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Abstract
We report the computer-aided design, chemical synthesis, and biological evaluation of a novel family
of δ opioid receptor (DOR) antagonists containing a 1,2,4-triazole core structure that are structurally
distinct from other known opioid receptor active ligands. Among those δ antagonists sharing this
core structure, 8 exhibited strong binding affinity (Ki = 50 nM) for the DOR and appreciable
selectivity for δ over μ and opioid receptors (δ/μ = 80; δ/κ > 200).

Opioid analgesics are the mainstay for treatment of moderate to severe pain. Research on
opioids and their receptors has remained active over the past decade.1 Three opioid receptor
subtypes, designated as δ, κ, and μ, have been identified in the central nervous system (CNS)
and periphery2,3 and are products of three distinct and extensively studied genes. Recent
evidence suggests that subtype-selective opioid receptor agonists and antagonists offer great
potential as therapeutic agents devoid of the numerous adverse side effects (e.g., respiratory
depression, physical dependence, and gastrointestinal effects) associated with morphine.4 In
particular, δ-selective antagonists have been shown to modulate the development of
tolerance5,6 and dependence on μ agonists such as morphine,7 to offset the behavioral effects
of drugs of abuse such as cocaine,8 and to elicit favorable immunomodulatory9 and emotional
effects.10 On the other hand, δ-selective agonists have been shown to elicit the prototypical
analgesic effects of clinically available opioids.4 They may also provide unique benefits as
cardioprotective and neuroprotective agents11 and as treatments for depression and anxiety.
12,13

In view of their broad range of pharmacological applications, the δ-selective opioids have
attracted interest in our laboratory and elsewhere. Given the paucity of high-quality X-ray
crystal structure data for GPCRs such as the opioid receptor, our drug design strategy has relied
on ligand-based molecular modeling approaches. An additional component of our drug
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discovery paradigm is the proprietary Shape Signatures computational tool that provides
unique capabilities for scaffold hopping in the search for new lead compounds.14,15

A three-point pharmacophore was extracted by overlaying a series of high-affinity opioid
receptor ligands including the δ-antagonist naltrindole.16 This pharmacophore model (Figure
1, gray) comprised the basic nitrogen atom, the centroid of the phenol ring (A), and the centroid
of the hydrophobic ring (B). Virtual screening of an in-house database of ∼1.2 million
commercially available small-molecule chemicals was conducted to identify structures
matching this three-point pharmacophore. Additional molecular models were developed for a
distinct series of DOR-selective agonists17 and antagonists18 to demonstrate the structural
requirement for δ selectivity. Promising chemical entities were then subjected to filters using
an expanded Lipinski rule of five19 hierarchical scheme. The substituted 1,2,4-triazoles
(Figure 1) emerged from this scheme as an interesting core structural framework for our DOR
active agents. In selecting appropriate substitution patterns for the 1,2,4-triazole ring to confer
δ binding affinity and selectivity, we exploited the “message–address” concept20,21 associated
with classical morphine-like opioids. For instance, a sterically bulky group (e.g., tert-butyl)
was attached to the B aryl group to mimic the δ “address” in our 1,2,4-triazoles. Several di-
and trisubstituted 1,2,4-triazoles (Table 1) were selected for chemical synthesis and biological
evaluation. Structural alignment of naltrindole and 8 in the conformation adopted in its X-ray
crystal structure reveals good overlap between the tert-butyl group of 8 and the δ “address” of
naltrindole (Figure 2, Supporting Information).

Three separate reaction schemes were developed for the synthesis of the 1,2,4-triazoles
(Scheme 1) with thioamides as key intermediates. In most cases, thioamides were synthesized
from the corresponding amides.22,23 For 1, 2, 10, and 16, a coupling reaction of
arylmagnesium reagents with isothiocyanates was conducted to synthesize the thioamides.
24,25 Amidrazones could be efficiently prepared by reaction of thioamides with excess
hydrazine at room temperature. Cyclization of amidrazones with different reagents led to
products with methoxyl groups at the R2 positions. 1−7 were obtained using trimethyl
orthoformate as the cyclization reagent,26 while 8−15 involved cyclization of amidrazones
with phosgeninium salts (Viehe's salts), which were easily synthesized from the corresponding
amines.27 Compounds 16 and 17 were synthesized from 1 and 3, respectively, through reaction
with Eschenmoser's salt.28,29 Compound 18 was prepared directly by condensation of
amidrazone with 3-N,N-dimethylaminopropionic acid hydrochloride in the presence of
dicyclohexyldiimide (DCC) (Scheme 1). For most of the products, the final step of cleaving
methoxyl groups at R2 was completed easily by reaction with BBr3 in dichloromethane. Where
hydrolysis of the methoxyl group was incomplete using the above BBr3 procedure, excess
NaSH was added to achieve ether cleavage in acceptable yields.

Initially, 1−4 were synthesized to evaluate the feasibility of our approach (Table 1).
Radioligand binding assays revealed that 2 binds to all three opioid receptors with Ki values
of 230 (δ), 850 (μ), and 1500 (κ) nM, respectively. As anticipated, it exhibited some subtype
selectivity for the δ over μ and κ opioid receptors. Structural analogues (5−18) were synthesized
in order to increase the δ binding affinity and selectivity (Table 1). Several of the subject
compounds (e.g., 5, 8, 11, 12) exhibited selectivity for the δ over μ and κ opioid receptors,
which concurs with our initial design strategy to confer δ selectivity. The inhibitory activity
was much greater at all three opioid receptors for compounds with R1 = OH (2 and 4) compared
with R1 = OCH3 (1 and 3). In fact, the latter compounds showed very limited inhibitory activity
for any of the opioid receptors even at 10 μM. Comparison of 8 and 14 indicates that the binding
affinity for all three opioid receptor subtypes was virtually abolished when the hydroxyl
substituent at R1 is moved from the meta to para position on the aromatic ring. Although this
single example precludes making generalizations, the strong preference for the meta over para
phenolic moiety is consistent with the familiar SAR of morphine-like opioids.30–33
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For 1−7, R2 substitutions were preferred at the meta position over the para position (e.g.,
Ki(δ) = 230 nM for 2 vs ∼10 000 nM for 4). For compounds with R3 substitutions, namely 8
−17, the opposite trend was observed in cases exhibiting an appreciable affinity difference (see
8 vs 10). Compound 8 (Ki(δ) = 50 nM), with R2 = p-tert-butyl and R3 = N(CH3)2, yielded the
best results overall among this first generation of triazole-based opioid receptor active agents
in terms of δ binding affinity and subtype selectivity. It is worth noting that introduction of
groups more highly constrained than tert-butyl at R2 failed to increase binding affinity for the
δ receptor. For example, the δ binding affinity was poorer for 11, 12 and 13 (Ki = 150, 130,
and 480 nM, respectively) than for 8 (Ki = 50 nM).

The functional activity of our substituted 1,2,4-triazoles on the opioid receptors was determined
by receptor up-regulation assays. Incubation of the δ opioid receptor with 2 and 8 produced a
sharp increase in receptor expression, suggesting that the subject compounds are δ opioid
antagonists (Figure 2). Interestingly, 8 exhibited >3-fold up-regulation of the δ opioid receptor
in this assay. The pharmacological significance of this observation is currently under
investigation in our laboratory.

In fact, a N,N-dimethylamino group at R3 did produce a sharp increase in binding affinity to
the δ receptor. Compare, for example, the Ki(δ) of 8 (50 nM, R3 = N(CH3)2) with its simple
homologue 4 (∼10 000 nM, R3 = H). One might reasonably attribute the greater activity of 8
over 4 to the strong basicity of the N atom at R3. Nevertheless, 8 is only slightly more basic
than 4 (pKa(pred) = 3.36 vs 2.18).17 Ab initio quantum mechanical calculations on 8 at the
HF/6−31G** level of theory, in vacuum and aqueous (implicit solvation) conditions, indicated
that the most basic atom is not the N in R3 = N(CH3)2 (i.e., Nsub) but rather N1 or N2 in the
triazole ring (Table 2). Among the four N atoms in 8, the rank of basicity is N1 ∼ N2 > Nsub
> N4. These results suggest that Nsub is less basic than the triazole-ring atoms N1 and N2,
although it should be restated that all of the N atoms in 8 are weakly basic. It is evident that
the basicity of the N(CH3)2 group is mitigated by its strong conjugation with the triazole ring.
One might suspect that disrupting this conjugation by extension of the substituent group would
afford a basic N atom and thereby enhance binding affinity. However, 17 (R3 = CH2N
(CH3)2) and 18 (R3 = (CH2)2N(CH3)2) showed >6-fold decrease in binding affinity to the DOR
compared with 8.

In conclusion, we report here a novel family of δ-selective opioid receptor antagonists
containing the 1,2,4-triazole core structure. The subject compounds are chemically and
structurally distinct from the classical opioids such as morphine and other known small-
molecule opioids (e.g., (+)-4-[(α)R)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-
methoxybenzyl]-N,N-diethylbenzamide (SNC80)). Moreover, these compounds are
synthetically accessible as pure compounds in high yield and, uncommon among opioids, lack
chiral centers. Compound 8, the most active among this first generation of substituted 1,2,4-
triazoles, exhibited strong binding affinity (Ki = 50 nM) and appreciable selectivity (selectivity
ratio: δ/μ = 80; δ/κ > 200) for the δ opioid receptor. The weak basicity of 8 (pKa(pred) = 3.36)
favors the neutral (unprotonated) form under physiological conditions (pH 7.4). Virtually all
known opioids, whether agonists or antagonists, contain at least one basic N atom. The only
exception to our knowledge is the agonist salvinorin A, a natural compound extracted from S.
divinorum,34 and a series of cyclic peptides reported by Schiller et al.35 that act as δ and μ
receptor antagonists. The present compounds thus represent the first nonpeptidic δ-selective
opioid antagonists lacking a basic N atom.
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Figure 1.
Comparison of the structures of naltrindole and the present 1,2,4-triazoles.
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Figure 2.
Up-regulation results of compounds 2 and 8.
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Scheme 1.
General Synthesis of Substituted 1,2,4-Triazolesa
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Table 2
Relative Energies of Protonationa Obtained from HF/6−31G** ab Initio Calculations on Compound 8 Assuming
Vacuum and Aqueous Conditions

protonation site vacuuma aqueousa

N1 1.07 0.00

N2 0.00 0.25

N4 56.85 53.28

Nsub 25.29 13.30

a
In units of kcal/mol.
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