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Abstract
The adipocytes synthesize and store triglycerides as lipid droplets surrounded by various proteins
and phospholipids at its surface. Recently, the molecular basis of some of the genetic syndromes of
lipodystrophies has been elucidated and some of these genetic loci have been found to contribute to
lipid droplet formation in adipocytes. The two main types of genetic lipodystrophies are congenital
generalized lipodystrophy (CGL) and familial partial lipodystrophy (FPL). So far, three CGL loci:
1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), Berardinelli-Seip Congenital
Lipodystrophy 2 (BSCL2) and caveolin 1 (CAV1) and four FPL loci: lamin A/C (LMNA), peroxisome
proliferator-activated receptor γ (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2)
and zinc metalloprotease (ZMPSTE24), have been identified. AGPAT2 plays a critical role in the
synthesis of glycerophospholipids and triglycerides required for lipid droplet formation. Another
protein, seipin (encoded by BSCL2 gene), has been found to induce lipid droplet fusion. CAV1 is an
integral component of caveolae and might contribute towards lipid droplet formation. PPARγ and
AKT2 play important role in adipogenesis and lipid synthesis. In this review, we discuss and speculate
about the contribution of various lipodystrophy genes and their products in the lipid droplet
formation.
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The disorders of lipodystrophies have been known for more than a century. The first one was
initially known as lipodystrophia progressiva or Barraquer-Simons syndrome (now called
acquired partial lipodystrophy)[1,2]. Since then many other acquired and genetic syndromes
of lipodystrophy have been reported, the most recent being the one induced by protease-
inhibitors based highly active antiretroviral therapy in patients infected with human
immunodeficiency virus [3]. All the disorders are characterized by selective loss of body fat
although the extent of fat loss varies. If the fat loss is significant, patients develop insulin
resistance and its complications such as, diabetes, dyslipidemia, hepatic steatosis, acanthosis
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nigricans, polycystic ovarian disease and hypertension [1,4]. A substantial progress has been
made recently in understanding the molecular defects in patients with genetic forms of
lipodystrophies, which will be reviewed in brief here. Readers are referred to more detailed
recent reviews on the subject [5,6]. Acquired lipodystrophies have been reviewed recently in
several other publications [2,4,7-9]. In this review, we will speculate about the role of some of
the lipodystrophy loci in the formation of lipid droplets (also called lipid bodies) in the cells.

The two most common phenotypes observed among patients with genetic lipodystrophies are:
a. generalized loss of body fat occurring at birth which is called congenital generalized
lipodystrophy (CGL, Berardinelli-Seip syndrome) or partial loss of body fat generally
occurring later in life either during childhood or puberty called familial partial lipodystrophy
(FPL) (Fig. 1). So far, three genetic loci have been reported for CGL, whereas for FPL, four
loci have been discovered. Besides these, there are some other uncommon phenotypes for
which the genetic basis remains to be elucidated

Congenital Generalized Lipodystrophy (CGL)
This rare autosomal recessive disorder is usually recognized at birth or shortly thereafter
because of near total lack of body fat and increased muscular appearance of neonates. The
children with this disorder undergo rapid growth and have markedly increased appetite.
Acanthosis nigricans manifests later. Liver enlargement due to fatty deposition can be seen
early in life and can lead to cirrhosis later. Women with CGL may have hirsutism,
clitoromegaly, oligoamenorrhea and polycystic ovaries. After pubertal development, some
patients develop focal lytic lesions in the long bones. Hypertrophic cardiomyopathy and mild
mental retardation are seen in some patients [10-12]. Metabolic complications can be seen early
and hypertriglyceridemia and diabetes are difficult to manage. Patients typically have markedly
low serum levels of leptin and adiponectin [13].

To understand the molecular basis of this disorder, two groups independently pursued
positional cloning approach that led to identification of two loci: 1-acylglycerol-3-phosphate-
O-acyltransferase 2 (AGPAT2) gene on chromosome 9q34 for CGL, type 1 [14,15] and
Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2) gene on chromosome 11q13 for CGL,
type 2. [16] Cardiomyopathy and mild mental retardation is more prevalent in CGL, type 2
patients,[11,12,15] whereas focal lytic lesions in long bones are more prevalent in those with
CGL, type 1 [17]. Patients with CGL type 1 lose all metabolically active adipose tissue present
in most subcutaneous areas, intraabdominal and intrathoracic regions, and bone marrow but
have well-preserved mechanical adipose tissue depots located in the palms, soles, under the
scalp, retro-orbital and peri-articular regions. On the other hand, patients with CGL type 2 lose
both types of adipose tissue [17-19].

Only recently, a single patient from Brazil with a complex phenotype was reported to harbor
homozygous null mutation in caveolin 1 (CAV1) gene. This patient had some distinct clinical
features such as well-preserved bone marrow fat, and lack of lytic lesions in the long bones
[20]. She had preservation of “mechanical” adipose tissue in the retro-orbital region, peri-
articular region and in the palms and soles; but the scalp fat was decreased. She had short
stature, primary amenorrhea, hypocalcemia and hypomagnesemia, which were attributed to
vitamin D resistance [20].

Still there is a possibility of cloning additional loci for CGL as some affected patients do not
reveal mutations in any of these genes and their pedigrees do not show linkage to these loci
[11,21]. In one of our pedigrees, two siblings with CGL also have congenital muscular
dystrophy, not reported previously [22].
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CGL1 locus: AGPAT2
The AGPATs are acyltransferases which catalyze esterification of a fatty acid to
lysophosphatidic acid (LPA or 1-acylglycerol-3-phosphate) in order to covert it to phosphatidic
acid (PA or 1,2 diacylglycerol-3-phosphate). This is a key intermediate step during biosynthesis
of glycerophospholipids and triglycerides.[23] (Figure 2). Based on structural homology to the
major isoforms, AGPAT1 and AGPAT2, at least seven other proteins have been designated as
AGPATs. However, documentation of AGPAT activity, i.e., conversion of LPA to PA, has
not been performed for many of these isoforms. Furthermore, some AGPAT isoforms have
been found to have other enzymatic activities and have been reannotated as glycerol phosphate
acyltransferase 4 (GPAT4 instead of AGPAT6) or acyl-CoA:lysophosphatidylethanolamine
acyltransferase 2 (LPEAT2 instead of AGPAT7) [24-26]. All the isoforms studied until now
localize to the ER, where the formation of lipid droplet is initiated. It remains unclear if all of
these or only a few are involved in the formation of lipid droplet. AGPAT2 mRNA has been
shown to be highly expressed in the mouse fibroblast, 3T3-L1 cells and the human omental
adipose tissue. AGPAT2 protein has 278 amino acids and has two highly conserved domains,
NHXXXXD and EGTR, required for the enzymatic activity.[27,28] However, study of a few
naturally occurring AGPAT2 mutants reveals important role of the carboxy-terminus for
enzymatic activity as well [29]. Reduced AGPAT2 activity in adipose tissue, thus may result
in lipodystrophy either due to lack of triglyceride synthesis or due to abnormal adipocyte
function from lack of phospholipids [23].

CGL2 locus: BSCL2
The BSCL2 encodes the protein seipin, which was initially proposed to be a 398 amino acid
protein [16]. However, homology search predicts a protein of 462 amino acids [30,31],. Seipin
localizes to endoplasmic membrane [30-33] whose physiological function is just beginning to
be unraveled. Seipin has a CAAX motif at the C-terminus which could undergo
posttranslational processing including prenylation. It also has a canonical N-glycosylation site
N-X-S/T (N-V-S at position 88-90, numbering is based on initial amino acid sequence).
Interestingly, heterozygous mutations in this glycosylation site have recently been associated
with autosomal dominant motor neuron diseases called Silver syndrome, spastic paraplegia
17, and distal hereditary motor neuropathy type V [32]. BSCL2 mRNA is highly expressed in
the brain and testis as well as in the adipose tissue [16,30,34].

CGL3 locus: CAV1
Caveolins are integral components of caveolae, which are specialized plasma membrane
microdomains seen on electron microscopy as 50-100 nm vesicular invaginations. Adipocyte
membranes have abundance of caveolae which increase by 10-fold during adipocyte
differentiation [35]. CAV1 is the major fatty acid-binding protein which resides on the
adipocyte membranes and translocates to lipid droplets in response to increased levels of free
fatty acids [36-38]. Thus, lack of CAV1 function may result in lipodystrophy by affecting
adipocyte differentiation, lipid transport through caveolae and disruption of lipid droplet
formation.

Biology of lipid droplets and the role of CGL loci
In mammals, neutral lipids are synthesized and stored in specialized cells, called adipocytes
(Figure 3). The synthesis of TG begins in the lumen of ER such that as the lipid droplets increase
in size, the ER leaflet facing the cytoplasm begins to bulge, surrounded by the ER membrane.
The neutral lipids are hydrophobic in nature and are thus coated with various molecules which
have hydrophobic and hydrophilic ends. Proteins of PAT class, (named after perilipin,
adipocyte differentiation related protein and tail interacting protein 47) fit these criteria and
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thus surround the lipid droplets [39]. In addition, glycerophospholipids, such as
phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), also
form the outer core of the lipid droplets [39].

As shown schematically (TG synthesis pathway, Figure 2), the enzyme AGPAT2 is at the
critical junction of glycerophospholipid and TG synthesis, thus loss of AGPAT2 may initially
restrict the lipid droplet formation due to decrease phospholipid synthesis (partially active
AGPAT2 mutants) or completely, if deleted.

The role of another protein, seipin, is still not fully appreciated. It has no known functional
domain to indicate its function. Its only predicted partner is a midasin – a AAA ATPase protein
of variety of cellular function [30]. However, recently, two groups have reported that seipin
homologue in the yeast is required for lipid droplet assembly or maintenance [40,41]. Loss of
yeast homolog for seipin leads to decreased fusions of lipid bodies and thus loss of formation
of one enlarged lipid body seen in adipocytes. Thus one function of the seipin appears to be
controlling the dynamics of lipid body size. Another series of experiments in yeast showed that
the seipin is required for the lipid bodies formation and that mutant yeast leads to aberrant lipid
bodies. This study also showed that the BSCL2 null mutant fibroblast showed small lipid
droplet compared to wild type fibroblast. Although in yeast, loss of seipin homologue leads to
decreased “fused lipid bodies”, in human fibroblasts, opposite effect was observed [41].
Although, these studies now reveal its function in lipid droplets in yeast, its precise role in
human adipose tissue is still far from clear. Does seipin have a role in cellular differentiation?
Answer to this question awaits further experiments. Recently, Payne et al. [34] have shown
that BSCL2 expression is strongly induced during adipocyte differentiation and is essential for
adipogenesis. Since nearly all BSCL2 mutations causing CGL have been null mutations, one
can propose that BSCL2 mutations cause lipodystrophy either by affecting adipocyte
differentiation or by affecting lipid droplet formation in adipocytes.

Caveolin-1, one of the major membrane protein of caveolae, has also been linked to lipid droplet
formation. CAV1 is a major fatty acid-binding protein on the plasma membranes of the
adipocytes and translocates to lipid droplets in response to excess free fatty acids [36],
suggesting its role in the transport or storage of free fatty acids and triglycerides in lipid droplets
[37,38]. Caveolin deficiency results in fewer lipid droplets in mouse embryonic fibroblasts
[36] and hepatocytes [42] than those seen in the wild type cells. Thus, lipodystrophy in the
patient with CAV1 homozygous mutation [43] may be due to lack or disruption of lipid droplet
formation.

Familial Partial Lipodystrophy (FPL)
These rare varieties are characterized by variable loss of body fat from the extremities as well
as from the truncal region which usually occurs during childhood or puberty as in the Dunnigan
variety, which is due to missense lamin A/C (LMNA) mutations and reportedly at variable time
in patients with peroxisome proliferator-activated receptor gamma (PPARG) mutations.
During childhood these patients do not show a lipodystrophy phenotype. The associated
metabolic complications also develop later in life. Affected females can be easily recognized
but it is difficult to diagnose men affected with FPL. Three loci, LMNA, PPARG and v-AKT
murine thymoma oncogene homolog 2 (AKT2) have been identified for autosomal dominant
types of FPL [44-46] and for the autosomal recessive variety associated with mandibuloacral
dysplasia, two loci, LMNA and zinc metalloprotease (ZMPSTE24) have been identified [47,
48]. While LMNA was identified using the positional cloning approach [44,49] other loci were
identified mainly using candidate gene approach.

The fat loss from the extremities occurs gradually at the time of puberty in patients with FPL,
Dunnigan variety and some patients at the same time, gain excess fat at the face, chin (“double
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chin’), neck (‘Cushingoid appearance with buffalo hump’) and in females in the vulvar region
[50]. Women are more severely affected with metabolic complications such as diabetes,
dyslipidemia and coronary heart disease than men [51-53]. Some women develop acanthosis
nigricans, hirsutism, menstrual abnormalities, and polycystic ovaries. Occasional patients also
develop multisystem dystrophy including cardiomyopathy which manifests with conduction
system disturbances and congestive heart failure [54].

Only about twenty patients with FPL due to heterozygous mutations in PPARG have been
reported so far and thus it is either much less common than FPL, Dunnigan variety [55] or is
less recognized likely due to milder phenotype. The onset of lipodystrophy has been reported
to be from 2nd decade to later in life. Fat loss affects the distal extremities more than the
proximal extremities. While slight reduction in facial fat has been reported, some patients have
excess fat in the face. Only one pedigree has been reported with a missense mutation in
(AKT2) gene [46]. Detailed phenotyping was not conducted in the affected subjects thus how
the phenotype differs from that observed in FPL due to LMNA and PPARG mutations is not
clear. Besides LMNA, PPARG and AKT2, additional loci are likely as many FPL patients do
not reveal any mutations in these genes [45,56].

FPL has also been reported in patients with a complex phenotype of mandibuloacral dysplasia,
a rare autosomal recessive disorder. Patients are normal at birth but soon develop hypoplasia
of the mandible and clavicles, and acro-osteolysis of the terminal phalanges [57]. They may
also have delayed closure of cranial sutures, joint contractures, mottled cutaneous pigmentation
and short stature. Features of accelerated aging such bird like facies, high-pitched voice and
alopecia can also be evident. Patients either develop partial loss of subcutaneous fat from the
extremities or a more generalized fat loss involving the face, trunk and extremities [57]. While
more than 30 patients have been reported to have homozygous or compound heterozygous
mutations in LMNA, only 5 patients have been known to have ZMPSTE24 mutations [58].
Additional loci for FPL associated with mandibuloacral dysplasia are likely as some patients
do not have any variants in either LMNA or ZMPSTE24 [59].

FPL1 locus: LMNA
LMNA encodes two major proteins, prelamin A, and lamin C, and two minor proteins, lamin
AΔ10 and C2, by alternative splicing. The mature lamin A is formed after successive post-
translational modification of its precursor, prelamin A, a CAAX motif protein whereas the
truncated short form, lamin C, does not undergo post-translational modification. This process
involves farnesylation, O-methylation and proteolysis. Zinc metalloproteinase (ZMPSTE24)
is essential for proteolytic processing of prelamin A to mature lamin A. The lamins belong to
the intermediate filament family of structural proteins and form hetero- or homo-dimeric
coiled-coil structures in the nuclear lamina which is located inside the inner membrane of the
nuclear envelope [60,61]. Lamins interact with chromatin and other nuclear lamina proteins
such as emerin, several forms of lamin associated proteins, nesprin and other nucleoplasm
proteins. Thus, missense mutations may affect nuclear function and may resulting in apoptosis
and premature cell death of adipocytes, thus causing lipodystrophy. There may also be cellular
toxicity and premature cell aging related to accumulation of prelamin A [62] Most of the
mutations, which are associated with FPL, are clustered in the immunoglobulin G fold (IgG)
region. IgG domains are known to be associated with variety of proteins and thus, lack of such
interactions might lead to the defects in either adipogenesis or neutral lipid synthesis. Lamins
A and C are ubiquitously expressed proteins and therefore why specific mutations affect
predominantly adipocytes only and not other cells, remains unclear. Since all cells do not
express all the proteins, we can only speculate that these mutations lead to the loss of protein-
protein interaction essential for the function and synthesis of adipocytes and lipids.
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Furthermore, why only some adipocytes from certain areas of the body are lost, and not others,
remains unknown.

FPL2 locus: PPARG
Given the critical role of PPARγ in adipogenesis and its high expression in the adipose tissue,
dominant negative missense mutations may cause lipodystrophy by affecting adipogenesis
[63]. However, why loss of fat is restricted to some areas of the body and not others remains
unclear.

FPL3 locus: AKT2
AKT2, also known as protein kinase B (PKB), is a phosphoinositide-dependent serine/
threonine kinase and is involved in post-receptor insulin signaling. Loss of adipose tissue in
patients with AKT2 mutations may either be due to reduced adipocyte differentiation or
dysfunctional post-receptor insulin signaling [46].

FPL4 locus: ZMPSTE24
In patients with ZMPSTE24 deficiency cellular accumulation of prelamin A and/or lack of
mature lamin A may be responsible for phenotypic features including lipodystrophy [64].

Other Types
Besides the predominant subtypes, CGL and FPL, there are other relatively uncommon
varieties, such as lipodystrophy associated with SHORT Syndrome, and neonatal progeroid
syndrome (also called Wiedemann-Rautenstrauch syndrome [65-69]. The genetic bases of
these varieties remain to be elucidated.

Patients with Hutchinson-Gilford progeria syndrome and atypical progeroid syndrome, due to
heterozygous missense mutations in LMNA gene also have been reported to have a progressive
and generalized loss of body fat during childhood [70-73].

Hegele et al. [74] reported variants in lamin B2 (LMNB2) gene in 4 patients with “acquired
partial lipodystrophy” (Barraquer-Simons syndrome) but the pattern of fat loss affecting the
knees, thighs and gluteal region was very atypical for acquired partial lipodystrophy which
mainly affects the head, neck, trunk and upper extremities and spares the lower extremities
[2]. None of them had complement 3 deficiency or complement 3 nephritic factor, three had
DM, and all four had hypertriglyceridemia, which are not characteristic features of acquired
partial lipodystrophy. Finally, no segregation of these variants in family members was reported.
No pictures of these patients were published to determine what exact lipodystrophy pattern
was associated with the LMNB2 variants. Thus, without confirmation, this association of
LMNB2 variants with acquired partial lipodystrophy is highly unlikely.

Recently, Cao et al [75] reported heterozygous CAV1 mutations, I134fsdelA-X137 and
-88delC, in patients with partial lipodystrophy and hypertriglyceridemia. The I134fsdelA-
X137 mutation was present in a 28-year-old female and her 55-year-old father with
lipodystrophy affecting the face and arms, neurodegeneration and congenital cataracts [76].
On the other hand, the -88delC mutation was present in a 35-year-old male with lipodystrophy
affecting the upper and lower extremities. However, whether the -88delC mutation in the 5′
untranslated region affected the transcription of CAV1 gene was not demonstrated.
Furthermore, Ae Kim et al. [43] reported that none of the three confirmed subjects harboring
the heterozygous null mutation, G28X, in CAV1, had lipodystrophy, hyperinsulinemia or
hypertriglyceridemia. Furthermore, the Cav1+/- mice do not show any phenotype [77]. Thus,
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whether heterozygous mutations in CAV1 in humans have any functional consequences
remains unclear.

Perspective
The synthesis of lipid droplets has been intensively studied in the adipocytes. As we indicated
earlier, CGL loci, AGPAT2, BSCL2 and CAV1, play an important role in lipid droplet formation
in the adipocytes. On the other hand, of the known FPL loci, only PPARG and AKT2 have
well-documented role in adipogenesis, and perhaps in lipogenesis (lipid synthesis) as well.
There is no experimental evidence to suggest the role of lamin A/C and ZMPSTE24 in lipid
droplet formation but instead may be important for adipocyte survival.

The Oil-red-O staining of the mouse and human fatty liver shows intense uniformly distributed
staining and lipid droplets which tend to be smaller than those in adipocytes [78]. How do the
liver cells (hepatocytes) synthesize and store excess triglycerides remains an enigma. Do
hepatocytes synthesize several small lipid droplets which do not fuse to form one giant lipid
droplet as observed in adipocytes? If so, is this due to lack of expression of certain proteins
which help protect the highly hydrophobic surface from the hydrophilic cytoplasmic
environment or lack of proteins which help in fusion of small lipid droplets? In fact, seipin
may be one of those protein involved in lipid droplet fusion. Accumulation of TG in muscles
is the least understood in terms of its mechanism. The formation of the intramyocellular lipid
droplet, its surface proteins and phospholipids is still a mystery, yet is an important mechanism
involved in peripheral insulin resistance.

Another area of future investigation is related to the identification of the role of all the enzymes
including acyltransferase(s) involved in the actual synthesis of TG which forms the core of the
lipid droplets. Further information about subcellular localization of various enzymes involved
in TG biosynthesis, i.e., GPAT, AGPAT, PAP and DGAT and whether they co-localize and
whether they are juxtaposed to one another at various organelles will allow us to understand
which isoforms are involved in the synthesis of TG and which are involved in the synthesis of
glycerophospholipids. Recent immunofluorescence imaging of lipid droplets have revealed the
heterogeneity of the lipid droplets in the cellular pool within the cell, informing us that study
of lipid droplet may be cell specific and should be studied tissue wise [79]. This might help
understanding the most important medical challenge of our times, i.e., insulin resistance in the
liver, muscle and adipose tissue.
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Fig. 1. Phenotypes of Congenital generalized lipodystrophy and familial partial lipodystrophy of
the Dunnigan variety
A. and B. Front and lateral views of a 19-year-old female of African-American origin with
congenital generalized lipodystrophy, type 1 due to 1-acylglycerol-3-phosphate
acyltransferase 2 (AGPAT2) homozygous mutation. She has generalized lack of body fat,
marked muscularity, acanthosis nigricans in the neck and axillae and acromegaloid features
and umbilical prominence. She developed diabetes at the age of 14 years and severe
hypertriglyceridemia was noted 15 years of age.
C and D. Front and lateral views of a 24-year-old Hispanic woman with familial partial
lipodystrophy of the Dunnigan variety due to heterozygous missense mutation in the Lamin
A/C (LMNA) gene. She had fat loss the upper and lower extremities and trunk at puberty and
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also accumulated excess fat in the face, submental, supraclavicular and vulvar regions. She
had mild acanthosis nigricans in the neck and axillae.
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Fig. 2. The triglyceride and glycerophospholipid biosynthetic pathway in the adipose tissue
Adipose tissue requires glycerol-3-phosphate as the initial substrate for triglyceride and
glycerophospholipid biosynthesis. Initially, glycerol-3-phosphate is acylated using fatty acyl
coenzyme A (FA-CoA) at the sn-1 position by the class of enzymes called glycerol-3-phosphate
acyltransferases (GPATs), and forms 1-acylglycerol-3-phosphate or lysophosphatidic acid
(LPA). Further acylation of LPA at the sn-2 position by the enzymes called 1-acylglycerol-3-
phosphate acyltransferases (AGPATs or LPAATs) results in formation of phosphatidic acid
(PA). Phosphatidic acid phosphatases then remove the phosphate group from PA to produce
diacylglycerol (DAG). Further acylation of DAG at the sn-3 position by the enzymes called
diacylglycerol acyltransferases (DGATs) finally produces triacylglycerol (TG). The synthesis
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of glycerophospholipids uses the intermediates, PA and DAG. Phosphatidylinositol and
cardiolipin can be formed from PA, whereas, phosphatidylcholine, phosphatidylethanolamine
and phosphatidylserine can be synthesized from DAG.
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Fig. 3. Schematics of lipid droplet formation in adipocyte
Panel A shows the progressive formation of lipid droplet (LD) at the endoplasmic reticulum
in normal cells. Shown also are the enzymes involved in the synthesis of triglycerides, although
it is unclear if all the enzymes of the pathway are present at the LD. The small LDs in adipocytes
fuse to form one or more large LDs. Shown also are proteins of PAT class which decorate the
LD surface. Panel B shows the reduced triglyceride synthesis due to deficiency of one of the
key enzymes, AGPAT2 in patients with congenital generalized lipodystrophy, type 1. Fusion
of LDs may still occur, but at considerably reduced rate. It is likely that the LDs may be totally
devoid of TG (shown in white) or minimal TG synthesis may occur utilizing other AGPAT
isoforms. Other possibilities (not shown) are that LDs may not form due to lack of synthesis
of LD surface glycerophospholipids or there may be total lack of adipocyte development due
to lack of phospholipid synthesis required for formation of cell membrane and other organelles.
In panel C, where the cells lack expression of seipin as happens in patients with congenital
lipodystrophy, type 2, fusion of LDs may not occur, however, synthesis of triglyceride may
still continue resulting in several small LDs instead of one or more large LDs.
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