caloric reduction groups (P < 0.001 and P = 0.046 for α- and
β-carotene, respectively), but serum retinol did not differ. Serum α-carotene, β-carotene, and
retinol did not differ between the groups at baseline or 3 mo.

δ 13C of serum retinol
Baseline δ 13C-retinol values ranged from -26.26 to -31.08‰ and 3 mo values ranged from
-26.21 to -31.57‰ (Figure 1). Delta 13C-retinol values in the vegetable group decreased from
0 to 3 mo (P = 0.050), but no difference was measured in the caloric reduction group (P =
0.43). A marginal difference was noted in the change in δ 13C-retinol values between the
vegetable and caloric reduction groups (P = 0.054).

Evaluated parameters (i.e., serum α-carotene, β-carotene, and retinol concentrations;
preformed vitamin A, provitamin A, and fat intakes; body weight, fat mass, and lean mass)
were used to assess their relationship to δ 13C-retinol measurements. Except for the change in
provitamin A intake in the vegetable group (P = 0.079) and the change in serum retinol in the
caloric reduction group (P = 0.013), correlations to δ 13C-retinol were not significant at the
α = 0.10 level for either group. For the vegetable group, stepwise forward regression analysis
(α = 0.15 to include) showed that the decrease in δ 13C-retinol was due primarily to the increase
in provitamin A intake (P = 0.079) and all other parameters were not significant. Backward
elimination regression (α = 0.10 to remove) revealed that the changes in serum β-carotene,
provitamin A intake, fat mass, body weight, and the percent body fat contributed to the changes
in δ 13C-retinol for the vegetable group (P = 0.035). For the caloric reduction group, stepwise
forward regression analysis (α = 0.15 to include) showed the change in δ 13C-retinol, was
correlated to changes in serum retinol and percent body fat (P = 0.004). Backwards elimination
regression (α = 0.15 to include) showed that changes in serum retinol, preformed vitamin A
intake, body weight, fat mass, and percent body fat were all significant in the model (P = 0.003).

δ 13C of reference foods and vitamin A
The δ 13C of carrots, pumpkin, and spinach was -25.199 ± 0.313, -26.788 ± 0.228, and -27.375
± 0.175‰, respectively. Corn had a δ 13C of -11.283 ± 0.079‰ and the δ 13C-retinol value of
milk provided to study participants was -24.2‰. Synthetic vitamin A prepared from retinyl
acetate was -28.779 ± 0.465‰.

Discussion
High intake of fruits and vegetables is associated with reduced risk of several chronic diseases,
including cardiovascular disease, type 2 diabetes, and certain cancers (28). These foods are the
dietary source for carotenoids, which have also been associated with reduced disease risk
(35). Plasma or serum carotenoids are often used as biomarkers for fruit and vegetable intake
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(36,37). Although useful as an indicator, conversion of provitamin A carotenoids to retinol will
result in a loss of biomarker from serum carotenoid measurements. Because bioconversion is
dependent on vitamin A status, the use of serum carotenoids as a biomarker for fruit and
vegetable intake in populations with low or highly variable vitamin A status may be erroneous.
By using the enrichment of 13C in retinol compared to provitamin A sources, conversion of
provitamin A carotenoids to retinol can be confirmed and dietary adherence can be determined.
The additional vegetable intake by the vegetable group was almost exclusively from C3 plants
(i.e., carrots, pumpkin, and spinach) leading to a significant decrease in the δ 13C-retinol value.
Furthermore, the δ 13C-retinol technique was more precise than serum β-carotene analysis. At
baseline, the CV for δ 13C-retinol measurements was 4.7 and 4.4% for the vegetable and caloric
reduction groups, respectively, while serum β-carotene was 57 and 131%, respectively. The
greater variability in serum carotenoid measurements will require more subjects than studies
using δ 13C-retinol. Analysis by GCCIRMS is more expensive and less available than HPLC
analysis; however, this cost is somewhat offset by the reduction in subject number. Analysis
of δ 13C- retinol is a new technique, but it can be adapted to any facility with GCCIRMS and
HPLC capabilities.

Although both dietary intervention groups increased vegetable and provitamin A intake over
the 3-mo intervention period, the vegetable group consumed significantly more vegetables and
provitamin A than the caloric reduction group. The increase in vegetable consumption in both
groups was confirmed by elevated serum α- and β-carotene at 3 mo and vegetable intake as
indicated by 3-d diet records. Although the increase in provitamin A was confirmed by serum
carotenoids, they were not able to distinguish the 2-fold greater intake of provitamin A by the
vegetable group. In contrast, the δ 13C-retinol value decreased in the vegetable group (P =
0.050), but not in the caloric reduction group (P = 0.43). Using backward statistical modeling,
the change in δ 13C-retinol was attributable to the change in provitamin A intake, serum
carotenoids, fat mass, and body weight (P = 0.035). Step-wise modeling found that change in
provitamin A intake was the only factor to explain the change in the δ 13C-retinol value at the
α = 0.1 level.

Before δ 13C-retinol values are affected by dietary provitamin A carotenoids, provitamin A
must be converted to retinol. Bioconversion was likely minimized by the high intake of
preformed vitamin A and the adequate vitamin A status of the subjects. Subjects with a lower
vitamin A status will have greater bioconversion of provitamin to vitamin A. Thus, the
influence of dietary provitamin A carotenoids on δ 13C-retinol will be much greater in subjects
with low vitamin A stores and the sensitivity of the technique will be greatly enhanced. Due
to the effect of vitamin A status on the effectiveness of this technique, more studies are
necessary to determine the absolute sensitivity of the method to modest changes in vegetable
intake. In populations with low vitamin A status, sensitivity to changes in dietary vitamin A
could be exploited with washout periods to establish a steady baseline prior to intervention.

Previous studies have shown that provitamin A in maize contributes to vitamin A pools
similarly to synthetic β-carotene when vitamin A is absent from the diet (38). High consumption
of relatively low carotenoid foods such as yellow or orange maize, can contribute to vitamin
A stores when vitamin A stores are depleted (38). Substitution of yellow or orange maize for
white maize in the diet of a population should increase the serum δ 13C-retinol value with time
because maize is a C4 plant. In a vitamin A depleted population, the change in δ 13C-retinol
value in response to an intervention would likely be greater than the response observed in this
study and would confirm bioconversion to retinol, provided that the population's major vitamin
A source was not solely from animals consuming C4 plants.

Serum retinol was not significantly different between groups or over time. This is expected
because serum retinol is homeostatically controlled in individuals with adequate vitamin A
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status (39,40). Although the caloric reduction group increased their carotenoid intake during
the dietary intervention, it was not sufficient to have an effect on the isotopic composition of
retinol in 3 mo. Changes in δ 13C-retinol and serum retinol concentrations did not differ
between 0 and 3 mo in the caloric reduction group and consequently were correlated.

The decrease in δ 13C-retinol in the vegetable group indicates that the dietary intervention
altered the isotopic composition of serum retinol. The increase in dietary provitamin A
carotenoids by subjects in the vegetable group reduced the δ 13C-retinol indicating that
carotenoids from C3 plants are being absorbed, cleaved into retinol, and circulated in the body.
Dietary increase in provitamin A carotenoids was the most significant dietary parameter that
correlated with the decrease in δ 13C-retinol in the vegetable group. Results from analysis of
high provitamin A carotenoid vegetables (i.e., carrots, -25.102 ± 0.076‰; pumpkin, -26.788
± 0.228‰; and spinach, -27.375 ± 0.175‰) provided for consumption during the 3 mo
intervention were consistent with reported values (-27.16‰) for common fruits and vegetables
(18).

Preformed vitamin A is primarily obtained from meat and dairy products, which, in the US,
typically have much higher δ 13C values ranging from -13.5 to -19.2‰ (18,23). The δ 13C-
retinol value of fat-free milk, provided to study participants, was -24.2‰ and is much lower
than the overall δ 13C of meat and dairy products. Animals must obtain vitamin A by cleaving
provitamin A carotenoids or from vitamin A supplements because they cannot synthesize it.
Thus, the δ 13C-retinol value of the milk originates from provitamin A in the diet (e.g., maize)
that has a relatively high δ 13C value (-11.283 ± 0.079‰) and preformed vitamin A from feed,
direct supplementation to the animal, and milk fortification that have a relatively low δ 13C
value (-29.779 ± 0.465‰). Although preformed vitamin A is typically considered more
bioavailable than provitamin A, the δ 13C-retinol value of milk indicates that provitamin A
carotenoids in corn-based diets contribute to vitamin A pools.

The difference in fat intake between groups probably did not influence the decrease in δ 13C-
retinol or the increase in serum carotenoids noted in the vegetable group. It is well established
that added fat is necessary for carotenoid absorption, especially from raw vegetables (41).
However, fat intake greater than 5 g fat/meal is generally accepted as adequate for absorption
of carotenoids from supplements or vegetables (41-44). Both dietary groups in this study were
well beyond this minimal fat requirement at each meal. Thus, differences in fat intake should
not affect absorption of provitamin A carotenoids and would not be reflected in δ 13C-retinol
values or serum carotenoids.

In addition to demonstrating the incorporation of carotenoid-derived retinol into the vitamin
A pool, the change in δ 13C-retinol due to increased provitamin A intake also illustrates its
utility as a biomarker for consumption of provitamin A-rich fruits and vegetables. Changes in
serum α- and β-carotene concentrations were unable to differentiate between groups in
response to the intervention, but δ 13C-retinol as measured by GCCIRMS differed due to its
greater sensitivity toward changes in dietary vitamin A sources. The current guidelines for
vegetable and fruit intake are 3.5 – 4.5 c for a 1600 – 2000 kcal diet in MyPyramid (25). The
vegetable group was within these guidelines, i.e., 4.3 c/d, while the caloric reduction group
was not, i.e., 3.1 c/d. The δ 13C-retinol reflected this difference and could be used in future
studies to evaluate adherence to MyPyramid recommendations.
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Figure 1.
Baseline versus 3 mo mean δ 13C-retinol values for subjects in the vegetable and reduced calorie
and fat g (caloric reduction) groups (n = 20 and 17, respectively). The solid line represents
equivalent 0 and 3 mo values, the dashed lines represents ± 1‰ variation in 3 mo δ 13C values
compared to baseline. Average standard deviation for δ 13C-retinol values was ± 0.197.
Delta 13C-retinol values in the vegetable group decreased from 0 to 3 mo (P = 0.050), but did
not change in the caloric reduction group (P = 0.43). The 3 mo change in δ 13C-retinol values
between the vegetable and caloric reduction groups was marginally significant (P = 0.054).
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