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Mitochondria are dynamic organelles, the morphology of

which results from an equilibrium between two opposing

processes, fusion and fission. Mitochondrial fusion relies

on dynamin-related GTPases, the mitofusins (MFN1 and 2)

in the outer mitochondrial membrane and OPA1 (optic

atrophy 1) in the inner mitochondrial membrane. Apart

from a role in the maintenance of mitochondrial DNA,

little is known about the physiological role of mitochon-

drial fusion. Here we report that mitochondria hyperfuse

and form a highly interconnected network in cells exposed

to selective stresses. This process precedes mitochondrial

fission when it is triggered by apoptotic stimuli such as UV

irradiation or actinomycin D. Stress-induced mitochon-

drial hyperfusion (SIMH) is independent of MFN2, BAX/

BAK, and prohibitins, but requires L-OPA1, MFN1, and the

mitochondrial inner membrane protein SLP-2. In the ab-

sence of SLP-2, L-OPA1 is lost and SIMH is prevented.

SIMH is accompanied by increased mitochondrial ATP

production and represents a novel adaptive pro-survival

response against stress.
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Introduction

The morphology of mitochondria in eukaryotic cells is con-

stantly shaped by the opposing processes of fission and

fusion (Hoppins et al, 2007). This dynamic behaviour is

essential for normal mitochondrial function and participates

in fundamental processes, including development, apoptosis,

and ageing (Chan, 2006). During the recent years, several key

elements of the mitochondrial fission and fusion machinery

have been identified, among which at least four dynamin-

related GTPases, mitofusin 1 (MFN1), mitofusin 2 (MFN2),

optic atrophy 1 (OPA1), and dynamin-related protein 1

(DRP1), play an essential role (Hoppins et al, 2007). MFN1

and 2 are located in the outer mitochondrial membrane and

mediate outer membrane fusion by the formation of homo-

and heterodimers that tether adjacent mitochondria (Koshiba

et al, 2004). OPA1 is responsible for fusion of the inner

mitochondrial membrane, and exerts an effect in concert

with MFN1 to coordinate fusion of the two membranes

(Cipolat et al, 2004). In addition, OPA1, through the forma-

tion of oligomers, has a function in the formation of the

cristae junction (Frezza et al, 2006). Finally, DRP1 is required

for the fission of the outer mitochondrial membrane

(Smirnova et al, 2001).

Mitochondrial fission and fusion seem to be essential for

mouse development and/or for neuronal survival and func-

tion in mice and humans. Mice lacking MFN1, MFN2, or

OPA1 die at an early embryonic stage (Chen et al, 2003;

Davies et al, 2007). Moreover, in humans, point mutations in

MFN2 and OPA1 lead to severe neurodegenerative diseases

such as Charcot–Marie–Tooth type 2A and dominant optic

atrophy, respectively (Alexander et al, 2000; Delettre et al,

2000; Zuchner et al, 2004). On the other hand, deletion of

DRP1 is lethal for Caenorhabditis elegans (Labrousse et al,

1999; Breckenridge et al, 2008). These findings illustrate the

importance of mitochondrial dynamics in cell homeostasis.

However, the physiological role of mitochondrial fusion and

fission in cell function and survival is still poorly understood.

Therefore, the precise mechanism underlying neurodegenera-

tive diseases associated with mitochondrial dynamics defects

is unknown.

Fission of mitochondria is required for the selective elim-

ination of depolarized mitochondria (Twig et al, 2008), and it

occurs during apoptosis (Suen et al, 2008). Moreover,

mitochondrial fission occurs when mitochondria are dysfunc-

tional, probably as a result of OPA1 cleavage (Duvezin-

Caubet et al, 2006; Guillery et al, 2008). Mitochondrial fission
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due to impaired mitochondrial fusion is often accompanied

by bioenergetics defects due to a loss of mitochondrial DNA

(mtDNA) (Chan, 2006; Hoppins et al, 2007). Thus, mitochon-

drial fusion is required for mtDNA maintenance, probably

because it allows mtDNA exchange between mitochondria.

Apart from this role, little is known about the importance of

mitochondrial fusion. Here we report that mitochondria

hyperfuse and form a highly interconnected network in

cells exposed to stresses which inhibit cytosolic protein

synthesis. Stress-induced mitochondrial hyperfusion (SIMH)

requires metabolically active mitochondria, leads to mito-

chondrial ATP production and confers stress resistance on

cells. Therefore, SIMH represents an adaptive response

against stress.

Results

MFN1 and OPA1 are required for SIMH

Dramatically elongated mitochondria were found to

accumulate in mouse embryonic fibroblasts (MEFs) exposed

to a number of stress stimuli, including UV irradiation

(UV-C), actinomycin D (Act D), cycloheximide (CHX)

(Figure 1A and B), anisomycin, hippuristanol, and serum

and amino-acid deprivation (data not shown). It is to be

noted that mitochondrial morphological changes were first

evidenced at 2–3 h after stress induction and the process

increased over time, peaking at 6–9 h with the formation

of a mesh of highly interconnected, thin mitochondrial fila-

ments. This morphology could be maintained as long as the

cells were exposed to the stress stimuli and did not undergo

apoptosis (data not shown). This phenomenon was also

observed in a number of mammalian cell lines (HeLa, Cos-

7, NIH 3T3, DU145, 143B), in mouse primary fibroblasts,

hepatocytes, and astrocytes (data not shown). To reflect the

extreme nature of the fusion activity, we named this process

‘stress-induced mitochondrial hyperfusion (SIMH).’

To test whether the key molecular components of the

mitochondrial fusion machinery are necessary for mitochon-

drial tubulation during these stresses, we used MEFs deficient

in MFN1 (Mfn1�/�), MFN2 (Mfn2�/�), both MFN1 and 2

(Mfn1/2�/�), and OPA1 (Opa1�/�) (Chen et al, 2003; Song

et al, 2007). As members of the Bcl-2 family, including BAX
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Figure 1 Mitochondrial tubulation in response to stress stimuli requires Opa1 and Mfn1. (A, B) Wild-type MEFs after exposure to 60 mJ/cm2

UV-C, 3mg/ml Act D or 10mM CHX. (A) MEFs stained with antibodies to cytochrome c were analyzed in untreated conditions and 9 h after stress
exposure by fluorescence microscopy. Scale bar, 25mm. (B) Quantification of cells with a majority of connected, very long (45mm) tubular
mitochondria the extremities of which are difficult to visualize (defined as hyperfused mitochondria) at the indicated time points after stress
exposure. Data represent the mean±s.d. of three independent experiments, each with 4300 cells counted per condition. (C, D) Wild type,
Mfn1�/�, Mfn2�/�, Mfn1/2�/�, Opa1�/�, and Bax/Bak�/�MEFs after exposure to UV-C irradiation. (C) Quantification of cells with hyperfused
mitochondria 9 h after exposure with 60 mJ/cm2 UV-C, 3 mg/ml Act D, or 10mM CHX. Data represent the mean±s.d. of three independent
experiments, each with 4300 cells counted per condition. Wild-type MEFs shown here are controls for Mfn1�/� cells and are representative of
all WT MEFs used as controls for mutant MEFs. (D) MEFs stained with antibodies to cytochrome c were analysed in untreated conditions and
9 h after UV-C irradiation by fluorescence microscopy. Scale bar, 25mm.
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and BAK, have recently been reported to modulate mitochon-

drial morphogenesis (Karbowski et al, 2006), we also tested

Bax/Bak-deficient MEFs (Bax/Bak�/�) (Figure 1C and D). All

mutant MEFs displayed small filamentous or punctiform

mitochondria, as described earlier (Chen et al, 2003;

Karbowski et al, 2006; Song et al, 2007). Exposure of

Mfn2�/� and Bax/Bak-deficient cells to Act D, CHX, and

UV irradiation induced mitochondrial elongation, which

was particularly striking in these cells because small dotty

mitochondria ‘metamorphosed’ into a large number of long,

thin filaments (Figure 1C, D and Supplementary movie).

Importantly, mitochondrial tubulation did not occur, or was

significantly reduced, in cells deficient in OPA1, MFN1, or

both mitofusins, indicating a specific role of OPA1 and MFN1,

but not MFN2, during SIMH.

Disruption of the mitochondrial membrane potential using

the protonophore CCCP or inhibiting the ATP synthase with

oligomycin prevented SIMH. Moreover, we found that SIMH

did not occur in 143B r0 cells that lack mitochondrial DNA,

but display a normal membrane potential (Buchet and

Godinot, 1998; Arnould et al, 2003) (Supplementary Figure

1A–C). Therefore, an active oxidative phosphorylation is

required to promote SIMH.

SIMH results from activation of mitochondrial

fusion activity

To determine whether elongation of mitochondria was ac-

companied by fusion of the inner mitochondrial membrane

and continuity of the matrix lumen of fused mitochondria, we

first expressed Dendra2, a photoactivable probe, which is

photoconverted from green to red on brief excitation with UV,

in mitochondria of WT MEFs (Gurskaya et al, 2006). The

probe was excited in a small region of an elongated mito-

chondrion and was found to diffuse a long distance from the

site of excitation, thereby indicating a continuity of the matrix

lumen in the elongated mitochondria of stressed cells

(Supplementary Figure 2). Then, we measured mitochondrial

fusion activity in stressed Mfn2�/� cells using the mito-

PAGFP system, as described earlier (Karbowski et al, 2004)

(Figure 2A and B). These cells were chosen because of the

high reactivity of their mitochondria to stress. At 3 h after

CHX addition, mitochondrial fusion activity was significantly

increased in Mfn2�/� MEFs when compared to untreated

cells. Interestingly, the increase in mitochondrial fusion ac-

tivity appeared to be a transient event as it decreased after 7 h

of CHX treatment.

We also tested the possibility that inhibition of the fission

machinery could be part of the mechanism underlying SIMH.

Expression of DRP1-K38A, a dominant-negative mutant of

Drp1, resulted in mitochondrial elongation in Mfn1�/� as

well as in WT and Mfn2�/� cells, but not in Mfn1/2�/� or

Opa1�/� cells, confirming the requirement of either Mfn 1 or

2 and OPA1 in the fusion process (Hoppins et al, 2007;

Figure 2C and D). Opa1�/� cells expressing DRP1-K38A

remained SIMH incompetent (data not shown). As inhibiting

mitochondrial fission led to tubulation of mitochondria in

Mfn1�/� cells, whereas SIMH does not occur in these cells, it

is unlikely that DRP1 inhibition is the main mechanism

underlying SIMH. Moreover, the protein levels of the fission

proteins DRP1 and hFIS1 did not change significantly during

the first 9 h after stress exposure (Figure 2E). Finally, over-

expression of hFIS1, which fragments mitochondria via DRP1

(Yoon et al, 2003), prevented the occurrence of SIMH (data

not shown), further indicating that DRP1 activity was not

impaired upon stress. Altogether these data suggest that

SIMH relies on an increase in mitochondrial fusion activity

rather than on an inhibition of the fission activity, even

though the latter possibility cannot be completely excluded.

Stomatin-like protein 2 (SLP-2) is required for SIMH

Recently, SLP-2 has been identified as a mitochondrial

member of a superfamily of putative scaffolding proteins

comprising prohibitins, flotillins, and mechanoreceptors

(Tavernarakis et al, 1999; Da Cruz et al, 2003; Morrow and

Parton, 2005; Hajek et al, 2007). Even though its function is

not yet well characterized, it has recently been found to

interact with MFN2 (Hajek et al, 2007) and with prohibitins

1 and 2 (Da Cruz et al, 2008). We tested whether SLP-2 could

also participate in SIMH. We generated MEFs, in which the

expression of SLP-2 was downregulated by RNA interference.

The morphology and membrane potential of mitochondria

were similar in MEFs expressing SLP-2 or luciferase shRNA

(Supplementary Figure 3 and data not shown). However,

whereas mitochondria from control MEFs underwent SIMH

after UV irradiation or CHX treatment, those from SLP-2-

depleted MEFs fragmented (Figure 3A and Supplementary

Figure 3). Fragmentation of mitochondria occurred within the

first 6 h after stress and was not the result of a decrease in

mitochondrial membrane potential nor apoptosis (data not

shown).

SLP-2 is required for the maintenance of OPA1L

during stress

As mitochondria fragmented in SLP-2-deficient stressed cells,

we analysed the expression pattern of OPA1, whose modifi-

cations have been linked to the regulation of mitochondrial

morphology (Duvezin-Caubet et al, 2006; Ishihara et al, 2006;

Griparic et al, 2007; Song et al, 2007). Five OPA1 bands (a–e)

could be detected in control MEFs (Figure 3B). Bands a and b

correspond to long isoforms, whereas bands c–e are thought

to result from proteolytic processing. In wild-type MEFs, the

pattern of OPA1 expression did not change significantly

during SIMH. In unstressed SLP-2-deficient MEFs, all OPA1

bands were expressed, but bands c and e were slightly

increased in intensity compared to wild-type cells, whereas

band d was less intense. On addition of CHX, the intensities

of bands a and b decreased significantly, whereas that of

bands c and e increased (Figure 3B). Similarly, SLP-2 deple-

tion in Opa1�/� cells transiently transfected with rat OPA1

variant 1 (rOPA1-V1) (Ishihara et al, 2006) induced proteo-

lytic cleavage of OPA1 (Figure 4A). Our data thus indicate

that, during stress, SLP-2 is required for the maintenance of

long OPA1 isoforms.

To examine whether the cleavage of long OPA1 isoforms

prevented the occurrence of SIMH in SLP-2-depleted cells, we

expressed in these cells a non-cleavable deletion mutant of

rat OPA1 variant 1 lacking the S1 cleavage site (rOPA1-V1-

DS1) (Ishihara et al, 2006), as well as a cleavable OPA1

variant 1, rOPA1-V1, as a control. Moderate expression of

rOPA1-V1 or rOPA1-V1-DS1 did not significantly change the

morphology of mitochondria in unstressed SLP-2-depleted

cells (Figure 3C). Moreover, during stress only rOPA1-V1-

DS1, but not rOPA1-V1, promoted SIMH (Figure 3C). Thus,

expression of an uncleavable OPA1 long isoform, which

Stress-induced mitochondrial hyperfusion
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persisted following CHX treatment (Figure 3D), allowed

mitochondria to undergo SIMH in SLP-2-deficient cells. A

similar conclusion was drawn from experiments performed

with Opa1�/� cells, in which we expressed either rOPA1-V1

or rOPA1-V1-DS1 (Figure 4A). Both constructs were able to

promote SIMH in control Opa1�/� cells. However, in SLP-2-

deficient Opa1�/� cells, only the non-cleavable OPA1 mutant

was efficient (Figure 4B). Together, these data allow us to

conclude that OPA1 cleavage prevents the occurrence of

SIMH in SLP-2-deficient cells. Moreover, these data indicate

that the long OPA1 isoform is necessary and sufficient for

SIMH (Figure 4C).

To examine whether proteolysis occurred only at the S1

cleavage site, we used rat OPA1 variant 7, which contains

both S1 and S2 sites (Ishihara et al, 2006). This variant

showed the same activity as rOPA1-V1 in stressed normal

and SLP-2-deficient Opa1�/� cells (Supplementary Figure

4B). Unstressed SLP-2-deficient cells showed a reduced

OPA1 processing at the S2 site and an increased cleavage at

the S1 site (Supplementary Figure 4A). Similarly, the S1

cleavage product of isoform 7 (AIF-rOPA1-V7230–997)

(Ishihara et al, 2006) failed to promote fusion in Opa1�/�

cells (data not shown).

OPA1 can be cleaved by various proteases (Cipolat et al,

2006; Ishihara et al, 2006; Duvezin-Caubet et al, 2007;

Griparic et al, 2007; Song et al, 2007; Merkwirth et al,

2008). To determine whether proteases were responsible

for the cleavage of OPA1 in SLP-2-deficient cells during stress,

we treated these cells with the serine protease inhibitor PMSF

or the metalloprotease inhibitor 1,10-o-phenanthroline.

As shown in Figure 4D, 1,10-o-phenanthroline significantly

decreased stress-induced cleavage of OPA1 in SLP-2-deficient

MEFs. These data indicate that SLP-2 prevents OPA1 clea-

vage, probably through metalloproteases, under stress con-

ditions and thereby allows mitochondria to fuse. Altogether,

these experiments suggest that SLP-2 controls OPA1 stability

during SIMH.

We have recently reported that SLP-2 interacts with pro-

hibitins 1 and 2 (Da Cruz et al, 2008), two proteins that are

known to control OPA1 processing (Merkwirth et al, 2008).
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It was therefore possible that the effect of SLP-2 was mediated

by prohibitins. To test this hypothesis, we used prohibitin 2

knockout MEFs (Phb2�/�), which also lack the expression of

prohibitin 1 (Merkwirth et al, 2008). On treatment with CHX,

we found that mitochondria from Phb2�/� cells fused to the

same extent as mitochondria from control cells (Figure 4E

and F). Thus, in contrast to the related SLP-2, prohibitins are

not required for SIMH.

SIMH promotes optimal mitochondrial ATP production

We next examined the physiological relevance of SIMH. The

main role of mitochondria is to produce ATP through oxida-

tive phosphorylation (OXPHOS). We first measured total

cellular ATP levels in control and stressed WT MEFs and

found a significant increase in ATP in WT MEFs exposed to

CHX, UV, or Act D, but not in cells treated with staurosporine

(STS), a stimulus that does not trigger SIMH (Figure 5A and

data not shown). Similarly, the levels of total ATP increased

in CHX-treated Mfn2�/� and shLuc-expressing MEFs. In

contrast, no or little increase was measured in CHX-treated

Mfn1�/�, Opa1�/�, and shSLP-2 MEFs (Figure 5B). Thus,

total ATP levels increased only in stressed SIMH-competent

cells. Although relative ATP amounts are shown, absolute

values of ATP were comparable in unstressed WT, Mfn1�/�,

and Mfn2 �/� MEFs, despite a small increase of ATP in

Mfn1�/� MEFs (Supplementary Figure 5). To test whether

mitochondria were responsible for the increase in ATP pro-

duction, we tested their OXPHOS capacity. We provided

methylpyruvate, an oxidative respiratory substrate, to adher-

ent cells and measured the production of ATP over 15 min.

Such a question cannot be addressed with purified mitochon-

dria, which inevitably fragment during mitochondrial isola-

tion. Figure 5C shows that in unstressed WT cells,

methylpyruvate caused a minor increase in ATP levels over

the 15-min period. In contrast, when added to WT cells that

had been pretreated with CHX for 6 h, methylpyruvate sti-

mulated ATP production. This increase was abolished by the

ATP synthase inhibitor oligomycin, confirming its mitochon-

drial origin (Figure 5C). Setting the ATP levels in all un-

stressed cells at 100%, we also measured a 20–40% increase

in ATP levels over a 15-min time course in stressed Mfn2�/�

cells (Figure 5D). In contrast, in CHX-treated Mfn1�/� cells

(Figure 5D) and SLP-2-deficient cells (Figure 5E), the levels of

ATP remained stable after addition of methylpyruvate. Re-

introduction of SLP-2 in the SLP-2-deficient MEFs rendered

these cells SIMH competent and allowed an increased

OXPHOS after stress (Figure 5E). Thus, the increase in total

ATP levels measured in cells undergoing SIMH is due, at least

in part, to increased OXPHOS. Part of these ATP levels could

also be because of decreased ATP hydrolysis.

An ultrastructural analysis of mitochondria from WT MEFs

undergoing SIMH revealed organelles with a condensed

matrix and swollen cristae, a structure consistent with an

increased oxidative phosphorylation (Hackenbrock, 1966)

(Figure 6). Surprisingly, mitochondria in stressed Mfn1�/�

and Opa1�/� MEFs also adopted the ‘condensed state’ mor-

phology with enlarged cristae (Figure 6), despite no apparent

increase in OXPHOS (Figure 5D). These findings suggest that

mitochondrial hyperfusion is required for optimal OXPHOS.

In contrast, in SLP-2-deficient cells, whereas the mitochon-

dria displayed an orthodox morphology in the absence

of stress, cristae remodelled during stress and formed
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large, disorganized vesicles (Figure 6). Altogether, these data

indicate that SIMH provides cells with increased OXPHOS and

ATP levels, and suggested that this process could help cells

overcome transient, reversible metabolic insults.

SIMH is a pro-survival response against stress

We studied whether SIMH could act as a protective response

against UV irradiation or Act D treatment, two stimuli that

induce SIMH. These studies were performed with Mfn1�/�,
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SLP-2-deficient cells, and control cells. Apoptosis was evi-

denced only at late time points (414 h). Figures 7A and B

show that the SIMH-incompetent cells, Mfn1�/�, and SLP-2-

deficient MEFs or HeLa cells displayed a high sensitivity to

Act D and UV irradiation as compared with SIMH-competent

cells (hMFN1-HA:Mfn1�/� and shLuc cells). Importantly,

Mfn1�/� and hMfn1-HA:Mfn1�/� cells were equally sensitive

to staurosporine, a stimulus that does not trigger SIMH

(Figure 7C and data not shown). This indicates that the

SIMH-incompetent cells are not vulnerable to all apoptotic

stimuli, but that their sensitivity is cell context specific. The

resistance of SIMH-competent cells was explained by a delay

in BAX activation and cytochrome c release, both assessed by

immunocytochemistry (Supplementary Figure 6). In addi-

tion, when cells were stressed during 4 h with a low dose of

Act D that was sufficient to induce SIMH, they acquired a

long-lasting resistance to a secondary apoptotic stress

(Supplementary Figure 7). Thus, these data show that

SIMH represents a pro-survival response against specific

stress stimuli and indicate that this process could act as a

pre-conditioning mechanism against specific apoptotic stresses.

Discussion

One of the central questions of mitochondrial dynamics is

what physiological role this process plays in cell homeostasis.

We show that during various stress responses leading to

protein synthesis inhibition, mitochondria hyperfuse, a pro-

cess we called stress-induced mitochondrial hyperfusion

(SIMH). SIMH was found to correlate with increased mito-

chondrial ATP production and to confer on cells a resistance

to stress.

Mitochondria can rapidly change their morphology in

response to many stress conditions. Stimuli that alter mito-

chondrial function often result in fission of the organelle

(Baricault et al, 2007; Duvezin-Caubet et al, 2007; Guillery

et al, 2008). Rarely has mitochondrial fusion been described

as a response to stress as reported here. Several decades ago,

Deitch and Godman (1967) reported that low Act D concen-

tration triggers mitochondrial ‘anastomosing networks’ in

HeLa cells. Moreover, abnormally elongated mitochondria

have been described in cells of tobacco in response to hypoxia

(Van Gestel and Verbelen, 2002), and in mammalian cells

exposed to the alkylating chemical ethacrinic acid, even

though in this case the chemical may have exerted its action

by non-specifically inhibiting fission proteins (Soltys and

Gupta, 1994; Bowes and Gupta, 2008). Mitochondrial elonga-

tion has also been reported in cultured cells enforced to

produce ATP through OXPHOS for several days (Rossignol

et al, 2004). In our study, we report that several stimuli,

including mRNA translation inhibitors, UV irradiation, and

Act D, which share the property of downregulating protein

synthesis (Siegel and Sisler, 1963; Grollman, 1967; Craig and

Kostura, 1983; Parker et al, 2006), can trigger mitochondrial

fusion (SIMH). Our genetic data suggest a prominent role of

OPA1 and MFN1 during SIMH. OPA1 is responsible for inner

mitochondrial membrane fusion and cristae organization

(Sesaki et al, 2003; Wong et al, 2003; Cipolat et al, 2006;

Frezza et al, 2006). Various OPA1 short and long isoforms are

present in mammals as a result of alternative splicing and

proteolysis. Short and long isoforms have been shown to be
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required for optimal mitochondrial fusion under normal con-

ditions (Song et al, 2007), although Ishihara et al (2006) have

reported that mitochondrial fusion could occur with only the

L-OPA1 isoform. The long OPA1 isoform is necessary and

sufficient to promote SIMH. This finding is supported by the

observation that mitochondria fuse in Yme1L1-deficient cells

that lack S-OPA1 (Griparic et al, 2007).

The maintenance of L-OPA1 during stress is ensured by

SLP-2, a mitochondrial inner-membrane protein, recently

identified as a member of the SPFH-family (prohibitin/sto-

matin/flotillin/Hflk) of putative scaffolding proteins. We

have earlier shown a physical interaction between SLP-2

and prohibitins 1 and 2 (Da Cruz et al, 2008), which control

OPA1 processing (Merkwirth et al, 2008). However, knockout

of prohibitins did not prevent SIMH, indicating that SLP-2

regulates OPA1 processing under stress conditions indepen-

dently of prohibitins. Our findings thus indicate that different

mechanisms control mitochondrial fusion under normal

growth conditions and under stress. MFN2, BAX, and BAK,

as well as prohibitins, are required to maintain a tubular

mitochondrial network and fusion under normal growth

conditions, but are not necessary for SIMH. SLP-2, on the

other hand, is required for mitochondrial fusion under stress

conditions.
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We found that SIMH competent cells show better resis-

tance to SIMH-inducing stresses, UV irradiation, and Act D

treatment, when compared with SIMH-incompetent cells.

Mitochondrial hyperfusion correlates with a delay in BAX

activation and MOMP, a result that is consistent with the

earlier-reported beneficial effect of mitofusin overexpression

(Sugioka et al, 2004), although in this study the resistance

conferred by enforced mitochondrial fusion was not restricted

to stimuli that induce SIMH. Our results point to an important

role of SIMH for the maintenance of mitochondrial ATP

production under stress. We found that during SIMH mito-

chondria adopt the so-called condensed morphology, first

described by Hackenbrock (1966), and produce increased

levels of ATP, despite a decrease in mitochondrial respiration

(not shown). Interestingly, in the SIMH incompetent cells,

Mfn1�/�, and Opa1�/� cells, despite condensation of their

matrix, mitochondria did not produce higher ATP levels on

stress. These findings suggest that fusion of the organelle is

necessary to provide optimal mitochondrial functioning.

It has been theorized earlier that mitochondrial fusion

would generate networks of elongated mitochondria with

continuous membranes and matrix lumen, allowing a free

diffusion of molecules such as ADP, NADH, FADH2, and

resulting in optimal OXPHOS (Skulachev, 2001). However,

so far all approaches whereby mitochondria were enforced to

fuse, through for example downregulation of fission proteins,

led to opposite results, that is, decrease in membrane poten-

tial and ATP production, probably because unbalancing fis-

sion and fusion processes damage mitochondria (Rossignol

et al, 2004; Parone et al, 2008; Twig et al, 2008). To our

knowledge, our findings are the first to show that physiolo-

gical elongation and fusion of mitochondria correlate with

improved mitochondrial function.

Materials and methods

Reagents and antibodies
Please refer to the Supplementary data for detailed description.

Cell lines
Mfn1�/�, Mfn2�/�, Mfn1/2�/�, and Opa1�/� were generated as
described (Chen et al, 2005; Song et al, 2007). Bax/Bak�/� and
143Br0 cells were kindly provided by Professor S Korsmeyer and
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Professor R Wiesner, respectively. Cells were cultivated in high-
glucose Dulbecco’s modified Eagle’s medium supplemented with
10% fetal bovine serum, 100 U/ml penicillin, 0.1 mg/ml streptomy-
cin, and 2 mM glutamine and maintained in 5% CO2 at 371C. For
transient transfections cells were plated in culture dishes 45 min
before transfection and transfected using a calcium phosphate
coprecipitation method.

Generation of stable cell lines
MEFs stably expressing shRNAs were generated as described
(Parone et al, 2006; Da Cruz et al, 2008). This method is described
in the Supplementary data.

Immunocytochemistry and quantification of mitochondrial
morphology
To visualize the mitochondrial network with MitoTracker Red
staining, cells grown on coverslips were incubated in growth
medium supplemented with 100 nM MitoTracker Red for 10 min,
washed in fresh warm medium, and fixed as described above. The
coverslips were incubated in cold acetone for 10 min at �201C, then
washed with PBS, mounted, and visualized as described below. For
mitochondrial morphology quantifications, mitochondria were
stained for immunofluorescence using MitoTracker or anti-cyto-
chrome c antibodies, as described earlier (Parone et al, 2006). Cells
displaying a highly interconnected, tubular mitochondrial network
were counted. Mitochondrial morphology was analysed using an
Axiophot or LSM510 meta confocal microscope (Zeiss, Germany).

Quantification of mitochondrial fusion activity using the
mitochondrially targeted photoactivatible GFP (mtPA-GFP) has
been described earlier (Karbowski et al, 2004).

Fluorescence time-lapse microscopy
Mfn2�/� MEFs were transfected with the pDsRed-mito (Clontech,
Invitrogen) coding plasmid as described above. At 24 h after
transfection, cells were plated in 35-mm glass bottom dishes
(WillCo-dish, type 3522, WillCo Wells BV). At 2 h before observa-
tion, the media was changed to imaging media (DMEM 10% FCS
without phenol red). Sixty minutes before recording, cells were
UV-irradiated. The cultures were placed in a 371C chamber
equilibrated with humidified air containing 5% CO2 throughout
videomicroscopy. Time-lapse microscopy was performed with a
Leica Microsystems AS MDW microscope using a � 63 glycerol
objective (NA 1.3). The cells were illuminated every 20 min for
52 ms (excitation at 545 nm), and time-lapse series of 30 z-stacks
with 0.2mm step size were captured with a TRITC filter set during
15 h. The movies were created from the time-lapse series using
Leica AS MDW, AutoDeblur (AutoQuant), and Image J softwares.
Briefly, the individual z-slices were submitted to deconvolution
with AutoDeblur (AutoQuant) software, and a maximum-intensity
projection on a single plane of the processed images was created
using the Image J software.

Immunoblotting
Cells were resuspended in lysis buffer: 10 mM HEPES, 300 mM
KCl, 5 mM MgCl2, 1 mM EGTA, 1% Triton X-100 (vol/vol), 0.1%
(wt/vol) sodium dodecyl sulphate (SDS), pH 7.4, supplemented
with 1� proteinase inhibitor mixture (Roche). The lysate was spun
at 2000 g, and the protein concentration was determined by a

Bradford assay (Bio-Rad). Equal amounts of protein were subjected
to SDS–polyacrylamide gel electrophoresis, transferred to nitrocel-
lulose membranes (Schleicher & Schuell), immunoblotted with
primary antibodies followed by horseradish peroxidase-conjugated
secondary antibodies, and developed by enhanced chemilumines-
cence.

Measurement of ATP levels
ATP levels were measured using the ATP Determination Kit
(Invitrogen) according to the manufacturer’s protocol.

Electron microscopy
Cells were fixed for 20 min at RT in culture medium supplemented
with 2.5% glutaraldehyde. After a wash in 100 mM phosphate
buffer (KH2/Na2HPO4; pH 7.4), cells were post-fixed for 20 min at
RT in 2% osmium tetroxide (OSO4), and pre-stained in 2% of uranyl
acetate for 10 min at RT. After washes in phosphate buffer, cells
were dehydrated in 50, 70, 90, and 100% ethanol (for 10 min for
each procedure). The samples were then infiltrated sequentially in
1:1 (vol/vol) ethanol:Spurr resin (Polyscience), 1:3 ethanol:Spurr
resin for 30 min for each procedure, 100% Spurr resin for 3 h, and
finally 100% Spurr resin for 48 h at 601C for polymerization.

Ultrathin sections were isolated on nickel grids and stained for
10 min in 2% uranyl acetate and for 5 min in Reynold’s lead citrate,
and examined at 60 kV using a Philips M400 transmission electron
microscope.

Apoptosis
Apoptosis was detected using Annexin V FITC (BD Bioscience) as
described earlier (Parone et al, 2006). Apoptosis in cells expressing
shLuc or shSLP-2 was performed as follows: MEFs or HeLa cells
were transiently transfected with either pRETROshLuc or pRE-
TROshSLP-2 plasmid, together with a plasmid encoding a red
fluorescent protein (ptdTomato-C1) used as a marker of cell
transfection. At 72 h post-transfection, cells were exposed to UV-
C, collected at different time points as indicated, and stained with
Annexin V-FITC. Apoptosis of Tomato-red-labelled cells was
performed by flow cytometry.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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