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Frequent gene duplications in the genome incessantly supply new genetic materials for functional innovation presumably
driven by positive Darwinian selection. This mechanism in the desaturase gene family has been proposed to be important
in triggering the pheromonal diversification in insects. With the recent completion of a dozen Drosophila genomes,
a genome-wide perspective is possible. In this study, we first identified homologs of desaturase genes in 12 Drosophila
species and noted that while gene duplication events are relatively frequent, gene losses are not scarce, especially in the
desat1–desat2–desatF clade. By reconciling the gene tree with species phylogeny and the chromosomal synteny of the
sequenced Drosophila genomes, at least one gene loss in desat2 and a minimum of six gene gains (resulting in seven
desatF homologs, a-g), three gene losses and one relocation in desatF were inferred. Upon branching off the ancestral
desat1 lineage, both desat2 and desatF gained novel functions through accelerating protein evolution. The amino acid
residues under positive selection located near the catalytic sites and the C-terminal region might be responsible for altered
substrate selectivity between closely related species. The association between the expression pattern of desatF-a and the
chemical composition of cuticular hydrocarbons implies that the ancestral function of desatF-a is the second desaturation
at the four carbons after the first double bond in diene synthesis, and the shift from bisexual to female-specific expression
in desatF-a occurred in the ancestral lineage of Drosophila melanogaster subgroup. A relationship between the number
of expressed desatF homologs and the diene diversification has also been observed. These results suggest that the
molecular diversification of fatty acid desaturases after recurrent gene duplication plays an important role in pheromonal
diversity in Drosophila.

Introduction

Fatty acid desaturases are enzymes that catalyze the
introduction of double bonds at specific positions of fatty
acids. Desaturases play essential roles in both lipid metab-
olism and the maintenance of proper structure and function
of biological membranes in living organisms. Studies on
desaturases in insects have shown that their roles in lipid
biosynthesis also contribute to the precursor diversity of cu-
ticular hydrocarbons and sex pheromones (Roelofs and
Rooney 2003). The cuticular surface of insects bears a lipid
layer that functions primarily to limit water loss (Howard
and Blomquist 1982). In some insects, cuticular hydrocar-
bons present a rich reservoir of chemicals that are important
in species and gender recognition, dominance and fertility
cues, task-specific cues, and chemical mimicry (reviewed in
Howard and Blomquist 2005). In Drosophila, the existence
of fatty-acid–derived cuticular hydrocarbons which act in
females as important attractive cues for males has been
known for decades. Differences in hydrocarbon profiles be-
tween species have been proposed to contribute to sexual
isolation, but only two desaturase genes have been identi-
fied to be responsible for pheromonal differences between
sibling species or geographical races of Drosophila (Coyne

et al. 1999; Dallerac et al. 2000; Takahashi et al. 2001; Fang
et al. 2002; Chertemps et al. 2006; Legendre et al. 2008). In
fact, both genes originated by gene duplication, suggesting
that the increase of gene number of the desaturase gene fam-
ily enlarges the pheromone diversification between closely
related species in insects (Knipple et al. 2002; Roelofs and
Rooney 2003; Greenberg et al. 2006; Xue et al. 2007).

Eight fatty acid desaturase genes have been identified
in Drosophila melanogaster (http://www.flybase.org/blast/;
Crosby et al. 2007). Of which, infertile crescent, encoding
an enzyme withD4-desaturase activity, is the most distantly
related member belonging to the Sphingolipid subfamily.
All the other 7 desaturase genes are grouped in the First
Desaturase subfamily that introduces the first double bond
into the saturated acyl chain at the D9 position (Hashimoto
et al. 2008). We shall focus on the seven members of the
First Desaturase subfamily because at least three of them
are involved in the biosynthesis of pheromonal hydrocar-
bons which are diversified chemicals for mate recognition
in Drosophila (Dallerac et al. 2000; Takahashi et al.
2001; Labeur et al. 2002; Chertemps et al. 2006). The
two tandemly duplicated D9 desaturase genes, desat1 and
desat2, are responsible for adding the first double bond into
unsaturated fatty acid precursors leading to monoenes in
both sexes (Dallerac et al. 2000; Labeur et al. 2002). The
roles that desat2 plays in the differential adaptation to
ecological changes and the behavioral isolation between Z
and M races of D. melanogaster are well documented
(Takahashi et al. 2001; Fang et al. 2002; Greenberg et al.
2003). Recently, the third desaturase gene, desatF (aka
Fad2), has been functionally characterized in the production
of the female dienes (Chertemps et al. 2006, 2007; Legendre
et al. 2008). This female-specific expressionmight be acquired
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after desatF originated by a retrotransposition event because
desatF is the only intronless member, whereas all the other
desaturase genes have multiple exons (Bai et al. 2007).

The importance of gene duplication has long been ap-
preciated (Ohno 1970). Yet, gene losses have only recently
attracted attention through comparative genomic studies
(Hahn et al. 2007). A general notion is that frequent gene
gains and losses through duplication and pseudogenization
increase genetic variation and thereby contribute to species
divergence. The diversity of moth sex pheromones is such
an example which suggests that multiple birth-and-death
processes of desaturases are subject to sexual selection be-
tween closely related species (Knipple et al. 2002; Roelofs
and Rooney 2003). In addition, natural selection could act
as an effective sieve to increase beneficial gene duplicates,
whereas elimination of duplicated and/or existing genes
might also provide changes that otherwise could not have
occurred (Wang et al. 2006). Because desaturases possess
functions in both ecological adaptation and mate recogni-
tion in Drosophila, one would expect that natural and/or
sexual selection may act on this gene family as in the cases
of accessory gland proteins (reviewed in Clark et al. 2006).
To test this idea, we first identified all homologs of desa-
turases from the 12 sequenced Drosophila genomes to un-
derstand the birth-and-death processes of the desaturase
gene family. Next, we asked if any signature of positive
selection could be detected, especially in the lineage after
gene duplication. If there are, the next questions would be
which amino acid residues are under positive selection and
whether they are located at the sites with implication in
functional adaptation. Finally, we addressed how duplica-
tion events of desaturases lead to the pheromonal diversi-
fication by analyzing the gene expression patterns and
cuticular hydrocarbon profiles.

Materials and Methods
Sequence Data

Coding sequences of seven fatty acid desaturase
genes, desat1, desat2, Fad2, CG8630, CG9743,
CG9747, and CG15531 of D. melanogaster, were used
to Blast against the 12 Drosophila genomes at FlyBase
(http://www.flybase.org/blast/; Crosby et al. 2007). The or-
thologs of each gene were identified by reciprocal Blast and
conserved synteny. The results were further confirmed with
GBrowser at Flybase (Wilson et al. 2008) and annotation
tracts at the University of California–San Cruz Genome
Browser (http://genome.ucsc.edu/; Karolchik et al. 2003).

Phylogeny Reconstruction

Phylogeny of three fatty acid desaturase genes, desat1,
desat2, and desatF, was reconstructed by maximum parsi-
mony (PAUP* 4.0b10; Swofford 2002) and Bayesian infer-
ence (MrBayes 3.1.2; Huelsenbeck and Ronquist 2001).
Sites with ambiguous alignment were not included. No
weighting was assigned for maximum parsimony analyses,
and gaps were treated as missing data. Branch support was
obtained from bootstrapping with 1,000 replicates. Sites
with gaps were excluded from Bayesian inference. In

Bayesian analyses, 2 independent tests, each with one cold
and seven heated Markov chains, were run for 2 million
generations. Trees were sampled every 1,000 generations,
and 500 of the sampled trees were described as burn-in
while summarizing the result. In the summarized tree, pos-
terior probabilities were indicated on each branch, and max-
imum likelihood method was applied to estimate the branch
length (Yang 2006).

Tests for Positive Selection

To detect selection, sequences were analyzed with
maximum likelihood–based methods implemented in CO-
DEML of PAML 4 (Yang 2007). CODEML estimates the
ratio of nonsynonymous to synonymous substitution rate
(x) under models allowing x vary among sites (site mod-
els), branches (branch models), and a combination of both
(branch site models). In all tests, the likelihood ratio test
(LRT) was performed in comparing the null model against
the alternative model. The test statistic 2D‘ 5 2(‘1 � ‘0),
where ‘0 and ‘1 are the log likelihood values under the null
and alternative hypotheses, respectively, was compared
with the chi-square distribution, with the degree of freedom
to be the difference in the number of parameters between
the two hypotheses. All sites with ambiguous alignment
and gaps were excluded from the analysis. For better con-
vergence and to avoid too many parameters to be estimated
at the same time, branch lengths were estimated under
model M0 (one-ratio), which assigns 1 x value across
the whole tree and sequence, and then is fixed in subsequent
analyses.

To test if x values vary among desat1, desat2, and
desatF, branch models, where x values are allowed to vary
between lineages, were performed. We set the joint corre-
sponding x values of desat1, desat2, desatF, and all other
branches as x1, x2, xF, and x0. Test scheme is listed in
table 1. If the null hypothesis is rejected, it means that dif-
ferent x values exist between two target clades.

To detect positive selection acting only on certain co-
dons in certain branches, branch site models were per-
formed. The alternative hypothesis assigns some sites in
the target branch to be under positive selection, whereas
the null hypothesis does not. All branches except the root
branch on the tree were tested. For branches with significant
P values after Bonferroni correction (Anisimova and Yang
2007), sites under positive selection with posterior proba-
bility higher than 0.95 in ‘‘Bayes empirical Bayes’’ analysis
were listed.

Flanking Sequence Analysis

Because retrotransposition, DNA-mediated transposi-
tion, and inversions occurring at flanking regions could all
result in nontandem gene duplication events, we further
identified the break point of each copy by DotPlot, com-
pared the similarity between duplicate genes with their
flanking sequences, and searched traces of repetitive se-
quences and transposons. To determine the boundary of
each transposition and its flanking sequences, syntenic ge-
nomic regions of each desatF locus between species were
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compared using DotPlot in the GCG Wisconsin Package
(Version 10.3, Accelrys Inc.). Repetitive sequences, includ-
ing poly-A, of the flanking regions were identified by Re-
peatMasker (http://www.repeatmasker.org/). Transposable
elements were recognized by Blast againstD. melanogaster
transposable element database at Flybase (http://www.
flybase.org).

Gene Expression by Reverse Transcriptase–Polymerase
Chain Reaction

Adult desatF expression was performed by reverse
transcriptase–polymerase chain reaction (RT-PCR) from
total RNA. Total RNA was extracted from 3- to 5-day-
old adults by TRIzol reagent (Invitrogen, Carlsbad, CA)
and then treated by DNase using DNA-free (Ambion, Fos-
ter City, CA) according to the manufacturer’s instructions.
Reverse transcription was carried out with SuperScript III
First-Strand Synthesis System (Invitrogen) using oli-
go(dT)20 primer. Gene-specific primers were used for fur-
ther polymerase chain reaction (PCR) amplification. The
primer sequences and detailed PCR conditions are available
upon request. An internal control for the reverse transcrip-
tion reaction was conducted with primers specific to Act5C
mRNA. In addition, we also performed controls with RNA
samples amplified without reverse transcriptase to verify
the absence of genomic DNA contamination.

Results
Identifying Fatty Acid Desaturase Genes

We systematically identified the fatty acid desaturase
homologs from the sequenced Drosophila genomes by re-
ciprocal Blast and conserved chromosomal synteny with
seven members of the desaturase gene family in D. mela-
nogaster. The annotation and chromosomal location for
each gene are listed in supplementary table S1 (Supplemen-
tary Material online). Based on a large-scale analysis on
a wide range of eukaryotic genomes, the 3 genes, desat1,
desat2, and desatF, involved in the biosynthesis of cuticular
hydrocarbons in D. melanogaster formed a single cluster,
and the other four genes are more distantly related to this
cluster (Hashimoto et al. 2008). Of which, desat1 and de-
sat2 are tandemly duplicated copies, whereas desatF orig-
inated by a single retrotransposition. Based on phylogenetic
analyses of these three desaturase genes (supplementary fig.
S1, Supplementary Material online), the retrotransposition
event took place before the tandem duplication of desat1
and desat2. Because desat1 and desat2 exist in all 12 Dro-
sophila genomes, we inferred that the retrotransposition

event predates the split of the Drosophila and Sophophora
subgenera, and the absence of desatF in the three species of
Drosophila subgenus, that is, Drosophila grimshawi, Dro-
sophila mojavensis, andDrosophila virilis, is the secondary
loss after the retrotransposition. As expected, all desatF ho-
mologs are intronless except that in Drosophila yakuba,
GE21776, in which a putative 32-bp intron together with
a 10-bp deletion was predicted to result in a truncated pro-
tein with 14 amino acids short. If we consider GE21776,
a single-exon gene as all other desatF homologs do, then
the D. yakuba reference genome might contain a nonfunc-
tional allele due to the 10-bp deletion in the coding region
that gave rise to a premature stop codon. A notable feature
in desatF clade is that three homologous copies were found
in eachDrosophila ananassae,Drosophila pseudoobscura,
and Drosophila persimilis, respectively. In D. ananassae,
three annotated desatF genes, namelyGF24026,GF18504,
and GF16174, occurred in the regions that are not homol-
ogous to the desatF-a location in D. melanogaster, that is,
they are located at nonsyntenic regions. In D. pseudoobs-
cura genome (R2.2), one syntenically conserved desatF
was annotated as dpse_GA20691 (on XR, aka Muller ele-
ment D, homologous to 3L of D. melanogaster), and two
additional annotated single-exon desaturase genes,
GA27148 and GA27452, were identified on the second
chromosome (Muller element E, homologous to 3R of
D. melanogaster). The fact that homologs of these two
genes have also been found in D. persimilis (GL23117
and GL22317) suggests that these two genes are additional
members of desatF in D. obscura group. In addition, two
desatF homologs in Drosophila willistoni, GK17186 and
GK11373, are also resident in nonsyntenic regions. More-
over, only six desaturase genes are annotated in the Dro-
sophila erecta genome (CAF1), and the decrease in gene
number is due to the loss of desat2 in this reference genome.

Assigning Gene Gains and Losses of desatF

To understand the evolutionary history of desatF in
Drosophila, we reconciled the gene tree of desatF (supple-
mentary fig. S1, Supplementary Material online) with the
species tree to estimate the minimum number of duplication
events (fig. 1). After the birth of desatF (locus a) through
retrotransposition from the common ancestor of desat1 and
desat2, at least six gene gains and three gene losses gave
rise to seven paralogous desatF loci (a-g) in the Drosophila
lineage. The desatF-a is absent from all three species of
Drosophila subgenus, suggesting that either the gene
was lost in the common ancestor of these species or inde-
pendent losses occurred in each branch. Based on the phy-
logeny (supplementary fig. S1, Supplementary Material

Table 1
LRTs among desat1, desat2, and desatF Clades under Branch Models

H0 H1 df 2Dl P Value x1 x2 xF

desat1 versus desat2 x1 5 x2, xF 5 x0 x1 6¼ x2, xF 5 x0 1 12.46 4.1 � 10�4 0.0493 0.0753 —
desat1 versus desatF x1 5 xF, x2 5 x0 x1 6¼ xF, x2 5 x0 1 30.29 3.7 � 10�8 0.0494 — 0.0904
desat2 versus desatF x2 5 xF, x1 5 x0 x2 6¼ xF, x1 5 x0 1 4.70 0.03 — 0.0748 0.0906

NOTE.—df, degree of freedom. x1, x2, and xF denote the x ratios of desat1, desat2, and desatF clades, respectively.
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online), the second duplication, which gave rise to locus
desatF-b, took place in the common ancestor of D. mela-
nogaster and D. obscura species groups. This locus was
subsequently lost in the lineage leading to D. melanogaster
species group. The third duplication created an obscura lin-
eage–specific locus (desatF-c). In D. ananassae, none of
the desatF copies is located at the syntenic region of de-
satF-a. We assigned ana_GF24026 as desatF-a# because
this locus is on the same chromosome arm (Muller element
D) as other desatF-a. Relocation of this locus could occur
by multiple inversion events. The other two desatF copies
ofD. ananassae are not orthologous either to desatF-b or to
desatF-c ofD. pseudoobscura (supplementary fig. S1, Sup-
plementary Material online), so we proposed that at least
two rounds of lineage-specific duplications generating de-
satF-d and desatF-e in the lineage of D. ananassae. Sim-
ilarly, two additional rounds of duplication took place in the
lineage of D. willistoni to result in another two desatF cop-
ies, desatF-f and desatF-g.

Because multiple nontandem desatF loci were found
in D. ananassae, D. pseudoobscura, D. persimilis, and
D. willistoni, it is of great interest to investigate the under-
lying mechanisms of their duplication. The fact that all the
desatF-a orthologs contain poly-A tracts within 500 bp down-
stream of the stop codon is consistent with their retrogene na-
ture. Among these desatF paralogs, sequence similarities
between desatF-b and desatF-c in both D. pseudoobscura
and D. persimilis extend to ;150 bp upstream and ;590
bp downstream of the coding regions. In addition, desatF-c
is flanked by two Helitron transposable elements, one on each
side, indicating that desatF-c is duplicated by DNA-mediated
transposition. Similarly, desatF-g of D. willistoni might also
be duplicated by DNA-mediated transposition based on
Helitron elements located at flanking regions. Based on the
sequence divergence between the two copies (desatF-f and
desatF-g, fig. 2), the duplication could occur in an early
branch of the D. willistoni group (66.2 Ma, Tamura et al.
2004) rather than in D. willistoni per se although the se-
quence information from other species of D. willistoni
group is not available. When comparing flanking sequences
of the two desatF loci in D. willistoni, only desatF-f con-
tains the poly-A tract. On the other hand, desatF-g has no
poly-A tract and is flanked by inverted Helitron sequences.

It is not clear that desatF-g is duplicated either from the
ancestral desatF-a or from desatF-f by DNA-mediated
mechanism. Because desatF-a has been completely degen-
erated from D. willistoni genome, it is not possible to check
the similarity of flanking sequences. On the other hand,
desatF-f and desatF-g do not share any sequence similarity
beyond the coding region. Even if desatF-f is the parental

FIG. 1.—Gene gains and losses of desatF genes in Drosophila. Using the well-defined phylogeny of the 12 sequenced Drosophila species
(Drosophila 12 Genomes Consortium 2007), the distribution of seven paralogous loci a-g of desatF was assigned on the right based on the gene tree
(supplementary fig. S1, Supplementary Material online).

FIG. 2.—Branches with positive selection under branch site models
were labeled on the phylogeny of the desat1–desat2–desatF clade. The
phylogeny is reconstructed based on the gene tree (supplementary fig. S1,
Supplementary Material online) with minor adjustments in desat1 and
desat2 according to species tree (FlyBase). Branch lengths were estimated
using maximum likelihood method with general time reversible model
and gamma distribution.
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copy of desatF-g, this duplication event must have occurred
long time ago. Similarly, the divergence among three paral-
ogs in D. ananassae (desatF-a#, desatF-d, and desatF-e) is
also high, so the two duplication events might have taken
place after the split of D. melanogaster subgroup and
D. ananassae subgroup (44.2 Ma, Tamura et al. 2004).
The little homology (about 40% identity) shared by the
5# regions of the three loci provides little evidence on
the duplication mechanism except for desatF-a#which con-
tains the poly-A tract. Both desatF-d and desatF-e might
arise from independent retrotranspositions or DNA-medi-
ated transpositions because neither poly-A tracts in the
3# regions nor DNA transposons in the flanking sequences
were detected. Alternatively, only one copy was duplicated
from desatF-a# and these two genes were generated by tan-
dem duplication and were subsequently separated by chro-
mosomal rearrangements.

Identify Sites under Positive Selection

As desat1, desat2, and desatF have evolved different
functions in pheromone biosynthesis, we are interested in
how selection, if there is any, governed the functional di-
versification of the three genes. To address this question, we
first compared the estimated x under the branch models
with a known phylogeny. The phylogeny of all homologs
of desat1, desat2, and desatF (fig. 2) was reconstructed
based on the gene tree (supplementary fig. S1, Supplemen-
tary Material online) with minor adjustments in the desat1
and desat2 subclades according to the species tree (Dro-
sophila 12 Genomes Consortium 2007). The results
showed that the x ratios of the three clades are significantly
different from one another (table 1). Among them, the x
value of desatF (xF) is the highest and the x of the parental
copy, desat1, (x1) is the lowest. Despite the differences in
x values among three genes, the fact that all the estimatedx
do not exceed 1 implies that most codons are under puri-
fying selection. The higher x in both desat2 and desatF
could result from either positive selection or relaxation
of functional constraint in a small portion of codons on
some branches.

Because gene gains and losses occurred frequently in
the desat1–desat2–desatF clade, it is likely that x ratios
also vary within each subclade. We therefore performed
the branch site models to identify candidate sites that are

subject to positive selection for each branch, especially
on the branches after duplication events. Of 72 branches,
eight were detected under positive selection (branches
A–H in fig. 2). The putative positive sites with posterior
probabilities higher than 0.95 are given in table 2. Only
one or two sites were suggested on branches A, F, and G,
whereas multiple positive changes were assigned on the
other five branches (B–E and H). Interestingly, these five
branches are the ones right after gene duplication. Among
them, 11 and 12 positive sites inferred on the branches lead-
ing to desat2 (C) and desatF (D), respectively, are the high-
est. About half of these sites (6/11 for Desat2 and 7/12 for
DesatF) are located in the C-terminal regions (after residue
270 of supplementary fig. S2, Supplementary Material on-
line), including sites around the third histidine box.

Expression Differences of desatF Homologs

To investigate whether all the desatF homologs are
functional loci, the expression patterns of these desatF
genes were performed in both sexes for these Drosophila
species (fig. 3). In D. melanogaster species subgroup, de-
satF-a was only expressed in females of D. melanogaster
and D. erecta, predominantly expressed in females of Dro-
sophila sechellia, and no expression in both sexes of D.
simulans (Chertemps et al. 2006) and D. yakuba. In D. ob-
scura species group, the desatF-a orthologs, GA20691 in
D. pseudoobscura and GL15669 in D. persimilis, were ex-
pressed in both sexes. For all the paralogs of desatF-a, most
of them were expressed in both sexes except desatF-b and
desatF-c. The expression of desatF-b was not detected in
either sex, and desatF-c was only expressed in males in
both D. pseudoobscura and D. persimilis.

Discussion

Comparative genomic studies revealing frequent gene
gains and losses provide an opportunity to examine how
genetic diversity shapes functional divergence. In this
study, multiple gene gains and losses were identified in
the desat1–desat2–desatF clade, and both desat2 and de-
satF lineages exhibit an accelerated rate of evolution as in-
dicated by their overall x values. More interestingly, most

Table 2
Putative Positively Selected Sites Inferred by Branch Site Models

Branch 2Dl P Value Number of Sites Sites under Positive Selection

A 12.142 4.93 � 10�04 1 L106T
B 12.269 4.61 � 10�04 7 M135W, L147I, Q177T, I227L, C228A, K276G, T379V
C 28.970 7.35 � 10�08 11 W93Y, S98Q, S104G, V236I, I260Q, F316W, S342S, A361E, T362L, I375A, T381V
D 17.067 3.61 � 10�05 12 A88S, T119S, F180W, L189C, F250H, A270S, N288E, S292I, T295R, W300Y, T313S, K333R
E 11.981 5.37 � 10�04 4 Y83I, T107F, C228I, P252M
F 11.493 6.99 � 10�04 1 R209E
G 12.885 3.31 � 10�04 2 Y155I, Y274F
H 12.694 3.67 � 10�04 4 T100D, L106A, L111G, N282S

NOTE.—Branches with significant P values (degree of freedom 5 1) after Bonferroni correction under branch site models and putative adaptive sites with posterior

probability higher than 0.95 in Bayes empirical Bayes analysis are listed. Numbers labeled on these sites indicate the sequence positions in the consensus sequence. Capital

letters flanking the sites indicate the amino acid states before and after the change, respectively. S342S is the site involved in two nonsynonymous changes according to the

model.
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of the positively selected sites inferred from our analyses
occurred on the branches right after duplication events.
These putatively selected sites might be responsible for
the functional divergence among desaturase genes. In
desatF, multiple gene duplication events occurred indepen-
dently in several Drosophila lineages. The changes of
desatF expression patterns, most likely by recruiting new
cis-regulatory elements, are concordant with duplication
events. Because DesatF is responsible for diene production
in D. melanogaster, the relationship between the gain and
loss of desatF genes and diversification of the hydrocarbon
profile in Drosophila is discussed below.

Birth-and-Death Process of Desaturase Genes

The frequent duplication and pseudogenization in the
desat1–desat2–desatF clade follows the birth-and-death
model (Ohta and Nei 1994). A conservative estimate sug-
gests that recurrent gene duplication events occurred inde-
pendently in the Sophophora lineage (fig. 1). As indicated
by both theoretical models and empirical data, the most
common fate of a duplicated gene is pseudogenization
as most of the mutations are deleterious (Lynch and Conery
2000). In desaturase gene family, several desat2 and desatF
alleles have undergone a pseudogenization or elimi-
nated from the genome after duplication. A signature of de-
generation, the 16-bp deletion in the promoter region of
desat2, has been reported in D. melanogaster populations
(Dallerac et al. 2000; Takahashi et al. 2001). In this study,
we uncovered another degenerated allele of desat2 in
D. erecta. A large portion of desat2 coding sequence has
been deleted, and only the last exon and part of the 3# un-
translated region can be recognized in the genome. In de-
satF clade, we have assigned several gene losses after gene
duplication, especially twice in desatF-a, one in the lineage
leading to Sophophora and the other one in D. willistoni
(fig. 1). It is clear that the pseudogenization level indicated
by deletion, loss-of-function, and elimination from the
genome in desatF (at least three losses, fig. 1) is higher than
that in desat2 (one loss). This phenomenon is congruent
with the genealogy of desat1–desat2–desatF clade (fig. 2
and supplementary fig. S1 [Supplementary Material on-
line]), that is, desatF is duplicated from the ancestral branch
earlier than desat2. Another indication of nonfunction is
the absence of expression. No desatF expression could
be detected in both sexes of D. simulans and D. yakuba
(fig. 3). For D. simulans, nonsense mutation was not found

in the current genome release, suggesting that this gene is
either expressed in other developmental stages or at the
early stage of pseudogenization. The desatF-a allele in
D. yakuba reference genome is more likely to be a degen-
erated one with a frameshift mutation (10-bp deletion) caus-
ing a premature stop codon rather than a functional one with
a de novo intron as annotated in the current genome release
(CAF1).

The other possible fates of a duplicated gene are sub-
functionalization or neofunctionalization (Force et al.
1999). In both cases, cis-regulatory evolution would be de-
tected by gene expression changes. The relocation of de-
satF, like other retrogenes, would have a better chance
to recruit new regulatory elements (reviewed in Long
et al. 2003). All the insertion sites of desatF homologs
are located in the intergenic regions. It is not clear if they
had recruited some of the existing promoters or enhancers
of the neighboring genes because most of the functional
regulatory sequences are largely unknown. The only iden-
tified regulatory sequence, binding motif of Doublesex fe-
male protein (DSXF), is 9 bp in length that could also
evolve de novo by mutation mechanism. The expression
patterns of desatF-a are bisexual in D. pseudoobscura
and D. persimilis but shift to be female biased in D. erecta,
D. sechellia, and D. melanogaster. This derived female-bi-
ased desatF-a expression in these three species may be
evolved by the recruitment of a DSXF motif in the 5#-flank-
ing region of desatF-a on the branch leading to D. mela-
nogaster species subgroup (Legendre et al. 2008). On
the other hand, the fact that desatF-c in D. pseudoobscura
and D. persimilis switches to be male specific indicates that
desatF-c acquired the male-specific cis-regulatory element
after duplicated from either desatF-a or desatF-b. If de-
satF-cwas directly duplicated from desatF-a, the male-spe-
cific expression of desatF-c evolved after the relocation
from X chromosome (XR, Muller element D) to autosome
(2, Muller element E). This observation fits in the widely
known pattern of dominant male expression of new retro-
genes (Betrán et al. 2002; Dai et al. 2006).

Accelerated Protein Evolution and Functional
Diversification of the Desaturase Gene Family

In addition to cis-regulatory evolution, functional dif-
ferentiation of duplicate copies through accelerated protein
evolution is extremely important for genetic novelty. In the
desaturase gene family, upon branching off desat1, both

FIG. 3.—RNA expression of desatF homologs (a, a#, b, c, d, e, f, and g) in adult males (M) and females (F) of Drosophila melanogaster (mel),
Drosophila sechellia (sec), Drosophila erecta (ere), Drosophila yakuba (yak), Drosophila pseudoobscura (pse), and Drosophila willistoni (wil) by RT-
PCR with gene-specific primers.
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desat2 and desatF gained novel functions through acceler-
ated protein evolution. Genome-wide analyses on the sub-
stitution rates of paralogous genes revealed that accelerated
protein evolution resulting in asymmetric divergence often
observed in duplicated gene pairs. The asymmetric evolu-
tion rate can be contributed by relaxation of selective con-
strains, especially for young duplicates, and positive
selection acting on beneficial mutations (Conant and Wag-
ner 2003; Zhang et al. 2003). The rate asymmetry is greater
in gene pairs duplicated through retrotransposition than in
tandemly duplicated pairs (Cusack and Wolfe 2007). In the
case of desat1–desat2–desatF evolution, the asymmetric
evolution rate is no exception. The ancestral copy, desat1,
evolves at the slowest rate. The tandemly duplicated copy,
desat2, diverges at the moderate rate. The retrogene, de-
satF, evolves at the highest rate. Based on our phylogenetic
analyses (fig. 2 and supplementary fig. S1 [Supplementary
Material online]), both desat2 and desatF duplicated from
the ancestral desat1 before the two subgenera, Drosophila
and Sophophora, split around 62.9 Ma (Tamura et al.
2004). Given the long divergence time between these du-
plicated genes, the protein changes due to relaxation of se-
lection only contribute to a small fraction of the total
increase in protein evolution. The fact that functions of De-
sat1, Desat2, and DesatF have been demonstrated to be dif-
ferent in substrate selectivity in D. melanogaster (Dallerac
et al. 2000; Chertemps et al. 2006, 2007) implies that the
acquisition of new function is the key to the preservation of
functional copies of desat2 and desatF.

In D. melanogaster, the ancestral Desat1 is an D9 de-
saturase which introduces the first double bond at the D9
position (D position is relative to the carboxyl end) of either
the palmitic acid (C16:0) to produce x7 fatty acids (x po-
sition is relative to the methyl end) or the less preferred stea-
ric acid (C18:0) to yield x9 fatty acids (Wicker-Thomas
et al. 1997; Dallerac et al. 2000). The tandemly duplicated
gene, desat2, also encodes a D9 desaturase but switches its
substrate preference to myristic acid (C14:0) to produce x5
fatty acids (Dallerac et al. 2000). The intronless desatF in
D. melanogaster, that is, desatF-a in this study, is possibly
a D11–D15 desaturase, which performs the second desatu-
ration at four carbons after the first double bonds in mono-
saturated x5 and x7 fatty acids with C22–C26 carbon
length, subsequently leading to n,(n þ 4)-Cm:2 dienes (cu-
ticular hydrocarbons of m carbon atoms in length with two
double bonds at the nth and (nþ 4)th carbon positions), for
example, heptacosadiene (7,11-C27:2 and 5,9-C27:2) and
nonacosadiene (7,11-C29:2), in females of D. melanogaster
(Chertemps et al. 2006, 2007; Legendre et al. 2008). Desat1
and Desat2 act on unsaturated fatty acids with different sub-
strate preferences, whereas DesatF chooses longer monosa-
turated fatty acids as substrates. Amino acid changes
accumulated around the regions of the catalytic sites on
the desat2 and desatF branches might be responsible for
such functional divergences. In desaturases, amino acid
changes around the three conserved histidine box motifs
and the C-terminal region might contribute to the regiose-
lectivity and stereoselectivity (Fox et al. 1993; Libisch et al.
2000; Hoffmann et al. 2007; Meesapyodsuk et al. 2007). In
our study, about 50% of the putative positively selected
sites inferred on the branches leading to desat2 and desatF

clades are concentrated. Nevertheless, the roles of these
amino acid changes on the novel substrate selectivity of De-
sat2 and DesatF remain to be verified by functional assays.

What would be the major driving force shaping the
functional diversification of desaturase gene family along
Drosophila lineage? In D. melanogaster, loss-of-function
allele of desat2 is responsible for cold tolerance that could
be an adaptive trait when ancestral D. melanogaster pop-
ulation migrated out of Africa (Greenberg et al. 2003,
2006). On the other hand, because desatF is involved in
the biosynthesis of cuticular dienes which are major female
sex pheromones in some Drosophila species, it is possible
that sexual selection is the main driving force, at least in
some lineages, during desatF evolution. InD. melanogaster
species subgroup, 7,11-C27:2 diene is the major female hy-
drocarbon in sexually dimorphic species including D. mel-
anogaster and D. sechellia, whereas 7-C23:1 monoene is
the major female hydrocarbon in monomorphic species in-
cluding D. simulans and Drosophila mauritiana. The 7,11-
C27:2 stimulates courtship of the two sexually dimorphic
species but inhibits the two monomorphic species. Simi-
larly, 7-C23:1 is also recognized by males as a chemical
cue for sexual isolation between closely related species
(Antony et al. 1985; Coyne et al. 1994; Ferveur and Sureau
1996). Accordingly, both natural and sexual selection
might play important roles in shaping the accelerated evo-
lution of desaturase genes.

Because desatF-a is responsible for the major cutic-
ular diene in D. melanogaster, the potential roles of de-
satF-a homologs leading to diene diversification in
Drosophila would be the next question to ask. To address
this question, we first summarized the expression patters
of desatF and the major cuticular dienes (table 3). In
D. melanogaster, desatF-a is only expressed in females,
resulting in 7,11-dienes (e.g., 7,11-C27:2 and 7,11-C29:2)
to be the major hydrocarbons in females, whereas males
have only monoenes (Chertemps et al. 2006; Legendre
et al. 2008). In addition to D. melanogaster, the female-
specific desatF-a expression in D. sechellia and D. erecta
is also strongly associated with sexual dimorphic dienes.
On the other hand, the lack of dienes in D. simulans and
D. yakuba is correlated with lack of desatF-a expression.
Also, no n,(n þ 4)-Cm:2 dienes were detected in species
lacking desatF-a, including D. ananassae, D. willistoni,
D. mojavensis, and D. virilis. Outside the D. melanogaster
species subgroup, desatF-a locus was independently lost in
several lineages but remains in the two species of D. ob-
scura species group, D. pseudoobscura and D. persimilis.
The syntenic desatF-a orthologs are expressed bisex-
ually in D. pseudoobscura and D. persimilis which show
high abundant 5,9-dienes (e.g., 5,9-C25:2 and 5,9-C27:2)
in both sexes. These new observations suggest that the an-
cestral function of DesatF-a is to produce n,(n þ 4)-Cm:2
dienes. This ancestral function of desatF-a is conserved in
all these Drosophila species but D. erecta. The major fe-
male-specific diene in D. erecta is tritriacontadiene
(9,23-C33:2) in which the carbon length between two
double bonds is 14. It is possible that DesatF-a of D. erecta
has acquired a novel substrate regioselectivity to produce
n,(n þ 14)-Cm:2 dienes after leaving the D. yakuba–D.
melanogaster lineage.
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A relationship between the number of expressed de-
satF homologs and the diene diversification in these spe-
cies has also been observed. The expression of desatF-a,
the only desatF homolog in D. melanogaster subgroup,
contributes to the diene production of either n,(n þ 4)-
Cm:2 or n,(n þ 14)-Cm:2. Outside the D. melanogaster
subgroup, there is more than one desatF homolog. In
D. ananassae, the various cuticular dienes, for example
n,(nþ 20)-Cm:2 and n,(nþ 22)-Cm:2, are correlated with
the expression of multiple desatF homologs, that is, de-
satF-a#, desatF-d, and desatF-e (fig. 3). Similarly, the lin-
eage-specific desatF-f and desatF-g in D. willistoni might
contribute to the complicated C33 and C35 dienes, includ-
ing n,(n þ 16)-Cm:2, n,(n þ 18)-Cm:2, n,(n þ 20)-Cm:2,
and n,(n þ 22)-Cm:2. In D. pseudoobscura, the desatF-c,
which is lowly expressed in males, might be involved in
synthesizing the low quantity of the unusual n,(n þ 9)-
Cm:2 or n,(n þ 11)-Cm:2 diene. As these unusual dienes
appear in very low quantities, whether any of these dienes
is sexual dimorphic remains unknown. Based on our ob-
servation on the number of desatF homologs and the diene
complexity, we hypothesize that different DesatF exhibit
different regioselectivity of the second desaturation of
long chain fatty acid. Nevertheless, further functional as-
say is necessary to test the hypothetic roles of these desatF
homologs on the diene diversity. It would not be surprised
if functional divergence at the desat1–desat2–desatF
clade drives the cuticular hydrocarbon diversification
among Drosophila species as studies on the desaturase
gene family and the pheromone diversification between
closely related species in moths have been well docu-
mented (Knipple et al. 2002; Roelofs and Rooney
2003; Xue et al. 2007).

Supplementary Material

Supplementary table S1 and figures S1 and S2 are
available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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Compared behavioral responses of male Drosophila mela-
nogaster (Canton-S) to natural and synthetic aphrodisiacs. J
Chem Ecol. 11:1617–1629.

Antony C, Jallon JM. 1982. The chemical basis for sex
recognition in Drosophila melanogaster. J Insect Physiol.
28:873–880.

Bai Y, Casola C, Feschotte C, Betrán E. 2007. Comparative
genomics reveals a constant rate of origination and convergent

Table 3
Summary of Major Cuticular Dienes and desatF-a Expression in Drosophila

Major Cuticular Dienes desatF-a

Species Male Female References Present Expression

D. melanogaster None n,(n þ 4)-C27:2;
n,(n þ 4)-C29:2

Antony and Jallon (1982);
Jallon (1984)

Yes Female specific

7,11-heptacosadiene;
5,9-heptacosadiene;
7,11-nonacosadiene

D. simulans None None Pechine et al. (1985);
Jallon and David (1987)

Yes No

D. sechellia n,(n þ 4)-C27:2 n,(n þ 4)-C27:2 Jallon and David (1987);
Cobb et al. (1989)

Yes Female biased
7,11-heptacosadiene (only ;1.4%

of total cuticular hydrocarbons)
7,11-heptacosadiene

D. yakuba None None Mas and Jallon (2005) Yes No
D. erecta None n,(n þ 14)-C33:2 Pechine et al. (1988) Yes Female specific

9,23-tritriacontadiene
D. ananassae n,(n þ 20)-C31:2; n (n þ 22)-C31:2 n,(n þ 20)-C31:2;

n,(n þ 22)-C31:2
Doi et al. 1997 No —

5,25-hentriacontadiene;
4,26-hentriacontadiene

5,25-hentriacontadiene;
4,26-hentriacontadiene

D. pseudoobscura n,(n þ 4)-C25:2; n (n þ 4)-C27:2 n,(n þ 4)-C25:2;
n,(n þ 4)-C27:2

Blomquist et al. (1985) Yes Bisexual

5,9-pentacosadiene;
5,9-heptacosadiene

5,9-pentacosadiene;
5,9-heptacosadiene

D. persimilis n,(n þ 4)-C25:2 n,(n þ 4)-C25:2 Noor and Coyne 1996 Yes Bisexual
5,9-pentacosadiene 5,9-pentacosadiene

D. willistoni n,(n þ (16;22))-Cm:2 n,(n þ (16;22))-Cm:2 Wang CC, Fang S,
unpublished data

No —

1454 Fang et al.

Supplementary table S1
figures S1
S2
http://www.mbe.oxfordjournals.org/


acquisition of functional retrogenes in Drosophila. Genome
Biol. 8:R11.

Betrán E, Thornton K, Long M. 2002. Retroposed new genes out
of the X in Drosophila. Genome Res. 12:1854–1859.

Blomquist GJ, Toolson EC, Nelson DR. 1985. Epicuticular
hydrocarbons of Drosophila pseudoobscura (Diptera; Droso-
philidae): identification of unusual alkadiene and alkatriene
positional isomers. Insect Biochem. 15:25–34.

Chertemps T, Duportets L, Labeur C, Ueda R, Takahashi K,
Saigo K, Wicker-Thomas C. 2007. A female-biased expressed
elongase involved in long-chain hydrocarbon biosynthesis
and courtship behavior in Drosophila melanogaster. Proc
Natl Acad Sci USA. 104:4273–4278.

Chertemps T, Duportets L, Labeur C, Ueyama M, Wicker-
Thomas C. 2006. A female-specific desaturase gene re-
sponsible for diene hydrocarbon biosynthesis and courtship
behaviour in Drosophila melanogaster. Insect Mol Biol.
15:465–473.

Clark NL, Aagaard JE, Swanson WJ. 2006. Evolution of
reproductive proteins from animals and plants. Reproduction.
131:11–22.

Cobb M, Burnet B, Blizard R, Jallon JM. 1989. Courtship in
Drosophila sechellia: its structure, functional aspects, and
relationship to those of other members of the Drosophila
melanogaster species group. J Insect Behav. 2:63–89.

Conant GC, Wagner A. 2003. Asymmetric sequence divergence
of duplicate genes. Genome Res. 13:2052–2058.

Coyne JA, Crittenden AP, Mah K. 1994. Genetics of a phero-
monal difference contributing to reproductive isolation in
Drosophila. Science. 265:1461–1464.

Coyne JA, Wicker-Thomas C, Jallon JM. 1999. A gene
responsible for a cuticular hydrocarbon polymorphism in
Drosophila melanogaster. Genet Res. 73:189–203.

Crosby MA, Goodman JL, Strelets VB, Zhang P, Gelbart WM.
the FlyBase Consortium. 2007. FlyBase: genomes by the
dozen. Nucleic Acids Res. 35:D486–D491.

Cusack BP, Wolfe KH. 2007. Not born equal: increased rate
asymmetry in relocated and retrotransposed rodent gene
duplicates. Mol Biol Evol. 24:679–686.

Dai H, Yoshimatsu TF, Long M. 2006. Retrogene movement
within- and between-chromosomes in the evolution of
Drosophila genomes. Gene. 385:96–102.

Dallerac R, Labeur C, Jallon JM, Knipple DC, Roelofs WL,
Wicker-Thomas C. 2000. A D9 desaturase gene with
a different substrate specificity is responsible for the cuticular
diene hydrocarbon polymorphism in Drosophila melanogaster.
Proc Natl Acad Sci USA. 97:9449–9454.

Doi M, Nemoto T, Nakanishi H, Kuwahara Y, Oguma Y. 1997.
Behavioral response of males to major sex pheromone
component, (Z,Z)-5,25-hentriacontadiene, of Drosophila ana-
nassae females. J Chem Eco. 23:2067–2078.

Drosophila 12 Genomes Consortium. 2007. Evolution of genes
and genomes on the Drosophila phylogeny. Nature.
450:203–218.

Fang S, Takahashi A, Wu CI. 2002. A mutation in the promoter
of desaturase 2 is correlated with sexual isolation between
Drosophila behavioral races. Genetics. 162:781–784.

Ferveur JF, Sureau G. 1996. Simultaneous influence on male
courtship of stimulatory and inhibitory pheromones produced
by live sex-mosaic Drosophila melanogaster. Proc R Soc
Lond B Biol Sci. 263:967–973.

Force A, Lynch M, Pickett FB, Amores A, Yan YL,
Postlethwait J. 1999. Preservation of duplicate genes by
complementary, degenerative mutations. Genetics. 151:
1531–1545.

Fox BG, Shanklin J, Somerville C, Munck E. 1993. Stearoyl-
acyl carrier protein D9 desaturase from Ricinus communis

is a diiron-oxo protein. Proc Natl Acad Sci USA. 90:
2486–2490.

Greenberg AJ, Moran JR, Coyne JA, Wu CI. 2003. Ecological
adaptation during incipient speciation revealed by precise
gene replacement. Science. 302:1754–1757.

Greenberg AJ, Moran JR, Fang S, Wu CI. 2006. Adaptive loss of
an old duplicated gene during incipient speciation. Mol Biol
Evol. 23:401–410.

Hahn MW, Han MV, Han SG. 2007. Gene family evolution
across 12 Drosophila genomes. PLoS Genet. 3:2135–2146.

Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S,
Kanehisa M. 2008. The repertoire of desaturases and
elongases reveals fatty acid variations in 56 eukaryotic
genomes. J Lipid Res. 49:183–191.

Hoffmann M, Hornung E, Bushch S, Kassner N, Ternes P,
Braus GH, Feussner I. 2007. A small membrane-peripheral
region close to the active center determines regioselectivity of
membrane-bound fatty acid desaturases from Aspergillus
nidulans. J Biol Chem. 282:26666–26674.

Howard RW, Blomquist GJ. 1982. Chemical ecology and bio-
chemistryof insect hydrocarbons.AnnRevEntomol. 27:149–172.

Howard RW, Blomquist GJ. 2005. Ecological, behavioral, and
biochemical aspects of insect hydrocarbons. Ann Rev
Entomol. 50:371–393.

Huelsenbeck JP, Ronquist F. 2001. MrBayes: Bayesian inference
of phylogenetic trees. Bioinformatics. 17:754–755.

Jallon JM. 1984. A few chemical words exchanged byDrosophila
during courtship and mating. Behav Genet. 14:441–478.

Jallon JM, David JR. 1987. Variations in cuticular hydrocarbons
among the eight species of the Drosophila melanogaster
subgroup. Evolution. 41:294–302.

Karolchik D, Baertsch R, Diekhans M, et al. (13 co-authors).
2003. The UCSC Genome Browser Database. Nucleic Acids
Res. 31:51–54.

Knipple DC, Rosenfield CL, You MM, Jeong SE. 2002.
Evolution of the integral membrane desaturase gene family
in moths and flies. Genetics. 162:1737–1752.

Labeur C, Dallerac R, Wicker-Thomas C. 2002. Involvement of
desat1 gene in the control of Drosophila melanogaster
pheromone biosynthesis. Genetica. 114:269–274.

Legendre A, Miao XX, Da Lage JL, Wicker-Thomas C. 2008.
Evolution of a desaturase involved in female pheromonal
cuticular hydrocarbon biosynthesis and courtship behavior
in Drosophila. Insect Biochem Mol Biol. 38:244–255.

Libisch B, Michaelson LV, Lewis MJ, Shewry PR, Napier JA.
2000. Chimeras of D6-fatty acid and D8-shingolipid desa-
turases. Biochem Biophys Res Commun. 279:779–785.

Long M, Betrán E, Thornton K, Wang W. 2003. The origin of
new genes: glimpses from the young and old. Nat Rev Genet.
4:865–875.

Lynch M, Conery JS. 2000. The evolutionary fate and
consequences of duplicate genes. Science. 290:1151–1155.

Mas F, Jallon JM. 2005. Sexual isolation and cuticular
hydrocarbon differences between Drosophila santomea and
Drosophila yakuba. J Chem Ecol. 31:2747–2752.

Meesapyodsuk D, Reed DW, Covello PS, Qiu X. 2007. Primary
structure, regioselectivity, and evolution of the membrane-
bound fatty acid desaturases of Claviceps purpurea. J Biol
Chem. 282:20191–20199.

Noor MA, Coyne JA. 1996. Genetics of a difference in cuticular
hydrocarbons between Drosophila pseudoobscura and D.
persimilis. Genet Res. 68:117–123.

Ohno S. 1970. Evolution by gene duplication. Berlin (Germany):
Springer-Verlag.

Ohta T, Nei M. 1994. Divergent evolution and evolution by the
birth-and-death process in the immunoglobulin VH gene
family. Mol Biol Evol. 11:469–482.

Molecular Evolution of Desaturase Genes 1455



Pechine JM, Antony C, Jallon JM. 1988. Precise characterization
of cuticular compounds in young Drosophila by mass
spectrometry. J Chem Ecol. 14:1071–1085.

Pechine JM, Pereza F, Antony C, Jallon JM. 1985. A further
characterization of Drosophila cuticular monoenes using
a mass spectrometry method to localize double bonds in
complex mixtures. Anal Biochem. 145:177–182.

Roelofs WL, Rooney AP. 2003. Molecular genetics and
evolution of pheromone biosynthesis in Lepidoptera. Proc
Natl Acad Sci USA. 100:9179–9184.

Swofford DL. 2002. PAUP*. Phylogenetic analysis using
parsimony (*and other methods). Sunderland (MA): Sinauer
Associates.

Takahashi A, Tsaur SC, Coyne JA, Wu CI. 2001. The nucleotide
changes governing cuticular hydrocarbon variation and their
evolution in Drosophila melanogaster. Proc Natl Acad Sci
USA. 98:3920–3925.

Tamura K, Subramanian S, Kumar S. 2004. Temporal patterns of
fruit fly (Drosophila) evolution revealed by mutation clocks.
Mol Biol Evol. 21:36–44.

Wang X, Grus WE, Zhang J. 2006. Gene losses during human
origins. PLoS Biol. 4:366–377.

Wicker-Thomas C, Henriet C, Dallerac R. 1997. Partial
characterization of a fatty acid desaturase gene in Drosophila
melanogaster. Insect Biochem Mol Biol. 27:963–972.

Wilson RJ, Goodman JL, Strelets VB, the FlyBase Consortium .
2008. FlyBase: integration and improvements to query tools.
Nucleic Acids Res. 36:D588–D593.

Xue B, Rooney AP, Kajikawa M, Okada N, Roelofs WL. 2007.
Novel sex pheromone desaturases in the genomes of corn
borers generated through gene duplication and retroposon
fusion. Proc Natl Acad Sci USA. 104:4467–4472.

Yang Z. 2006. Computational molecular evolution. Oxford:
Oxford University Press. p. 176–177.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum
likelihood. Mol Biol Evol. 24:1586–1591.

Zhang P, Gu Z, Li WH. 2003. Different evolutionary patterns
between young duplicate genes in the human genome.
Genome Biol. 4:R56.

Adriana Briscoe, Associate Editor

Accepted February 25, 2009

1456 Fang et al.


