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Immobilized single horseradish peroxidase enzymes were ob-
served by confocal fluorescence spectroscopy during catalysis of
the oxidation reaction of the nonfluorescent dihydrorhodamine 6G
substrate into the highly fluorescent product rhodamine 6G. By
extracting only the non-Markovian behavior of the spectroscopic
two-state process of enzyme-product complex formation and re-
lease, memory landscapes were generated for single-enzyme mol-
ecules. The memory landscapes can be used to discriminate be-
tween different origins of stretched exponential kinetics that are
found in the first-order correlation analysis. Memory landscapes of
single-enzyme data shows oscillations that are expected in a
single-enzyme system that possesses a set of transient states.
Alternative origins of the oscillations may not, however, be ruled
out. The data and analysis indicate that substrate interaction with
the enzyme selects a set of conformational substates for which the
enzyme is active.

Understanding the dynamics of complex biological molecules
depends on continuously improved experiments, especially

those performed on the single molecule level. Data from dy-
namic processes of individual biological molecules such as
proteins or DNA are becoming assessable. Predictions (1–3)
about possible origins and behavior of single molecules are now
judged for processes like enzyme catalysis (4, 5), folding-
unfolding (ref. 6 and references therein), and conformational or
spectral f luctuations (7–10). Many more advances in the field of
experimental single-molecule analysis in condensed matter en-
vironments can be found in a recent review article by W. E.
Mörner and M. Orrit (11).

Non-ergodic properties of a process of a molecule (12, 13) as
well as non-exponential state transition probabilities for a single
process (5) are both indicators of a complex behavior. Enlarged
dynamic models on the single molecule level are then required
as compared with models derived from standard chemical
kinetics of an ensemble of molecules.

Catalysis of the oxidation of the dihydrorhodamine 6G into
rhodamine 6G by the enzyme horseradish peroxidase on the
single enzyme level has recently been observed at room tem-
perature (5). Horseradish peroxidase is a 44-kDa heme protein
(14, 15) and is an effective catalyst of the decomposition of
hydrogen peroxide (H2O2) in the presence of hydrogen donors
(14, 15). The reaction is monitored by existing experimental
methods (8) based on confocal f luorescence spectroscopy (16,
17). We used the nonfluorescent substrate dihydrorhodamine
6G, which after oxidation yields the highly fluorescing rhoda-
mine 6G fluorophore. Hence, direct observation of successive
single substrate turnovers into product is made possible by means
of fluorescence microscopy if a single enzyme molecule is
observed. The enzyme, the substrate, and the enzyme-substrate
complex are nonfluorescent. However, the enzyme-product
complex (EP) (18) is f luorescent and is formed as the result of
the substrate being oxidized while still bound to the enzyme; the
enzyme-substrate complex transforms into a fluorescent EP. For
each catalytic cycle, a new substrate is bound to the enzyme and
is turned over into a product (EP), after which the product
dissociates from the enzyme. Then, another substrate attaches to
the enzyme, is turned over into a product (EP), and so on. The
average binding time of the product (lifetime of EP) was
determined in ref. 5 to be approximately 50 ms. The observable

state from a spectroscopic viewpoint is the EP. All other states
of the enzyme are nonfluorescent. It is assumed that the
spectroscopic properties of the EP are unaffected by the oxida-
tion state of the enzyme (e.g., 41 or 51 oxidized state) because
we directly monitor the product and not the enzyme (5). Hence,
from a spectroscopic viewpoint, the observable is a reversible
two-state process with one fluorescent state (EP) and one
nonf luorescent state (representing all other states of the
enzyme).

The notion of a memory in a dynamic system refers to the
temporal dependency of a future prediction on the history. The
Markov assumption means that a process forgets its past and that
the best possible future prediction is made only from the most
recent information, regardless of information stemming from
earlier times. Deviations from Markovian behavior for a given
process can have many origins. Here, non-Markovian emission
fluctuations of a single enzyme performing catalysis are studied
with aim to get more kinetic detail of the enzyme. In ref. 5, it was
concluded that the emission fluctuations emerging from product
formation and release on a single enzyme molecule was widely
distributed. The enzyme is fluctuating in its activity over time
scales ranging from milliseconds to seconds. Other experiments
on single protein dynamics report similar kinetic characteristics
with largely distributed kinetics. For example, the conforma-
tional f luctuations of the GCN4 peptide (19) and of the staph-
ylococcal nuclease (20) show a broad range of transition rates.
Also, experiments done in the bulk on myoglobin association and
dissociation to carbon monoxide (CO) show conformational
reconfigurations of myoglobin that obey a stretched exponential
law with b 5 0.1 at room temperature (21).

The observed distributed kinetics may have different origins
(Fig. 1) that are not possible to resolve by the use of the kind of
one-time correlation analysis performed in (5). In this paper, we
therefore introduce higher order correlation analysis that gives
information about the non-Markovian properties of the emission
fluctuations as a tool to differentiate between situations like
those in Fig. 1.

Materials and Methods
Measurement of a Single Enzyme. For experimental detail, the
reader is referred to ref. 5; however, for clarity, a brief overview
is given. The biotinylated enzyme is bound to a streptavidinized
glass coverslip surface. The substrate solution is applied as a
‘‘hanging droplet.’’ To find a single-enzyme molecule, a scanning
procedure is conducted in which the open volume element from
where the fluorescence is detected is moved in a direction
parallel to the coverslip surface until a single enzyme is detected
(Fig. 2A). The signature of a single enzyme molecule is that of
fluctuations in the fluorescence intensity traces combined with

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: EP, enzyme-product complex; NMF, non-Markovian function; ML, memory
landscape; CS, conformational substates.

*To whom reprint requests should be addressed. E-mail: rudolf.rigler@mbb.ki.se.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073ypnas.130589397.
Article and publication date are at www.pnas.orgycgiydoiy10.1073ypnas.130589397

8266–8271 u PNAS u July 18, 2000 u vol. 97 u no. 15



a clear signal in the autocorrelation function of the intensity
f luctuations (Fig. 2 B and C). When no enzyme is present the
fluorescence intensity trace show only background signal, and
the fluorescence intensity autocorrelation function is f lat (Fig. 2
D and E). Another control experiment shows a blank in the
absence of H2O2, but with all other ingredients present (not
shown). In ref. 5, we hence concluded: (i) The control experi-
ments make it possible to conclude that the fluctuations in the
presence of enzyme must originate from the enzyme interaction
with the substrate; (ii) the finding that the average fluorescence
intensity is continuously increasing inside the sample solution
when enzyme is bound to the glass surface, but not otherwise
(when no enzyme is present), indicates that the surface bound
enzymes are active; (iii) additional control assays done in the
bulk indicate that the average substrate turnover rate is 34 s21,
which is roughly in line with the average of the observed
substrate turnover rates, and product dissociation rates from
single enzyme molecules.

The above facts combined make us conclude that we observe
single enzymes catalyzing the substrate formation into product
(5). In the present paper we take the analysis a step further,
investigating the origin of the distributed kinetics. The experi-
ments were carried out at substrate (dihydrorhodamine 6G)
concentration of 130 nM, H2O2 concentration of 120 mM, in 100
mM potassium phosphate buffer at pH 7.0.

Memory Landscapes. With aim to expand our knowledge about the
kinetic detail of the enzyme, we present a data evaluation
approach based on the calculation of non-Markovian properties
of the spectroscopic two-state process. An investigation regard-
ing non-Markovian behavior has already been done by Lu et al.
for the case of the cholesterol oxidase enzyme for consecutive
enzyme state transitions between its oxidized and reduced states
as a reflection of product formation (4). In the case of a single
cholesterol enzyme molecule, the enzyme itself emits f luores-
cence with different magnitudes, depending on whether the
enzyme is in its oxidized or reduced state. In the present paper,
we monitor the catalytic cycle by direct observation of the
enzyme-product complex. The observed signal is different be-
tween the present case and the case of a single cholesterol
enzyme molecule (4); however, they are both similar in that they
report on the kinetics of the enzymatic cycle.

We assess the reaction dynamics by analyzing the time series
of the recorded fluorescence from a single-enzyme molecule.
Higher order statistics (22) such as higher order correlation
functions (23) may be used to unveil the origin of non-Markovian
behavior. Single-molecule higher order statistical analysis is
introduced as a simple and useful expression sensitive to memory
patterns in the experimental data. It is based on divergence from
the Markov assumption (24). The Markov assumption states that
optimal prediction of the probability for a value of a process at
a certain time is achieved by considering only the latest infor-
mation available. This means that information from any time
earlier but the latest information time is superfluous. Define
{Xt} as a stochastic process. {Xt} is binary in the sense that its
event room W contains only two elements: W 5 {0,1}. {Xt} is
stationary in the sense that its expectation value E{Xt} 5 m,
where 0 , m , 1 is a constant (not time dependent). If dt is
considered a very small time interval, the two possible events

Fig. 1. Descriptions of two possible origins of the stretched exponential
kinetics in the one-time autocorrelation of the fluorescence intensity as
observed in ref. 5. The schemes in A and B are two special cases of the Grand
scheme in ref. 5. In A, there are a number of intermediate states (Ek, k 5
1,2,3,. . . ,n) that the enzyme may traverse before a new product is formed (EP).
In B, transitions to the EP state are exponential for each substrate turnover;
however, each turnover may occur via any of the n channels, each with a
different state transition probability.

B

C

D

E

A

Fig. 2. (A) A surface scan provides a fluorescence image of single enzyme molecules. (B and C) The signature of a single enzyme performing catalysis is that
of fluctuations in the intensity trace (B) combined with a clear signal in the autocorrelation function (C). (D and E) A control experiment in which no enzyme
is present (but with everything else held constant) shows only background signal in the intensity trace (D) and no autocorrelation signal (E).
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‘‘Xt 5 0’’ and ‘‘Xt 5 1’’ represent the event that zero or one
photon was registered in the time interval [t,t 1dt], respectively.
The Markov assumption can then formally be written

P~XtN
uXtN21

; XtN22
; . . . ; Xt0

!

5 P~XtN
uXtN21

!, t0 , t1 , . . . , tN.

[1]

If Eq. 1 is valid, we also have the following weaker but still valid
statement:

P~XtN
uXtN21

; XtN22
! 5 P~XtN

uXtN21
!. [2]

However, if Eq. 2 is not valid for all values of tN22 , tN21 , tN,
neither is Eq. 1. Hence, if Eq. 2 is not true, the Markov
assumption Eq. 1 must also be violated.

The non-Markovian function (NMF) for the observed process
{Xt} is given by

NMF~tN 2 tN21, tN21 2 tN22! 5 P~XtN
uXtN21

; XtN22
!

2 P~XtN
uXtN21

!. [3]

Because {Xt} is a stationary process, NMF has only two argu-
ments (instead of three in the more general case if {Xt} is not
stationary) that equal the times differences between the three
observation times.

Consider the normalized first and second order autocorrela-
tion of {Xt}. Let E(.) denote the expectation value of a random
variable. Set tN 2 tN21 5 t1 and tN22 2 tN21 5 t2. The time t2

is, hence, the time in addition to the time t1 from the reference
time tN, which we set arbitrarily to zero because the process is
stationary. We get, by definition,

G~t! ;
E~X0Xt!

E~X0!E~Xt!
5

O
i50

1 O
i50

1

ijP~X0 5 i; Xt 5 j!

F O
i50

1

iP~X0 5 i!G 2

5

O
i50

1 O
j50

1

ijP~X0 5 iuXt 5 j!P~Xt 5 j!

F O
i50

1

iP~X0 5 j!G 2

5
P~X0 5 1uXt 5 1!

P~X0 5 1!
[4]

and

G~t1, t2! ;
E~X0Xt1

Xt11t2
!

E~X0!E~Xt1
!E~Xt11t2

!

5

O
i50

1 O
j50

1 O
k50

1

ijkP~X0 5 i; Xt1
5 j; Xt11t2

5 k!

F O
i50

1

iP~X0 5 i!G 3

5

O
i50

1 O
j50

1 O
k50

1

ijkP~X0 5 iuXt1
5 j; Xt11t2

5 k!P~Xt1
5 j; Xt11t2

5 k!

FO
i50

1

iP~X0 5 i!G3

5

O
i50

1 O
j50

1 O
k50

1

ijkP~X0 5 iuXt1
5 j; Xt11t2

5 k!

P~Xt1
5 juXt11t2

5 k!P~Xt11t2
5 k!

F O
i50

1

iP~X0 5 i!G 3

5
P~X0 5 1uXt1

5 1;Xt11t2
5 1!P~Xt1

5 1uXt11t2
5 1!

~P~X0 5 1!!2

[5]

By comparison of Eqs. 3, 4, and 5, we then obtain

NMF~t1, t2! 5 pfSG~t1, t2!

G~t2!
2 G~t1!D , [6]

if we set pf 5 P(X0 5 1). Hence, the NMF can be related to the
normalized first and second order correlation functions that are
used in fluorescence correlation spectroscopy (23, 25).

The assumption that the bin size is small enough so that only
zero or one photon is registered per bin is not met in the present
experiments. This restriction means that no two-state emission
dynamics can be monitored on faster time ranges than the
inverse of the bin size (50 s21). However, for two-state dynamics
that have larger characteristic times than the inverse of the
bin-size, the NMF correctly displays deviations from Markovian
dynamics.

The NMF measures a degree of divergence from the Markov-
assumption, and we are therefore motivated to call the two-
dimensional plot of NMF for some experimental data the
‘‘memory landscape’’ (ML) of that particular process.

Results and Discussion
In Fig. 3 A–C, the ML are shown for three horseradish perox-
idase molecules observed for 110 s. Many molecules have been
observed; Fig. 3 shows examples. Indeed, the ML show non-
Markovian behavior on the 2.5-s time scale. Apart from a clear
memory at shorter times (,100 ms), there are structures in the
memory landscape for all molecules in the range of seconds. It
is also evident that, even though the 110-s ML are not identical,
they all have a characteristic pattern with elongated valleys and
peaks diagonally in the ML. A peak or a valley in which NMF Þ
0 indicates that the knowledge of the spectroscopic state at the
additional historical time t2 influences the state probability at
time 0.

In contrast to the ML generated from the data from the single
enzymes performing catalysis, ML from data taken in the
absence of enzyme (but everything else held constant) show a
flat unstructured landscape with values close to zero (Fig. 3D).
Also, data taken from a simulation of a Markovian two-state
process show a noisy landscape with all values close to zero (Fig.
3E). These controls certify that the structures in the ML as
obtained from the single enzyme data are caused by the prop-
erties of the enzyme and not by artificial effects or background
effects.

Among the two origins in Fig. 1, we conclude in favor of that
of Fig. 1 A for time scales larger than 20 ms (the bin size of the
experimental data’s time series). On a more detailed level than
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the general one of Fig. 1 A, an explanation to the oscillations in
the NMF of a single enzyme (Fig. 3) that is consistent with
theoretical predictions of the kinetics of single-enzyme systems
(26–28) may be formulated. It is based on the idea that the
dynamic process of a single enzyme performing catalysis is not
an equilibrium process. This is so, because there is a continuous
flow through the system. (Observe that the system is defined as
the single-enzyme molecule and all substrate as well as product
molecules interacting with the single enzyme.) The flow consists
of substrate molecules that enter the system and irreversibly
leave the system as products. If a kinetic model of such a
non-equilibrium system is made with at least one intermediate
state and one EP state, the eigenvalues to the corresponding rate
matrix may be complex, leading to sine and cosine solutions
(26–28). Such oscillations are clearly non-Markovian and hence
will be visible via application of the NMF.

To assess the above hypothesis about the origin of the oscillations,
we make a simulation. The simulated data are generated by the use

of a Markovian state transition model with a predefined number of
states between which state transition probabilities (pij) of a transi-
tion from state i to state j (i Þ j) are specified. Each state is set as
either fluorescent (corresponding to the EP state) or nonfluores-
cent (corresponding to all states but the EP state). Observe that,
even though each state transition is Markovian, the spectroscopic
transitions between the fluorescent state and a nonfluorescent state
may be non-Markovian if there is more than one state that belongs
to the same spectroscopic state.

The simulation considers a constant level of background
fluorescence of 4 kHz. The fluorescent intensity of the fluores-
cent state is set to 8 kHz (4 kHz of fluorescent signal 1 4 kHz
of background fluorescence). By the use of random numbers, a
stochastic kinetic pathway is generated in which the kinetic
system makes transitions between the defined states with prob-
abilities (pij) according to the rate constants from state i to state
j (kij). Each state transition describes the probability to make

†The error of each point in the NMF was calculated as follows: (i) Calculate the variance
estimate Vest(t1, t2) of G(t1, t2):

Vest~t1, t2! 5
1

N 2 1 O
i51

N

x2~ti!x2~ti 1 t1!x2~ti 1 t1 1 t2!

2 S 1
N 2 1 O

i51

N

x~ti!x~ti 1 t1!x~ti 1 t1 1 t2!D 2

,

where N is the total number of summed elements, and x(t) denotes the value of the
experimental time series as time t. (ii) The SEM is given by

«G~t1, t2! 5 ÎVest~t1, t2!

N
.

(iii) The relative error of the mean is given by

«G~t1, t2!
rel 5

«G~t1, t2!

G~t1, t2!

(iv) The relative errors of the first order correlation function was calculated analogously to
the second order correlation function. (v) The relative error of the NMF was finally
estimated according to

«NMF~t1, t2!
rel #

1 1 «G~t1, t2!
rel

1 2 «G~t2!
rel 2 ~1 2 «G~t1!

rel !.

CBA

D
E

Fig. 3. Memory landscapes (ML) are shown for three molecules observed for 110 s in A, B, and C. The standard deviation of the mean for each point in the ML was
calculated.† The relative errors are less than 63%, 64.5%, and 63% for all points in the ML in A, B, and C, respectively. (D) A ML generated from measurement data
for the case when no enzyme is present (110-s measurement time). (E) ML as generated from simulated data of a two-state Markovian process (110-s simulation time).
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transitions within the time period of the bin size, b. The time
period consumed by an iteration of the simulation is accordingly
defined as b, then; we relate the rate constants in Scheme 1 with
the state transition probability via the expression

E
0

b

kije2kijtdt 5 pij f kij 5 2
ln~1 2 pij!

b
. [7]

The simulation model in Scheme 1 takes into account the finding
of activity fluctuations of the enzyme (5) as well as the above
discussion of the origin to the NMF result. Scheme 1 considers
activity fluctuations (5) by defining one active state (E8) of the
enzyme that correspond to those conformational substates (CS) (3)
in which the enzyme can perform catalysis. We then define a set of
intermediate non-active states of the enzyme (E1, E2, E3, E4, E5, E6,
E7) that interconnect in a serial fashion as demanded by the
theoretical framework of transient states in single-enzyme systems
(26–28). In the model, we assume that the substrate is involved in
both the enzymatic cycle as well as a driver for the CS transitions
through the intermediate states.

In Fig. 4 A and B, ML are shown as observed by NMF analysis
of simulated data using Scheme 1 for two different values of the
rate k. The ML show clear oscillations, similar to the ML
observed for single enzymes.

Obviously, there are a large number of possible schemes that may
be written and simulated by varying the number of transient
states, and also by changing the rate parameter values or by
introducing differences in the rate parameters, etc. We will not
do such a detailed investigation here; however, we point out that
further analysis using fluctuating rate constants (for example)
may lead to a better description. Presently, we feel that priority
should be given to the basic principles of the enzyme dynamics
before models that use, for example, f luctuating rate constants
are considered. Scheme 1 may not give the full kinetic picture of
the enzyme but may provide a first approximation.

Studies of the energetic connectivity in proteins reveal unex-
pected dependencies between distant parts (amino acid groups) of
the molecule (29). It is likely that the fluctuations of many distant
parts of the molecule affect its enzymatic activity; the binding site
of the molecule is not an autonomous part with regard to the
catalytic properties of the enzyme. The prediction that time cor-
relation between variables specifying different sets of conforma-
tions is revealing with regards to catalysis was postulated already in
1974 (18). Hence, the introduction of many CS in which the present
enzyme may reside leads to a discussion about the connection
between different CS and the activity of the enzyme.

In refs. 30 and 31, the kinetics of peptide binding to class II
MHC proteins are investigated. It is shown that the peptide
binding makes the protein stabilized in its active state: directly
after peptide dissociation, the protein’s conformation is such
that it is active and may accept binding of a new peptide. The
active form of the protein results from dissociation of previously
bound enzyme and is quickly inactivated in the absence of new
peptide. With the result of the present experiment and analysis
in hand, an analogy to the results obtained in refs. 30 and 31 is
straightforward: When active, the enzyme is situated in a region
of CS in which it may continuously bind its substrates (dihydro-
rhodamine 6G and H2O2) and transform them into products. By
uninterrupted catalytic cycles, the enzyme is stabilized in its
active state. The enzyme may, however, make a transition out of
the enzymatically active region of CS. The slow oscillations in the
ML would then originate from a set of transient CS that the
enzyme traverses toward the active region of CS. The prediction
would be that, with increasing substrate concentration, the
fraction of time the enzyme resides in its active state increases.
Evaluation of single enzyme data using first-order correlation
analysis shows less distributed kinetics with increasing concen-
tration (5), being in line with this prediction. Hence, substrate
interactions with the enzyme select the set of CS in which the

A B

Fig. 4. ML are shown for two cases of simulations using Scheme 1 in A and B (500,000 data points simulated equaling 11,000-s measuring time). The rate constant
k is set to 10 s21 in A and 22 s21 in B. The rate constants k21 and k1 are always set to 20 and 1521, respectively. The bin size is set to 20 ms in accordance with the
experimental conditions.
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enzyme is active. Although our data are based on a single type
of protein molecule, we suggest that a similar behavior may be
found in other types of proteins, such as ion-channels and
ligand-specific receptors.
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