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Slit proteins are secreted ligands that interact with the Round-
about (Robo) receptors to provide important guidance cues in
neuronal and vascular development. Slit–Robo signalling is
mediated by an interaction between the second Slit domain and
the first Robo domain, as well as being dependent on heparan
sulphate. In an effort to understand the role of the other Slit
domains in signalling, we determined the crystal structure of the
fourth Slit2 domain (D4) and examined the effects of various Slit2
constructs on chick retinal ganglion cell axons. Slit2 D4 forms a
homodimer using the conserved residues on its concave face, and
can also bind to heparan sulphate. We observed that Slit2 D4
frequently results in growth cones with collapsed lamellipodia
and that this effect can be inhibited by exogenously added
heparan sulphate. Our results show that Slit2 D4–heparan
sulphate binding contributes to a Slit–Robo signalling mechanism
more intricate than previously thought.
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INTRODUCTION
Slit ligand proteins secreted by the midline are important in
neuronal development as they mediate a change in axonal
response from attraction to repulsion. This change occurs when
Slit binds to the transmembrane Roundabout (Robo) receptors of
commissural neurons that have crossed the spinal cord floorplate
(reviewed in Dickson & Gilestro, 2006). The Slits are large multi-
domain proteins characterized by four consecutive leucine-rich
repeat (LRR) domains (D1–D4) at their amino terminus. The
minimal component required for Slit–Robo signalling is the
N-terminal LRR region of Slit2 (Chen et al, 2001; Nguyen
Ba-Charvet et al, 2001), specifically Slit D2 (Howitt et al, 2004)
and a fragment spanning Robo domains Ig1 and Ig2 (Ig1–2; Liu
et al, 2004). The structure of Slit2 D2 bound to Robo1 Ig1 showed
that these domains interact through highly conserved electrostatic
and hydrophobic regions (Morlot et al, 2007b). Heparan sulphate
(HS), a highly charged polysaccharide, is essential in the repulsive
guidance activities of Slit2 (Hu, 2001; Inatani et al, 2003), and
Syndecan, a transmembrane protein containing HS, was later
identified as a necessary component for Slit–Robo signalling
(Johnson et al, 2004; Steigemann et al, 2004). Heparin, a
chemically related analogue of HS, binds to both Slit2 D2 and
Robo Ig1–2 (Hussain et al, 2006). In fact, the recent structure of
Drosophila Robo Ig1–2 in complex with heparin shows that the
Robo and Slit D2 heparin-binding sites are in close proximity,
resulting in a continuous binding patch (Fukuhara et al, 2008).
These results suggest that HS forms an integral part of the
Slit–Robo signalling complex.

Slit dimerization is mediated by D4 and might be important for
Slit–Robo signalling (Howitt et al, 2004). Here, we present the
structure of the Slit2 D4 domain and show that it forms a stable
non-symmetrical dimer through highly conserved residues on its
concave face. Functional studies on the effect of Slit2 constructs
on chick retinal–ganglion-cell (RGC) axons show that a Slit2
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fragment spanning domains D2–D4, as well as the individual
domains D2 and D4, elicits a response in vitro. Furthermore, we
show that Slit2 D4 can bind to HS in vitro and that exogenously
added HS can inhibit the collapse response of chick RGC growth
cones to Slit2 D4. Taken together, these results provide
compelling evidence that Slit2 dimerization is functionally
relevant and that heparin binding to Slit2 is more complex than
understood earlier.

RESULTS AND DISCUSSION
Overall structure
The Slit2 D4 structure was solved by molecular replacement using
a modified model of human Slit2 D3 (Morlot et al, 2007a) and was
refined at 1.8 Å resolution. The crystallographic asymmetrical unit
contains two molecules in an anti-parallel dimeric arrangement.
Each monomer adopts a slightly curved right-handed LRR fold
similar to that of other Slit2 LRR domains (Morlot et al, 2007a, b).
Slit2 D4 has five LLRs and two flanking cysteine-rich capping
domains (Fig 1A). The concave face is composed of a continuous
seven-stranded b-sheet. The first two b-strands are anti-parallel
and form the N-terminal cap, whereas each of the five LRRs
contributes a parallel b-strand. The convex surface is composed of
variable loops and short helices. As seen for Slit2 D2 and D3, the
N-terminal cap is a double hairpin stabilized by two disulphide
bridges, whereas the carboxy-terminal cap adopts an irregular fold
containing a 12-residue a-helix, two 310 helices and two
disulphide bridges.

Slit2 D4 dimer
Multi-angle laser light scattering (MALLS) confirmed that Slit2 D4
exists as a homodimer in solution (data not shown). The dimer has
a compact globular shape (30 Å� 60 Å� 70 Å) (Fig 1B) and shows
a quaternary structure resembling that of the extracellular-matrix
protein decorin (Fig 1C,D; Scott et al, 2004). Both decorin and
Slit2 D4 dimerize through their concave face, but in distinct ways.
The decorin dimer is mainly formed by interactions involving the
N-terminal capping domain, LRR1 and the central LRRs, but not
the C-terminal LRRs. In Slit2 D4, the entire domain, including the
C-terminal cap, is involved. In addition, unlike decorin, the Slit2
D4 dimer is not perfectly symmetrical, as the two monomers differ
in conformation (r.m.s.d.181Ca¼ 0.45 Å). The most significant
difference occurs between residues 875 and 881, where the Ca
positions deviate by as much as 2.4 Å. This region corresponds to
the ‘b-switch’ loop, which adopts different conformations in the
free and ligand-bound structures of glycoprotein Ib-a (Huizinga
et al, 2002) and which characterizes this class of LRR domains.

The dimer interface
Dimerization buries 1,240 Å2 of the solvent-accessible surface for
each monomer of Slit2 D4. This represents 13.6% of the total
surface, which is significantly larger than the buried Slit2 D2
surface on binding to Robo1 Ig1 (657 Å2). Dimerization involves
mainly electrostatic interactions, but several hydrophobic residues
from LRR 2–5 and the C-terminal capping domain (Leu 781,
Ile 807, Leu 829, Ala 855, Ile 883, Leu 896 and Leu 898) also
participate. An important feature of the dimer interface is the
b-switch loop, which reaches deep into the concave surface of the
opposite monomer, forming extensive intermolecular contacts
(Fig 2A–C). The atomic B-factors of the loop are comparatively

higher in one of the two monomers, suggesting that the dimer
tolerates flexibility within its interface, a property linked to high
affinity (Seiradake et al, 2006).

The dimer interface contains a total of 11 direct intermolecular
hydrogen bonds. Arg 885 contributes six of these by forming a salt
bridge with Asp 762 and Asp 783 and a hydrogen bond with
Ser 785 (Fig 2D). Arg 828 and Glu 877 form an additional
salt bridge, which is non-symmetrical because of differences in
the two b-switch loops (Fig 2A,B). Similarly, there are non-
symmetrical hydrogen bonds involving His 853: to avoid steric
clashes with the adjacent b-switch loop, the two His 853 side
chains hydrogen bond to either the Ser 852 or the Tyr 878
carbonyl group (Fig 2C). This results in the His 853 imidazole
ring of monomer A becoming sandwiched between Pro 881 and
the His 853 imidazole ring of monomer B. Two additional
hydrogen bonds are observed between Tyr 760 and Thr 899, with
the Tyr side chain also maintaining hydrophobic interactions. Last,
18 well-ordered water molecules mediate an extensive network of
hydrogen bonds, which further stabilize the dimer interface (Fig 2E).

Heparan sulphate binding
The surface of the Slit2 D4 homodimer shows a striking
electrostatic potential distribution, with the top surface being
highly negatively charged and the bottom mainly positively
charged (Fig 3A,C). More specifically, the bottom face shows
three basic patches, one from each monomer and one from the
dimer interface. Contributing to these patches are residues
Lys 746, Arg 788, Arg 812 and Arg 814. The distribution of basic
residues extends around the sides to cover the N-terminal half of
each molecule in the dimer (Fig 3C). Here, the contributing
residues include Lys 750, Arg 754, Lys 771 and Lys 777. In the
basic patch at the dimer interface, we observe a well-ordered
sulphate ion (Fig 3A,C). This ion is held tightly in place, forming
hydrogen bonds with Tyr 810 and His 833 from each monomer
and four water-mediated hydrogen bonds with the protein
backbone (Fig 2F).

Heparin is an integral part of Slit–Robo signalling and has been
shown to bind to Slit2 D2, the C-terminal cysteine-knot domain of
Slit2 and Robo1 Ig1–2. Although heparin has not been implicated
in binding to Slit2 D4, the large basic regions and the conspicuous
sulphate-binding site suggest a possible interaction. To test this
hypothesis, we carried out surface plasmon resonance experi-
ments in which either Slit2 D2 or Slit2 D4 was flowed over a
HS-conjugated sensor chip. We observed a strong interaction
between Slit2 D4 and HS, characterized by a dissociation constant
(Kd) of 50 nM (supplementary Fig S5B online). Although this
domain binds to HS more weakly than Slit2 D2 (Kd¼ 10 nM;
supplementary Fig S5C online), the results nevertheless support
our structure-based hypothesis and we were able to reduce HS
binding by reversing the charge of the large basic region on the
bottom face (data not shown).

Biological activity of Slit2 constructs
Full-length Slit2 and Slit2 D2 have previously been shown to
cause the collapse of chick and Xenopus RGC axon growth cones
(Hussain et al, 2006; Piper et al, 2006). We carried out similar in
vitro assays with our Slit2 constructs on chick RGCs and tested
them in a ‘stripe and collapse’ assay. When presented in substrate-
bound form, the Slit2 D2–D4 fragment (encompassing D2, D3 and
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D4), Slit2 D2 and Slit2 D4 are all equally avoided by growing
axons that can choose between the respective Slit2 construct and
laminin (data not shown) or FC (fragment constant, Fig 4A), a
neutral protein substrate. In the collapse assay, both soluble Slit2

D2–4 (data not shown) and Slit2 D2 resulted in typical growth
cone collapse with fully retracted lamellipodia and filopodia
(Fig 4B). Here, Slit2 D2–4 induced a collapse of more than 75% of
the growth cones at protein concentrations 5–10 times lower than
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Fig 1 | Structure of Slit2 D4 and the Decorin dimer in similar orientations. The Slit2 D4 and decorin amino-terminal caps are coloured purple, whereas

their carboxy-terminal caps are coloured blue and cyan. The LRRs are coloured orange and the disulphide bridges are in yellow (Slit2 D4 N-terminal

cap: Cys 727–Cys 733 and Cys 731–Cys 740; Slit2 D4 C-terminal cap: Cys 863–Cys 886 and Cys 865–Cys 907). The sulphate ion is indicated by sticks.

(A) Human Slit2 D4 monomer. (B) Human Slit2 D4 dimer. (C) Bovine decorin monomer. (D) Bovine decorin dimer.
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those used with the Slit2 D2 domain (data not shown). Slit2 D4
also affected the growth of chick RGCs at concentrations similar to
those used with Slit2 D2. In this case, however, the majority of the
growth cones showed a ‘bare branch morphology’, characterized
by elongated filopodia and collapsed lamellipodia (Fig 4B).
Quantifications of growth-cone responses to the different Slit2
constructs are given in Fig 4C.

Soluble heparin inhibits the collapse of Xenopus RGCs induced
by full-length Slit2 but not by Slit2 D2 (Hussain et al, 2006). This
led to the conclusion that heparin might have a dual function in
Slit–Robo signalling, reflecting the heparin-binding properties of
the Slit2 D2 and Slit2 CT domains. In line with this, we find that
soluble HS oligomers (12-mers) inhibit the collapse of chick RGC
growth cones induced by Slit2 D2–4 (data not shown). We also
found a partial reduction of Slit2 D2-induced collapse by HS
oligomers (Po0.005; w2-test). More interesting is the fact that the
addition of HS oligomers to the cell-culture medium abolished the
bare branch morphology of growth cones induced by Slit2 D4 and
led to a morphology indistinguishable from controls using HS
oligomers alone (Po0.005; w2-test) (Fig 4C).

Slit D4 sequence comparison
Slit D4 domains are highly conserved among bilateral organisms
(for example, human Slit2 D4 has 98% and 53% sequence identity
to its murine and Drosophila orthologues; supplementary Fig S6
online). The most highly conserved residues map to the concave

dimerization surface of the molecule, whereas the convex face is
much less conserved (Fig 3B). The conservation of residues in the
D4 dimer interface and the large, accessible surface area buried
on dimerization (B2,500 Å2) strongly suggest that all Slit family
members dimerize in a similar manner through the fourth LRR
domain. Out of the 21 residue positions involved in dimerization,
11 are invariant across the sequence alignment, including
a continuous motif comprising residues 882–886 within the
b-switch loop. Seven residue positions are either identical or show
highly conservative substitutions across homologues. Only three
positions show chemically significant variations: two (Leu 781 and
Glu 877) are located at the periphery of the dimer interface,
whereas the third (Lys 879) participates in dimer formation
exclusively through main-chain atoms. Hence, variations at these
positions are not expected to significantly compromise dimeriza-
tion. In addition, our attempts to disrupt the dimerization interface
by multiple mutageneses have so far failed, indicating a high
stability of the dimer (supplementary information online).

The sulphate-binding residues, Tyr 810 and His 833 (which are
integral to the dimerization interface), are strictly conserved across
the Slit D4 domains. By contrast, the potential heparin-binding
residues on the bottom face (Lys 746, Arg 788, Arg 812 and
Arg 814) and those on the N-terminal convex face (Lys 750,
Arg 754, Lys 771 and Lys 777) are less well conserved in other Slit
family members (supplementary Fig S6 online). In fact only three
of these seven residues are conserved in Drosophila. This might

Slit2 D4 monomer

Concave face
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Convex face

Slit2 D4 dimer

Top view Bottom view

Fig 3 | Sequence conservation and electrostatic surface representation of Slit2 D4 with the sulphate ion in sticks. (A) Structural representation, in four

orientations and coloured as in Fig 1. (B) Sequence surface conservation as viewed in (A) and coloured in green: identical; yellow: partly conserved;

white: poorly conserved. (C) Electrostatic surface potential calculated with Adaptive Poisson–Boltzmann Solver (APBS; Baker et al, 2001; from �2

coloured in red: negatively charged, to þ 2 coloured in blue: positively charged).
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explain why no heparin interaction with Drosophila Slit D4 was
observed (Hussain et al, 2006). The heparin-binding potential of
the fourth LRR domain is therefore likely to vary among Slit
homologues, which might be important for modulating the
functional properties of different Slits.

A functional role for Slit2 D4
Our in vitro assays show that chick RGCs were responsive to
similar concentrations of Slit2 D2 and D4. In contrast to Slit2 D2,
which leads to a full collapse and retraction of the growth cone,
Slit2 D4 has a less pronounced effect, collapsing only lamelli-
podia and leaving filopodia mainly intact. We also observed that
Slit2 D2–D4 fragment elicited growth cone collapse at much
lower concentrations than Slit2 D2. Thus, although dimerization
might not be essential for an axonal response, it clearly has a
potentiating effect. How Slit2 D4 elicits a response is unclear, as
Slit2 D4 is not known to bind to a Robo receptor and does not
bind to Robo1 (data not shown). One possibility is that the

interaction of Slit2 D4 with cell-surface HS elicits a response.
Such an interaction might feasibly be mediated by Syndecan,
which is known to be important for Slit–Robo signalling in
Drosophila (Johnson et al, 2004; Steigemann et al, 2004). These
studies suggested that Syndecan acts as a co-receptor
by presenting Slit to Robo and stabilizing the complex, but
the possibility that the highly conserved cytoplasmic domains
of Syndecan might have a more subtle modulatory function
was not ruled out.

More recent studies support the Slit–Robo HS stabilizing effect,
where the loss in response of Xenopus RGC axons towards Slit2
D2 on treatment with heparinase 1 can be reversed by the
addition of soluble heparin (Hussain et al, 2006). However, it is
not understood why chick and Xenopus RGCs are unresponsive to
full-length Slit2 constructs incubated with heparin but remain
responsive to heparin-incubated Slit2 D2. This has been suggested
to be because heparin has a dual role in signaling: modulating the
Slit2 distribution through its CT region; and participating in a
ternary Slit2–Robo1–heparin complex that is necessary for
signalling (Hussain et al, 2006). In our studies, Slit2 D2–4
complex, which lacks the CT region, Slit2 D4 and, at least partly,
Slit2 D2 remain sensitive to incubation with HS. These results
are indicative of a more complex signalling mechanism that
involves HS.

Syndecans are better known as co-receptors but they have
been shown to signal independently (Couchman, 2003). In
Caenorhabditis elegans it has been reported that SAX-3/Robo
has a SLT-1/cSlit1 independent function, which is dependent on
certain heparin modifications (Bulow & Hobert, 2004), and that
Syndecan can function autonomously in axon guidance (Rhiner
et al, 2005). Syndecan can also regulate neuronal growth-cone
signalling by interacting with other HS receptors, such as the
leukocyte-common antigen-related (LAR)-receptor tyrosine phos-
phatase in Drosophila (Fox & Zinn, 2005). In addition, others have
shown that Robo can bind to heparin alone (Hussain et al, 2006;
Fukuhara et al, 2008). Our observation that Slit2 D4 is active on
growing RGC axons in a HS-dependent manner raises the
possibility that Slit2 D4 might interact with Syndecan to induce
a partial cytoskeletal rearrangement, resulting in the bare branch
morphology. Indeed, other HS-binding receptors at the cell
surface, such as LAR or Robo, could also be implicated in
modulating such a signal. In conclusion, our results show an
important role for Slit2 dimerization through Slit2 D4. Further-
more, that purified Slit2 D4 has a HS-dependent effect suggests
that D4 has a more complex part in Slit2 signalling than as a
simple dimerization module. Clearly, further studies are required
to identify the HS-dependent interaction partners of Slit2 D4 on
the cell surface.

METHODS
Preparation of Slit2 domains. Human Slit2 constructs (Slit2 D2
(residues 271–479), Slit2 D4 (residues 726–907) and Slit2 D2–4
(residues 271–907)) were essentially produced and purified as
described earlier (Morlot et al, 2007a). Further detail can be found
in the supplementary information online.
Crystallization and X-ray data collection of Slit2 D4. Purified and
deglycosylated Slit2 D4 was crystallized from solutions containing
0.2 M LiSO4, 0.1 M Tris pH 8.5 and 30% polyethyleneglycol
4000. The crystals were frozen in a cryoprotectant solution
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containing all solution components and 10–15% glycerol, and
diffraction data were collected at the European Synchrotron
Radiation Facility (Grenoble, France; beamline ID14-EH4). Further
details can be found in the supplementary information online.
Growth cone stripe and collapse assays. RGCs were dissected
and cultivated overnight in F12 medium on a laminin-coated
coverslip. To test the effect of a protein, the protein solution was
mixed with culture medium. The culture medium of the explants
was exchanged with the protein-containing medium and the
cultures were incubated for 30 min at 37 1C. To test the inhibitory
effect of HS the RGCs were first incubated with fresh medium
containing HS, followed by incubation with medium containing
HS and protein solution. The cultures were then fixed, stained
with fluorescently labelled phalloidin and photographed for
growth-cone collapse evaluation. For the stripe assay, the protein
was not added to the culture medium after outgrowth, but rather
bound in a striped pattern onto the cover slip on which the axons
were cultivated. To produce a striped pattern, a silicone matrix
with small channels was placed on a coverslip and filled with
protein solution. The pattern was then coated with laminin. To
make the patterns visible, the protein of interest was mixed with a
fluorescently labelled inactive protein. Further details on the
in vitro stripe and collapse assays that were used to analyse the
effect of Slit2 constructs on chick RGCs are described in the
supplementary information online.
Surface plasmon resonance spectroscopy binding assay. HS was
biotinylated at the reducing end and immobilized on a BiAcore
(Uppsala, Sweden) sensorchip. One flow cell was left untreated
and used as a negative control. For binding assays, the proteins
were simultaneously injected over the control and the HS. Further
details can be found in the supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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