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Abstract Postlactational involution is the process follow-
ing weaning during which the mammary gland undergoes
massive cell death and tissue remodeling as it returns to the
pre-pregnant state. Lobular involution is the process by
which the breast epithelial tissue is gradually lost with
aging of the mammary gland. While postlactational
involution and lobular involution are distinct processes,
recent studies have indicated that both are related to breast
cancer development. Experiments using a variety of rodent
models, as well as observations in human populations,
suggest that deregulation of postlactational involution may
act to facilitate tumor formation. By contrast, new human
studies show that completion of lobular involution protects
against subsequent breast cancer incidence.
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IL-10 interleukin-10

IRF-1 interferon regulatory factor-1
LAR leukocyte antigen related

LIF leukemia inhibitory factor

Mfge8 Milk fat globule-EGF-factor 8

MMP-3 matrix metalloproteinase-3

TA1 metastasis-associated protein 1

MUCI1 mucin

Plg plasminogen

RANK receptor activator of nuclear factor-«xB

SOCS3 suppressor of cytokine signaling 3

STAT3 signal transducer and activator of
transcription 3

STAT5a signal transducer and activator of
transcription S5a

TBRII transforming growth factor (3 receptor II

TGF«x transforming growth factor alpha

TGFp transforming growth factor f3

VDR vitamin D5 receptor

Introduction

Cancer can be viewed as a disease of defective develop-
ment, wherein the signaling processes that guide normal
tissue growth and morphogenesis become deregulated to
facilitate cancer cell proliferation and tissue invasion. For
breast cancer specifically, a large body of research has
focused on the role of developmental signaling pathways in
tumor progression; progress in this area has been facilitated
in part because unlike most organs, the majority of
mammary development occurs postnatally. At birth, the
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mammary gland is present as a primitive anlage; during
puberty, the epithelium branches and grows to fill the
gland. Importantly, many of the cellular processes that
control branching morphogenesis during normal breast
development are found to participate in tumor growth and
invasion as well [1].

Breast development does not stop with puberty; the
mature mammary gland also undergoes dramatic changes
with each cycle of pregnancy/lactation/postlactational invo-
lution (Fig. 1). During early pregnancy, the epithelium
proliferates extensively to form tissue structures for
producing milk, and then during late pregnancy and
lactation the epithelial cells differentiate further to become
specialized for high levels of milk component production.
After lactation is complete, weaning of the infant induces
postlactational involution, a process in which the majority
of epithelial cells rapidly undergo programmed cell death
and the remaining cells are remodeled into a glandular
structure that resembles the prepregnant state. As postlacta-
tional involution represents an important mechanism for
removing unnecessary epithelial cells in a regulated fashion,
in many ways this process appears diametrically opposed to
the uncontrolled epithelial proliferation evident in cancer.
Accordingly, there has been much interest in defining how
the signaling processes present in postlactational involution
become deregulated in cancer, where intrinsic cell apoptosis
mechanisms become suppressed. Investigations using ani-
mal models have revealed many of the specific mediators of
involution-associated apoptosis, remodeling, and inflamma-

Whole mount

tion, and also how selective modulation of these mediators
affect both the process of postlactational involution and
propensity for cancer development [2].

With organismal aging, there is a loss of breast epithelial
tissue which is distinct from postlactational involution, in
which the mammary gland gradually loses complexity and
function. In humans, this phenomenon has been defined as
age-related lobular involution. Lobular involution begins in
perimenopause and accelerates during menopause, and is
characterized as a decrease in the size and complexity of the
ductal tree and of the terminal ductal lobular units (TDLU)
[3]. While much remains to be learned about how lobular
involution is regulated, recent clinical studies have shown
that the process of lobular involution has considerable
significance for development of breast cancer, as premen-
opausal women who were found to have undergone partial
or complete lobular involution were also found to have
substantially decreased risk of breast cancer, while post-
menopausal women who showed delayed lobular involu-
tion were found to have a correspondingly elevated breast
cancer risk [4]. These findings suggest that reduction of
epithelial tissue associated with lobular involution may be a
physiologically protective mechanism against breast cancer.
In this review, we will briefly describe the processes of
postlactational involution and lobular involution, and
highlight investigations of these processes that have
provided insight into mechanisms of cancer development
and suggested new approaches for prevention or treatment
of breast cancer.

H&E

Involution

12 weeks Lactation

Figure 1 Mouse mammary gland morphogenesis. Whole mounts (top
row) and hematoxylin and eosin (H&E, bottom row) images of fourth
inguinal mammary glands. 12-week old mice have developed a ductal
tree that fills the fat pad. Lactating mice show extensive glandular
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growth and cellular differentiation, and this phenotype is rapidly lost
during postlactational involution. Aging mice show gradual degener-
ation of the mammary gland so that by 18 months, only a spindly ductal
structure remains. Scale bar for whole mount, 1 cm; for H&E, 50 um.
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Postlactational Involution and Breast Cancer

Mice provide a useful, tractable model for studying
postlactational involution, as normalization of the number
of suckling pups standardizes mammary differentiation
during lactation, and simultaneous removal of suckling
pups induces postlactational involution in a synchronous
fashion. Studies employing mouse models have shown that
postlactational involution proceeds through an initial,
reversible stage in which there is widespread apoptotic cell
death, followed by an irreversible second stage in which the
mammary gland is remodeled to the pre-pregnant state [5].
The first stage is triggered by cessation of suckling,
whereupon continued milk production causes distension of
the alveolar lumen. Nipple sealing experiments have shown
that this milk stasis is sufficient to induce the first stage of
postlactational involution, in which epithelial cells are shed
into the acinar lumen [6, 7]. These shed cells express
markers of apoptosis, including redistribution of phospha-
tidylserine to the outer leaflet of the cell membrane and
cleavage of the key apoptosis mediator caspase 3 [8],
although it is not clear whether apoptosis in these cells is a
cause or consequence of detachment from the basement
membrane [5].

The second, irreversible stage of postlactational involu-
tion begins at approximately 48 h after weaning. A gradual
reduction of circulating hormones during the first stage is
necessary for progression to this stage [7, 9]. Here, there is
glandular collapse, redifferentiation of adipocytes, and
remodeling of the ductal epithelium. Breakdown of the
basement membrane, a specialized extracellular matrix that
surrounds the mammary epithelium, is a key step in tissue
remodeling, and there is substantial expression of serine
and matrix metalloproteinases during the second stage of
involution [10]. Associated with loss of the basement
membrane, caspase 3-staining can be seen in the acinar
cell wall by 72 h.

While postlactational involution is normally a highly
controlled process, the rapid and extensive tissue break-
down and remodeling is not without risk. The highly
reactive nature of the remodeling gland is reminiscent of
pathological conditions such as wound healing and tumor
development. The proteinase expression profiles in the
remodeling gland are similar to that found in developing
breast tumors [11], and transcriptional profiling studies
have provided evidence of the activation of many inflam-
matory processes, including both innate and adaptive
immune responses [12—14]. These studies found an increase
in proinflammatory cytokines and neutrophil chemoattrac-
tants during the first stage of involution, followed by a
more sustained elevation of chemoattractants for and
markers of monocytes and macrophages during the second
stage. There were also a substantial number of transcripts

for immunoglobulins, indicating the presence of activated
B-cells. Analysis of the transcriptional profiles of post-
lactatational glands revealed a high level of similarity to
those found in wound healing and the tumor microenvi-
ronment, including expression of many growth factors,
cytokines, and tissue morphogens [15, 16].

Although postlactational involution normally proceeds
without pathological consequences, the deregulation of
tissue structure and activation of tumor microenvironment
characteristics may act to facilitate the outgrowth of
premalignant cells present in the mammary gland [17].
This possibility has been validated by experiments which
isolated extracellular matrix (ECM) from nulliparous or
postlactational mammary glands, and found that ECM from
the remodeling glands contained tumorigenic ECM frag-
ments that could facilitate outgrowth of breast cancer cells
in culture, as well as promote increased breast cancer
metastasis in animal models [18-20]. Intriguingly, the
tumor-promoting potential of the involuting mammary
gland has been suggested to underlie the elevated incidence
of breast cancer associated with pregnancy [17].

Transgenic Models of Postlactational Involution

A number of gene promoters are active in mammary
epithelial cells, and some are specifically activated during
pregnancy. Transgenic mouse models that use these
promoters to selectively activate or remove a particular
gene from mammary epithelial cells have greatly facilitated
the dissection of mammary gland developmental processes.
To date, more than 50 transgenic mouse models have been
reported to show alterations in postlactational involution
(Table 1). In many cases, the effect on involution is
consistent with previously identified expression patterns in
the involuting gland. Postlactational involution is inhibited
by the deletion of cytokines normally upregulated in the
involuting gland, such as FasL [21], IL-6 [22], IL-10 [23],
and LIF [24], and is accelerated by their premature
expression, as for TGF-33 [25]. Similarly, manipulation
of cell death pathways also alters the timing of postlacta-
tional involution: deletion of the apoptosis inducer Bax
delays involution, while decreased expression of the
apoptosis inhibitor Bcl2 accelerates involution [26, 27].
The secreted protein milk fat globule-EGF-factor 8 (Mfge8)
binds to apoptotic cells through recognition of phosphatidyl
serine in the outer leaflet and has been implicated in
phagocytosis; mice lacking Mfge8 have decreased clear-
ance of apoptotic cells and delays in the second stage of
postlactational involution [28, 29].

Transgenic models also have provided insight into the
complexity of the processes that govern postlactational
involution. Mammary gland remodeling is associated with
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Table 1 Transgenic mice with involution phenotypes and effects on tumor formationc.

Transgenic model

Involution effect

Mammary tumor effect

Akt2 deletion
MMTV-Aktl

Bax deletion
WAP-Bcl-2

Binl deletion
MMTV-p130Cas
MMTV-AN89[3-Catenin
MMTV-Cdc25B
C/EBPS deletion
MMTV-Cox-2
MMTV-CSF-1
MMTV-EGFR
MMTV-EphB4
MMTV-ErbB2/neu
WAP-FGF4

FasL deletion
MMTV-c-fms
gp130 deletion
WAP-IGF1
MMTV-IGF2

IKK?2 deletion

IL-6 deletion

IL-10 deletion

Jak2 deletion

LIF deletion

Mfge8 deletion
MMTV-MTALI
MMTV-MUCI

Mnt deletion
MMTV-Notchl

p53 depletion (BALB/c)
Plg depletion
PTEN deletion
MMTV-RANK
STAT3 deletion
TBRII deletion/inhibition
WAP-TGFa

VDR deletion

Aktl deletion
Lactoglobulin-ATF4

{3 1-integrin inhibition/deletion

Bcl-x deletion
MMTV-Cripto-1
IRF deletion
LAR deletion
WAP-MMP-3
MMTV-myc
SOCS3 deletion
STATS5a deletion
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Delayed [61]
Delayed [39, 41, 42]
Delayed [27]
Delayed [26, 27]
Delayed [63]
Delayed [64]
Delayed [65]
Delayed [66]
Delayed [68]
Delayed [69]
Delayed [70]
Delayed [71]
Delayed [73]
Delayed [38]
Delayed [74]
Delayed [21]
Delayed [70]
Delayed [75]
Delayed [76-78]
Delayed [80]

Delayed [82]

Delayed [22]

Delayed [23]

Delayed [80, 83]
Delayed [24]

Delayed [28, 29]
Delayed [84]

Delayed [85]

Delayed [86]

Delayed [88, 89]
Delayed [90]

Delayed [34]

Delayed [92]

Delayed [93]

Delayed [94, 95]
Delayed [96, 97]
Delayed [100]
Delayed [101]
Premature [61]
Premature [104]
Premature [105]
Premature [107]
Premature [46]
Premature [108]
Premature [109]
Premature [32, 33, 35]
Premature [26]
Premature [110]
Premature [111]

Promoted [62]
Promoted [39, 40]
Promoted [43]
Promoted [26, 44]
Promoted [63]
Promoted [64]
Spontaneous [65]
Promoted [67]
Promoted®
Spontaneous [69]
Spontaneous [70]
Spontaneous [71, 72]
Promoted [73]
Spontaneous [37]
Unknown

Unknown
Spontaneous [70]
Unknown

Promoted [79]
Spontaneous [81]
Unknown

Unknown

Unknown

Unknown

Unknown

Unknown
Spontaneous [84]
Spontaneous [85]
Spontaneous [87]
Spontaneous [88, 89]
Spontaneous [91]
Unknown
Spontaneous [92]
Promoted®
Unknown

Enhanced [97-99]
Spontaneous [100]
Spontaneous [102, 103]
Inhibited [62]
Unknown

Inhibited [106]
Unknown
Spontaneous [46, 47]
Unknown

Unknown
Spontaneous [48, 49]
Spontaneous [50]
Unknown

Inhibited [111, 112]
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Table 1 (continued).

Transgenic model

Involution effect

Mammary tumor effect

TIMP3 deletion
Lactoglobulin-TGF 33

Premature [113]
Premature [25]

Unknown

Unknown

ATF4 activating transcription factor 4; C/EBP) CCAAT/Enhancer Binding Protein &; Cox-2 cyclooxygenase-2; CSF-1 colony stimulating factor-1;
EGFR epidermal growth factor receptor; FGF4 fibroblast growth factor 4; /GF insulin-like growth factor; /KK2 IkB kinase 2/f3; IL-6 interleukin-
6; IL-10 interleukin-10; /RF-I interferon regulatory factor-1; LAR leukocyte antigen related; L/F' leukemia inhibitory factor; Mfge8 Milk fat
globule-EGF-factor 8; MMP-3 matrix metalloproteinase-3; 74/ metastasis-associated protein 1; MUC! mucin; Plg plasminogen; RANK receptor
activator of nuclear factor-kB; SOCS3 suppressor of cytokine signaling 3; STAT3 signal transducer and activator of transcription 3; STAT5a signal
transducer and activator of transcription 5a; TBRII transforming growth factor {3 receptor II; 7GFa transforming growth factor alpha; TGF[3

transforming growth factor (3; VDR vitamin D3 receptor
 personal communication, Esta Sterneck

® personal communication, William McDougall

increased expression of a number of proteases, including
matrix metalloproteinase-3 (MMP-3) and plasminogen
(Plg) [30, 31]. Accordingly, induced expression of MMP-
3 causes premature involution while deletion of Plg causes
delays in glandular remodeling [32—35]. However, further
examination reveals that these proteases affect mammary
gland development though multiple mechanisms. Mice
lacking MMP-3 do not show a significant delay in
involution but rather altered differentiation of adipocytes
[33], potentially implicating overlapping functions of
different MMPs; mice lacking Plg show evidence of
premature activation of the first stage of postlactational
involution, possibly through increased milk production in
these mice [36].

Many of these transgenic mouse models revealed
unexpected connections between the processes of postlacta-
tional involution and mammary tumor growth and progres-
sion. In some cases, mouse models which were created to
investigate the effects of increased expression of breast
oncogenes (ErbB2/neu [37, 38] and Aktl [39-42]) were
found subsequently to have delays in postlactational
involution. Similarly, many of the transgenic mice that
show alterations in postlactatational involution also show
increased tumor development or progression. In some of
these cases, the connection between the two phenomena is
straightforward: suppression of cell death delays involution
and facilitates tumor progression in mice lacking Bax [27,
43] or expressing Bcl-2 [26, 27, 44] or Aktl [39, 41, 42].

For many transgenic mice showing both delayed post-
lactational involution and increased tumor production, the
relationship between the two functions is not clear. In some
cases, there may be unexpected, yet-to-be-identified tumor
signaling pathways. However, another possibility is that
delayed involution enhances the intrinsic tumor promoting
capability of the postlactational mammary gland, identified
in cell culture and animal studies and implied by the
increased incidence of pregnancy-associated breast cancer
in humans [17]. Moreover, as disruption of tissue structure

can activate genomic instability [45], prolonged postlacta-
tional involution could potentially foster both cancer
initiation and progression.

Examples that appear at variance with the correlation
between delayed postlactational involution and increased
tumorigenesis include mice overexpressing Cripto [46, 47],
MMP3 [32, 33, 35, 48, 49] or myc [26, 50], which show
premature involution but increased incidence of cancer. In
some cases, the transgene may impair mammary develop-
ment during pregnancy, which could complicate compar-
isons of involution rates, as has been suggested for mice
overexpressing Cripto [46, 47]. While the reason for
premature involution in MMP3-and myc-overexpressing
mice remains unclear, these models may reflect activation
of common signaling pathways, as exposure of mammary
epithelial cells to MMP3 was previously found to increase
expression of myc [51]. We point out that for many of the
transgenic mice with defects in postlactational involution,
the effect on tumor progression remains unknown; similar-
ly, many mammary tumor models have never been
investigated for rate of postlactational involution, and this
represents a critical area for future research. More complete
characterization of the involution phenotype for mammary
tumor-associated transgenic mouse models may eventually
assist in unraveling the complex relationships between
involution pathways and cancer.

Lobular Involution and Breast Cancer

Lobular involution is a distinct process from postlactational
involution. Unlike the dramatic cell death and morphogen-
esis following weaning, lobular involution is associated
with a gradual decrease in the complexity and extent of
ductal epithelium with age (Fig. 2). While aging mice show
an epithelial degeneration process that is reminiscent of
lobular involution (Fig. 1), most research about lobular
involution has focused on human studies. While there are
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Figure 2 Breast whole mounts of preinvolutional (a) and postinvolu-
tional (b) women. Reprinted with permission of Springer Science+
Business Media. Originally published in “Handbuch der mikroskopi-
schen Anatomie des Menschen.” (W. Bargmann, ed.), Vol 3, part 3,
Haut und Sinnesorgane, pp. 277-485, 1957. Springer-Verlag, Berlin).

substantial similarities between human and mouse mam-
mary glands, there are important differences as well. The
human breast is organized into 15-20 major lobes, each
made up of lobules that contain the milk-forming acini; the
acini are grouped at the ends of the ducts to form structures
known as terminal duct lobular units (TDLUs; see inset,
Fig. 3a). During pregnancy and lactation, the TDLUs
develop into secretory, milk-producing, lobular alveoli,
and the surrounding fat cells diminish [52]; during
postlactational involution, the TDLUs return to the pre-
pregnant state without a cumulative loss of glandular tissue
[53, 54]. By contrast, age-related lobular involution appears
to be an irreversible process, in which the number and size
of acini per lobule are reduced and the delicate intralobular
stroma is replaced with collagen from connective tissue
(Fig. 3b) [3]. Ultimately the glandular epithelium and
stroma regress and are replaced by fat [55]. The tempo
and extent of lobular involution vary considerably among
individual women [3]; in an autopsy series, evidence that
lobular involution had begun was found in up to 33% of
women younger than 40 years of age [56].

A recent study investigated pathological characteristics of a
large cohort of women who had breast biopsies with benign
findings (benign breast disease, BBD) at the Mayo Clinic
[57]. Besides evaluating the standard features such as extent
of epithelial proliferation and the presence or absence of
atypia in these samples, this study noted the extent of lobular
involution that had occurred in the normal breast lobules, and
found that lobular involution was associated with a signifi-
cantly reduced risk of breast cancer [4]. While this finding is
consistent with the widespread understanding that lobules (or
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TDLUs) are the anatomic substructure that gives rise to
breast cancer [58], this study was particularly significant in
that progressive degrees of involution were associated with
reduced cancer risk in high-risk subsets defined by age,
atypia, reproductive history or family history (Fig. 4). For
example, women over age 55 without demonstrable lobular
involution had a 3-fold increased risk of breast cancer over
same-aged women with complete involution (Fig. 4). Of
note, about 5% of women before age 50 had complete
involution of their breast tissue, while complete involution
was seen in more than 20% of women aged 50-59,
presumably coinciding with menopause [4]. Interestingly,
the step-up in completion of involution around age 50
coincides with the well-recognized slowing in the rate of
increase of breast cancer at that age, raising the possibility

Interlo
stroma

Individual
acini

Terminal
duct

Intralobular

stroma

Figure 3 Histologic features of age-related lobular involution. a
Noninvoluted breast tissue shows multiple, large terminal duct lobular
units (TDLU) which contain numerous acini and which are separated
from neighboring TDLU by specialized stroma. b Breast tissue with
complete lobular involution shows scattered, sparse lobules containing
few acini. Scale bars, 500 um. Modified with permission from [4].
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Figure 4 Association of breast cancer risk with lobular involution.
Relative risks (as indicated) and their 95% confidence intervals (error
bars) reflect the observed number of events compared with the
number of expected events on the basis of Iowa Surveillance,
Epidemiology, and End Results (SEER) data. All results account for
the effects of age and calendar period. a Involution and histology. b
Involution and age. N = no involution; P = partial involution; C =
complete involution; NP = nonproliferative; PDWA = proliferative
disease without atypia; AH = atypical hyperplasia. Reproduced with
permission from [4].

that involution is contributing to this phenomenon [59]. The
results of this study were recently corroborated in an analysis
of patient samples from the Nurses’ Health Study, which
found that smaller lobular size was associated with decreased
risk of cancer [60].

Conclusions and Future Directions

Investigations of postlactational involution using genetic
mouse models have revealed an incredible complexity to the
process: modulation of more than 50 different genes, through
knockout or introduction of a breast-specific transgene, has

been found to delay or accelerate postlactational involution.
That so many distinct molecular pathways are involved in
regulation of postlactational involution in a nonredundant
fashion indicates the complexity of this developmental
process; that so many of the models also show a tumor
developmental phenotype shows how deregulation of devel-
opmental pathways can be a stimulus for cancer development
and progression. At present, the bulk of the evidence points to
a correlation between delayed postlactational involution and
increased cancer formation, suggesting tumor-promoting
microenvironmental influences within the postlactational
gland; this interpretation is consistent with the hypothesis that
postlactational involution may underlie the phenomenon of
pregnancy-associated breast cancer [17]. However, the
corresponding expectation that premature involution should
therefore be associated with decreased tumorigenesis is not
as clear. It should be noted that the tumor phenotype has not
been established for many genetic mouse models showing
altered postlactational involution; a better understanding of
the individual signals linking postlactational involution and
tumorigenesis will likely follow from a better characteriza-
tion of these models, as well as from characterization of
postlactational defects in traditional mammary tumor models.
Lobular involution, while recognized as a physiological
process for some time, has only recently been linked to
cancer development. Unlike postlactational involution, very
little is known about the signaling processes that control
lobular involution, or even why lobular involution is
assocated with decreased cancer risk, although a simplistic
possibility is that removal of epithelial cells eliminates the
progenitor population for tumor formation. A curious
aspect to the newly identified relationship between lobular
involution and breast cancer is that lobular involution
appears to be an age-related protective process. While
cancer incidence usually increases with age, and so aging
can be seen as a general risk factor, it appears that the
failure of breast aging in postmenopausal women is related
to increased risk of cancer development. Much additional
research is required to understand how lobular involution is
induced, why some women initiate lobular involution
before menopause while others fail to undergo lobular
involution even after menopause, and how lobular involu-
tion protects from breast cancer. A better understanding of
these processes will help to inform individualized patient
risk stratification, and may ultimately lead to medical
interventions designed to induce lobular involution for the
physiological prevention of breast cancer [59].
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