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Abstract
The use of “non-standard” metallic radionuclides continues to be an expanding field of investigation.
Radiolabeling small molecules, peptides, proteins, and up to nano-particles are all areas of active
investigation for both diagnostic and therapeutic applications. All require a common variable – the
need for appropriate chelation chemistry for adequate sequestration of the metallic radionuclide that
is equal to the intended application. A brief overview of the array of the chelation chemistry options
available to researchers and the means for their selection is provided.

Introduction
Nature has provided a vast array of radionuclides with emission properties that that makes them
valuable reagents for investigating basic problems in chemistry, biology, and medicine. These
properties include γ-, β+-, β--, α-, and Auger emissions just to list some of those useful for
medical diagnostic (γ–scintigraphy, SPECT, PET) and therapeutic applications. In addition to
their radionuclidic properties, there is an even wider array of fundamental chemical properties
that are available for researchers to exploit. However, the use of these same radionuclides is
then constrained by limits of half-life, decay chain, production and availability, realistic
chemical usage, and matching all of these properties appropriately to the intended biological
application(s) which severely diminishes the number of choices to a select few (Table 1).1 As
much of these aspects have been well reviewed, the focus herein then is on those properties
and the chemistry required for the use of those metallic radionuclides that have generally been
accepted to be within those boundary conditions set forth above.

The utility of these metallic radionuclides has necessitated the development of metal chelating
agents to effectively provide a handle over their behavior. These chelating agents have been
termed “bifunctional chelating agents” since they have a metal binding moiety function and
then also possess a chemically reactive functional group. The former then provides for the
sequestration of the metallic radionuclide while the latter aspect provides the requisite
chemistry for covalent attachment to a targeting vector of interest, such as a small molecules
peptides (octreotide),2 proteins (monoclonal antibody, Zevalin),3 or nano-particles.4

There are a number of fundamental criteria that have to be met in the design of bifunctional
chelating agents for such applications. Foremost seems based on the stability of the metal
complex. Clearly, the consequences of loss or dissociation of the radionuclide are associated
with toxicity in the case of therapeutics and poor image qualities for diagnostics. Fundamental
coordination chemistry criteria such as: (1) charge; (2) matching cavity size of the chelating
agent with the ionic radius of the radionuclide; (3) providing the appropriate chelate denticity
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or number of donor binding groups; and (4) providing donor binding groups of appropriate
chemical character are all key elements. Two additional properties are also critical to consider:
the rate at which the metal complex forms and the rate of dissociation. All of these criteria are
interrelated. Cavity size must accommodate the ionic radius of the radionuclide such that all
of required donor groups can be properly aligned for optimal binding to the metal ion in such
a way to adequately encapsulate the ion thereby providing high stability and limiting
dissociation. A listing of those metallic radionuclides that will be discussed here along with
their selected properties of ionic radius, charge, and half-life is provided in Table 1. The suitable
radiometals are diverse in their properties and coordination chemistry, so, unfortunately there
is no bifunctional chelating agent suitable for all radionuclides.5 Lastly, there are a number of
copper radionuclides. These are not included here and are left for discussion in other papers in
this issue.

Having then created a bifunctional chelating agent, validation of its suitability for biological
applications still remains to be executed. There are a number of properties that can be used to
validate acceptability of a novel bifunctional chelating agent, including: (1) thermodynamic
stability constants; (2) transchelation studies; (3) acid catalyzed dissociation constants; and (4)
serum stability studies. All of these properties do provide some information that can be used
to suggest potential in vivo suitability. Serum stability can be a very useful tool and model that
serves to predict and eliminate from contention those bifunctional chelating agents that are
unsuitable for in vivo applications. None of these properties or models is predictive of actual
in vivo stability of the metal complex. To assess real in vivo stability of the metal complex,
evaluation in an appropriate animal model is necessary. The definition of appropriate animal
model is variable, however clearly it should really reflect very closely the ultimate intended
biological application. As yet, no in vitro model system replicates all of the ongoing processes
and components of a living organism just as the therapeutic efficacy of a macromolecule can
not be predicted from in vitro results.

Despite all those considerations, the development of bifunctional chelating agents has been
rooted in making derivations from well established and defined inorganic chemistry chelating
agents, e.g., ethylenediamine tetraacetic acid (EDTA), diethylenetriamine pentaacetic acid
(DTPA) (Figure 1), and 1,4,7,10-tetra-azacylcododecane-N,N′,N″,N‴-tetraacetic acid
(DOTA) (Figure 2), all of which as polyaminocarboxylate ligands vary coordination number
from 6 to, and also cover acyclic and macrocyclic options to encapsulate the metal ion.
Fundamental thermodynamic stability constants are known for these ligands with a variety of
metal ions that have provided a starting point for their derivation into an array of bifunctional
chelating agents (Table 2).6 In addition to that data, actual biological data for some of these
ligands complexing radionuclides of medical interest, both animal and human use, is available
in the literature and an example of such is provided in Table 3.7 Such data can be used to
extrapolate to the creation of bifunctional chelating agents.

Historically, one of the earliest reports of a bifunctional chelating agent conjugated to an
antibody made use of a natural product, desferrioxamine, for radiolabeling with 111In.8
Desferrioxamine and related compounds are well known chelators of Fe(III), and as such their
derivation for use with In(III) and Ga(III) has precedence. Interestingly, more recently
desferrioxamine has been investigated for sequestering 89Zr through a somewhat complicated,
yet elegant protocol that exploits that same Fe(III)/(II) chemistry for antibody labeling in
support of immunoPET applications.9,10 The Fe(III) complex was formed first with the
desferrioxamine then activated for conjugation through extension of the terminal amine with
succinic anhydride followed by conversion of the formed carboxylate into an active ester.10
After conjugation, the Fe(III) was reduced and displaced with the 89Zr.
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Returning to polyaminocarboylate ligands, one can recognize that while bifunctional EDTA
derivatives were initially reported for use with 111In and 90Y, their limited stability forced a
move to develop bifunctional DTPA derivatives that would provide a more appropriate
coordination number.11,12 Concurrently, direct derivatives of DTPA, the cyclic anhydride
(ca-DTPA) and the isobutylcarbonic anhydride (carb-DTPA) were also routinely in use (Figure
1).13,14 Despite their products routinely being termed DTPA conjugates these conjugation
products, in fact, are not DTPA chelators. This is due to the utilization of one carboxylate in
the conjugation forming an amide that may or may not then bind to the metal effectively. Studies
to determine the impact of this change in coordination number and donor character very clearly
defined decreased in vitro and in vivo stability of these products.12,15 Additionally, the cyclic
anhydride with two reactive conjugation moieties suffered from potential cross-linking issues.

Full octadentate bifunctional DTPA derivatives addressed these deficiencies.12,16-19 The
numbers and variations on structure combined with variations in conjugation strategies that
have been developed exceed the scope of this paper. However, a selection of representative
structures is provided in Figure 1. The 1B4M-DTPA, also known as MX-DTPA or tiuxetan,
has been developed as the chelating agent component of Zevalin for radiolabeling with
either 111In or 90Y.3 Further refinements in the pre-organization geometry of the DTPA donor
elements ultimately led to the creation of the CHX-A” DTPA which has been reported to form
stable complexes with 111In, 177Lu, 213Bi, and to also be significantly more stable than the
1B4M-DTPA for sequestering 90Y.20-22 The CHX-A” DTPA is notable for being the
chelating agent component in the first clinical antibody trial using an α-emitter, 213Bi,23 as
well also being a commercially available product.

Despite the successes achieved with bifunctional DTPA derivatives, their overall stability
complexing radionuclides such as 90Y was noted as being less than perfect and could potentially
contribute to toxicity.24

In response to that deficiency, full octadentate macrocyclic bifunctional DOTA derivatives
have been developed for complexing 111In, 86Y, 90Y, radio-lanthanides, 213Bi, 212Pb,
and 225Ac.25-29 Again, the numbers and variations on structure combined with variations in
conjugation themes that have been developed exceed the scope of this paper. However, a
selection of representative structures is provided in Figure 2. Concurrently, a bifunctional
DOTA that makes use of one carboxylate in an active ester form for protein conjugation has
also been developed and is also a commercially available product (Figure 3).30 As with
analogous DTPA derivatives, the conjugation product really is not DOTA, but again a mono-
amide product wherein the amide may or may not bind to the metal. While this DOTA mono-
amide product provides convenience (another commercial product), the impact on the
fundamental chemical characteristics by this change in donor number and character have not
been well studied with the array of radionuclides that have been used with this agent.
Considerable benefit on metal ion complex stability is no doubt conferred by the macrocyclic
effect, yet actual stability constants remain to be reported for those metallic radionuclides with
which this chemistry have been employed.

Limitations to the use of the DOTA derivatives is directly related to their exquisite stability;
slower complex formation rates compromise radiolabeling yields, efficiency, and specific
activity. The multi-step mechanism of complex formation severely limits the actual use of
bifunctional DOTA agents and in fact may have contributed to some questionable results using
this agent.31 The slow formation rates can be in part traversed if the conjugate product is
tolerant of being heated transiently.2 Conversely, use of bifunctional DTPA ligands is not
hampered by complex formation rates. Thus, one must very carefully choose which class of
ligands is most appropriate for each specific application.
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Bifunctional DOTA has also been used for 225Ac, however, the reported radiolabeled
conditions to force complexation are not acceptable for protein conjugates, hence formation
of the complex has been performed first followed by conjugation via isothiocyanate chemistry
with concomitant low efficiencies in both complexation and conjugation.32

Other macrocyclic ligands have been reported. There include a number of bifunctional NOTA
agents (Figure 4).33-36 NOTA is well established to form an exceedingly stable complex with
Ga(III), and as such, one might think that PET agents would feature its use. Surprisingly, DOTA
seems to be preferred despite there being no real substantiation as to the stability of the DOTA
Ga(III) complex. One might speculate that use of DOTA in this specific instance may be
directly linked to the commercial availability of the DOTA active ester derivative (Figure 3).
One variant on DOTA that has seen significant use with 203Pb and 212Pb is the tetra-primary
amide of DOTA termed TCMC (Figure 4).37,38

Bifunctional macrocyclic chelating agents with larger than the 12-membered ring DOTA, 14-
membered, 15-membered, and 18-membered ring agents have also been developed (Figure 5).
At least two different geometrically substituted 14-membered ring bifunctional TETA agents
have been reported.26,39 TETA had been promoted as being stable for copper radionuclides
and that topic will be discussed in other papers in this issue. Oddly, TETA appears to have had
no use with any other radionuclides. One 15-membered ring bifunctional PEPA has been
investigated for complexing 213Bi stably in vivo without success.40 Lastly, one 18-membered
ring bifunctional HEHA has been investigated for complexing 225Ac and superior stability
versus DOTA reported, yet still not adequate for in vivo use with this element.41,42

An area in the development of bifunctional chelating agents that has seen a surprising small
level of investigation has been impact on radio-metal complex stability due to the
stereochemical constraints of the chelating agent. Clearly, stereochemistry plays a serious role
in the three dimensional geometry and arrangement of donor elements directed towards the
metal ion and that optimization of these variables should equally lead to optimized chelation
chemistry. The study that led to the development of the CHX-A” DTPA in fact investigated
whether differences might even exist between radiolabeled enantiomeric forms of chelating
agents post-conjugation.21 Both serum stability and transchelation studies indicated that
radiolabeled enantiomers behaved identically to their corresponding racemates, however in
vivo studies that examined bone deposition as an indicator of 88Y loss clearly demonstrated
significant differences between enantiomeric conjugates. One might be tempted to attribute
this result to stereochemical resolution due to complex formation except that the in vitro studies
failed to, or were inadequate to detect this condition. This result does reflect two very critical
aspects of bifunctional chelate development: stereochemistry can be important and should be
studied, and that the importance of in vivo studies can not be discounted.

An array of reactive functional groups for conjugation of bifunctional chelating agents has also
been reported in the literature of which a selection is depicted in Figure 6. Beyond just the
simple amine or carboxylate for use in conjugation chemistry protocols, haloacetamide or
maleimide have been reported for reaction with sulfhydryl moieties that are either extant of
introduced,43,44 isothiocyanates have been readily available for reaction with amine groups,
11,12 azides have been familiar as photoaffinity reagents,11 a wide array of active ester
chemistry for reacting with amines have been perhaps only partly explored,30,45,46 and even
an alkene derivative for use in Suzuki coupling chemistry has been reported.18 The breadth of
choices of conjugation reactive functional groups has explored all of these listed possibilites
and more, however, the need for refinement of these choices and their actual usage remains an
area where opportunities remain. Currently, active esters and isothiocyanate chemistry
dominate the use of bifunctional chelating agents, primarily for peptides and proteins,
respectively, perhaps more from convenience than actually having arrived at the terminus of
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development. Clearly, protein conjugation remains inefficient regardless of conjugation
chemistry employed, resulting in random product distributions, and with radiolabeling yields
that achieve far lower than theoretical specific activities, critical to both imaging and
therapeutic applications. All of these areas continue to call for improvement and refinement
of more than the bifunctional chelate itself, but rather how they are actually employed.

On a related note, if one considers the numbers of both bifunctional DTPA and DOTA that
have been reported in the literature, one must really begin to question the need for further
permutations of the fundamental structure of either ligand. How many more structural variants
of these as well as many of the others are really advancing the field of use of bifunctional
chelating agents? There seems little chance that any further advances in stability with DTPA
or DOTA will be forthcoming. This is particularly relevant to DOTA since no measurable
advances in either stability or formation rate enhancement has been achieved. Needs remain
to select new permutations in conjugation chemistry as noted above, however, the fundamental
base bifunctional ligands for this purpose do seem to be well in hand for nearly every metallic
radionuclide that may be required to ask and answer the vast majority of research and clinical
questions relevant to their use. Exceptions to this are obvious and tend towards the more
“exotic” metallic radionuclides such as 225ac or 223Ra. Clearly, unequivocally stable
bifunctional chelating agents for these radionuclides remain to be developed that would permit
their precise therapeutic benefits to be determined.

Lastly, the continued pursuit of exceptionally stable complexes has to be put into the context
of actual use, i.e., just what is “good enough”. One must balance the variable of radionuclide
half-life with biological half-life versus actual biological application to assess just what is
acceptable stability further balanced against potential toxicity. All of those parameters must
yet again be weighed against actual feasibility of use of the chemistry. Clearly, we already
have a great many of the requisite tools of bifunctional chelates with which to move forward
to accomplished those refinements needed to develop both better and more effective imaging
and therapeutic agents using metallic radionuclides.
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Figure 1.
Structures of DTPA, ca-DTPA, ibca-DTPA, 1B4M-DTPA, lys-DTPA, vinyl DTPA, glu-
DTPA, and CHX-A” DTPA
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Figure 2.
Structures of DOTA, C-DOTA, PA-DOTA, DODASA, and lys-DOTA
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Figure 3.
Structures of DOTA hydroxysuccinimide active ester and its peptide or protein conjugation
product.
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Figure 4.
Structures of C-NOTA, N-NOTA, NODASA DTPA, and TCMC
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Figure 5.
Structures of 2C-TETA, 6C-TETA, BF-PEPA and BF-HEHA

Brechbiel Page 13

Q J Nucl Med Mol Imaging. Author manuscript; available in PMC 2009 June 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Structure of some of the reactive functional groups that have been used for conjugation of
bifunctional chelating agents to peptides and / or proteins
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Table 1
Selected Properties of “Non-Standard” Radionuclides

Radionuclide Ionic Radius* Charge T½

66Ga/68Ga 62.0 +3 9.5 h/68 min
86Y/90Y 90.0 +3 14.7 h/2.67 d

111In 80.0 +3 2.8 d
212Pb 119.0 +2 10.64 h

212Bi/213Bi 103.0 +3 1.01 h/ 45.6 min
89Zr 72.0 +4 3.27 d

177Lu 86.1 +3 6.71 d
225Ac 112.0 +3 10 d
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Table 2
Selected Stability Constants for Acyclic Polyaminocarboxylate Chelates6a

EDTA Me-EDTA CHX-EDTA DTPA CHX-DTPA

Y(III) 18.09 18.78 19.85 22.13 ------

In(III) 24.9 ------ 28.8 29.0 ------

Bi(III) 27.8 ------ 32.4 35.6 ------

Q J Nucl Med Mol Imaging. Author manuscript; available in PMC 2009 June 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Brechbiel Page 17

Table 3
Plasma Level and Cumulative Urinary Excretion of Yttrium Chelates7

Ligand 4 hr
Plasma Urine

8 hr
Plasma Urine

24 hr
Plasma Urine

EDTA 5.3 36.5 0.9 43.7 0.5 46.7

CDTA 5.7 68.4 2.3 87.1 0 97.6

DTPA 5.0 75.0 1.8 93.0 0 101.3
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