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Abstract

To better understand how individual genes and experience influence behavior, the role of a single homeotic unit, hoxb4a,
was comprehensively analyzed in vivo by clonal and retrograde fluorescent labeling of caudal hindbrain neurons in a
zebrafish enhancer-trap YFP line. A quantitative spatiotemporal neuronal atlas showed hoxb4a activity to be highly variable
and mosaic in rhombomere 7–8 reticular, motoneuronal and precerebellar nuclei with expression decreasing differentially in
all subgroups through juvenile stages. The extensive Hox mosaicism and widespread pleiotropism demonstrate that the
same transcriptional protein plays a role in the development of circuits that drive behaviors from autonomic through motor
function including cerebellar regulation. We propose that the continuous presence of hoxb4a positive neurons may provide
a developmental plasticity for behavior-specific circuits to accommodate experience- and growth-related changes. Hence,
the ubiquitous hoxb4a pleitropism and modularity likely offer an adaptable transcriptional element for circuit modification
during both growth and evolution.
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Introduction

The hindbrain contains a broad neuronal diversity essential for

survival in all vertebrates [1,2]. Comparative developmental

studies have shown it to be subdivided into segments, or

rhombomeres, wherein serial repeats give rise to specific cranial

motoneurons (IV–XII) along the anterior-posterior axis [3]. As the

finite transition to spinal cord, the most caudal hindbrain

rhombomeres (r7–8) are morphologically different from the rostral

r2–6 by being more than twice as large and exhibiting no visible

caudal boundary (Fig. 1A–J). In zebrafish, r7–8 gives rise to highly

specialized neurons and circuits for cardiac-respiratory and

intestinal function [4], locomotion [5] and posture [2,6] along

with the major precerebellar circuits responsible for motor

coordination and learning [7,8,9]. Many r7–8 neurons such as

the inferior olivary, vocal, electromotor and respiratory exhibit

pacemaker-like rhythmic physiological properties suggesting that

this compartment might be uniquely specified and evolutionary

conserved for premotor circuitry underlying rhythmic behaviors

[2,10]. Ancestral conserved hindbrain genetic regulatory pathways

also exhibit a combinatorial expression of Hox genes [11,12];

however, the role of any 59 Hox gene in either the formation or

maturation, let alone the evolutional modification, of rhythmic

circuits for any behavior remains unexplored [13].

Originally conceived as being important for body segmentation

in insects, Hox genes have been conventionally suggested to

pattern (i.e., segment) the embryonic vertebrate hindbrain during

pre-rhombomeric neurulation stages [14]. Emerging evidence

from loss-of-function experiments have shown Hox genes to act

equally well at cellular levels, greatly influencing the neuronal

diversity in the hindbrain [15,16] and spinal cord [17,18]. A

number of Hox genes are expressed in the vertebrate hindbrain

with different anterior boundaries, and Hox4 paralogs appear to

be the major rhombomeric-specific group that delineates r7–8

[19]. The overlap of Hox4–6 genes in r7–8 suggests further genetic

subdivisions; however, so far there is no evidence causally linking

any given Hox gene, including the Hox4 paralogs, to either a

specific hindbrain neuronal subtype or behavioral role. While Hox

genes and their cofactors have been shown to be necessary links for

creating certain spinal cord motoneuronal [17] and hindbrain

somatosensory [20] pools, such roles have not been analyzed in

defined pre-motor subgroups exhibiting the range of functions like

those originating from r7–8.

Hox genes, like the majority of signaling proteins and

transcription factors regulating development, operate indepen-

dently in various tissues at different developmental stages. The

phenomenon of one gene being responsible for more than one

phenotypic characteristic has been termed ‘pleiotropism’ [21]. For

example, roles have been suggested for Hoxb4 in oligodendrocyte

maturation [22], self-renewal of hemopoietic stem cells [23],

ventral body wall formation [24] and formation of vertebrate

hindbrain neurons [25]. In a broader sense, mosaic pleiotropism

has been suggested to be a major principle for the evolution of

novel forms and structures [21]. Rhombomere specific Hox

proteins have been shown to contribute to developmental plasticity

during neuronal circuit formation and maturation with distant

targets [20]. By alteration in cis-regulatory sequences, the

spatiotemporal expression of a Hox protein can be reshaped and

this epigenetic change could underlie a developmental plasticity in
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Figure 1. Overview of hoxb4a expression and hindbrain neuronal subgroups from 0.5 to 30 dpf. (A–H) Composite dorsal views of
hoxb4a-YFP (green) and retrogradely labeled reticulospinal neurons (red) from confocal stacks of 133 mm (0.5 dpf), 116 mm (1 dpf), 116 mm (1.5 dpf),
176 mm (2 dpf), 148 mm (4 dpf), 172 mm (10 dpf), 190 mm (20 dpf) and 180 mm (30 dpf). Reticulospinal neurons in D, H are named according to
Kimmel (1982) [32]. Bright-field images are overlaid in A–D. Arrow, bracket and asterisks in E–H mark hoxb4a activity observed in r4, r6 and
cerebellum, respectively. Insets in E–H show the larvae at the corresponding stage with total body length indicated. (I–J) Schematics summarizing
hoxb4a activity (green) with the location of r7–8 neuronal subgroups corresponding to rhombomeres and myotomes in dorsal (I) and coronal views
(J). Abbreviations: Ant, anterior. Ce, cerebellum. HB, hindbrain. IO, inferior olive. M (in B–D, H), Mauthner cell. M (in I), myotome. MB, midbrain. mlf,
medial longitudinal fasciculus. NE, neural epithelial cell. llf, lateral longitudinal fasciculus. r, rhombomere. Scale bars = 50 mm.
doi:10.1371/journal.pone.0005944.g001

Hox Pleiotropism in Hindbrain

PLoS ONE | www.plosone.org 2 June 2009 | Volume 4 | Issue 6 | e5944



body form [26]. Although Hox genes exhibit a pleiotropism

among macro-structures, it is not yet known how this attribute

might be represented in different subgroups of neurons originating

from a finite hindbrain compartment.

The objective of this study was to investigate the involvement of

Hox genes in the development and maturation of individual

identified hindbrain nuclei. To this end, the spatiotemporal

activity of hoxb4a was documented from 1–30 days in specific

subgroups of r7–8 neurons using high-resolution confocal

microscopy in an enhancer-trap zebrafish line with yellow

fluorescent protein (YFP) retroviral insertion [27,28] that closely

reproduces the endogenous mRNA expression.

The findings show hoxb4a mosaicism throughout all subpopu-

lations of r7–8 neurons with minimal paralog presence in the

reticulospinal system questioning a principal role in global

patterning. The temporal profiles of hoxb4a activity differed

between nuclei illustrating a neuronal pleiotropism and extending

usage of this concept from the formation of macro-structures to a

finite hindbrain compartment. As a result we propose that Hox

genes have a role in developmental plasticity of hindbrain circuit

wiring and maturation. We further suggest this could also provide

a framework for inventing novel neuronal structure and/or

function within the same species as well as in the evolution of

derived behaviors such as vocalization [10], posture/locomotion

[5], gaze [2] and cerebellar regulation [29].

Results

Spatiotemporal overview of hoxb4a activity in embryonic
and juvenile development

Confocal microscopy was used to document hoxb4a activity

reported in the CLGY 838 enhancer trap line [27]. Figure 1

provides a synopsis of global YFP expression from embryonic to

juvenile stages (0.5–30 days) in the caudal hindbrain. Hoxb4a-YFP

was first observed during the embryonic segmentation period

(,10–12 hrs; Fig. 1A). Caudal hindbrain expression continued

into juvenile stages (Fig. 1B–H) while the size of the fish increased

from ,1 mm to ,10 mm within 30 days (insets in Fig. 1E–H).

Expression was still robust up to 60 days (data not shown).

While YFP was observed in both somites and hindbrain at

,12 hrs (Fig. 1A), it was no longer detected in the somites by 1

day and became largely restricted to the caudal hindbrain through

30 days as r7–8 increased in length by ,25% (or ,35 mm;

Fig. 1E–H). Use of the reticulospinal scaffold to identify

rhombomeric borders showed that in addition to the primary

r7–8 domain, hoxb4a-YFP was also expressed in cells dorsolaterally

in r6 (bracketed in Fig. 1G). Hoxb4a cells were also observed

laterally in r4 (arrows in Fig. 1H and Fig. S1C), as well as within

the cerebellum (arrowheads in Fig. 1H and Fig. S1C). Activity was

also maintained in the spinal cord (Fig. 1E–H and Fig. S1A–D;

[25]), but at a relatively low level as compared to r7–8. The

fluorescent intensity, and therefore the hoxb4a activity, in these

transgenic fish were at similar levels throughout larval and juvenile

development. Collectively these observations suggest a continuous

role of hoxb4a beyond the initial neural induction and early

hindbrain segmentation period.

A number of neuronal subgroups sent hoxb4a-YFP axons outside

r7–8, but at distinctly different times. For example, axons of

reticulospinal neurons reached the spinal cord by 1 day (Fig. 1B);

vagal and pectoral motoneurons projected via the Xth and

hindbrain occipital nerves, respectively, by 2 days (Fig. S1D, H);

Precerebellar neurons, in particular those identified herein as Area

II and the inferior olive, formed distinct clusters in the hindbrain

by 4 days (Fig. S1A–D, F–H). Area II neurons target granule cells

in the caudal lobe of the cerebellum [29] and reach the

contralateral external granule cell layer through Larsell’s commis-

sure (Fig. S1F). Inferior olivary neurons directly contact all

Purkinje cells and in the case presented here, are likely projecting

to the ganglionic layer of the corpus cerebelli (Fig. S1F; [30]).

Axonal projections to the midbrain and diencephalon also were

observed by 4 days but could not be correlated with distinct nuclei

(Fig. S1G). The major neuronal subgroups in the caudal hindbrain

that could be unequivocally identified by retrograde labeling with

fluorescent dyes are summarized in Fig. 1I–J. Confocal in vivo

imaging in this enhancer trap line was used to document three-

dimensional heterogeneity of hoxb4a activity within the caudal

hindbrain reticular, precerebellar and motoneuronal subgroups

throughout embryonic to juvenile stages.

Mosaic hoxb4a expression in hindbrain r7–8
Globally, the hoxb4a-YFP enhancer trap line recapitulated the

endogenous expression in r7–8 (Fig. 1). However, YFP expression

was mosaic with in various hindbrain circuits (below) raising the

question of whether the endogenous mRNA expression also

exhibits mosaicism, and in particular, within identified neuronal

subgroups. To address this issue, fluorescent in situ hybridization of

hoxb4a mRNA (Fig. 2A) was performed in conjunction with

retrograde labeling from the cerebellum. At a cellular level, hoxb4a

expression was unexpectedly mosaic within r7–8 (Fig. 2A and data

not shown) like that observed in the enhancer trap line (Fig. 1 and

3–7). Within the identified precerebellar nuclei, endogenous

mRNA expression was found to be mosaic in both inferior olive

and Area II neurons (Fig. 2B–C and E–F; Movie S1). Surprisingly,

only a subset of inferior olivary (33.3361.90%) and Area II

neurons (29.4562.33%; Fig. 2D) expressed hoxb4a. The corre-

sponding observations using the enhancer trap line were

20.1662.74% and 23.4963.65% (Fig. 2D), respectively. There-

fore, the enhancer trap line reports ,70% (p,0.05) of the

endogenous hoxb4a expressing neurons in both circuits (Table S1).

The YFP reporter thus represents nearly all of the endogenous

mRNA expressing neurons showing the enhancer trap line to be a

viable tool for studying the mosaic and spatiotemporal aspects of

hoxb4a activity in vivo.

Similar to mRNA expression, a mosaic hoxb4a-YFP pattern was

observed within r7–8 throughout 1–30 days (Fig. S2A–E) in the

enhancer trap line. Nuclear counterstain with Hoechst 34580

showed that hoxb4a cells appeared as clusters (for example, Fig.

S2C) that most likely represented clones as strongly supported by

the analysis of single cells labeled during early gastrulation at 6–

8 hrs (below). Hoxb4a cells were concentrated in a ,100 mm dorsal

domain within r7–8 (below). The percentage of YFP expressing

cells sampled in 20–40 mm regions from the dorsal surface were

estimated from 1–30 dpf. The numbers obtained thus represent

the highest possible percentage of hoxb4a cells within r7–8. From

1–10 days, the percentage of YFP expressing cells increased from

,35% to ,45% and then decreased to ,25% by 30 days (Fig.

S2E; Table S2). The spatiotemporal profiles of hoxb4a activity did

not support an all-inclusive presence in caudal hindbrain r7–8 cells

at any time during development.

Hoxb4a activity in neurons sending axons outside r7–8
Retrograde labeling at sites marked in Fig. S1 identified

reticular and precerebellar neurons along with pectoral and vagal

motoneurons (also see Methods and Materials). Hoxb4a activity

was assessed in these r7–8 neuronal subgroups at sequential times

to investigate the extent of heterogeneity in different behavioral

circuits (Fig. 3–7). In short, hoxb4a-YFP expressing cells were found

in all the identifiable subgroups except for the r7-reticular neurons,

Hox Pleiotropism in Hindbrain
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with the percentage decreasing during hindbrain expansion and

maturation. These data are summarized in Fig. 7K, Fig. S3 and

Table S4.

1) Reticular neurons with axons descending to the spinal

cord. Retrograde labeling from rostral spinal cord identified the

classically defined hindbrain reticular scaffold shown in Figs. 1 and

4 [31]. Neurons within the hoxb4a activity domain, i.e.,

predominantly r7–8, were labeled at 1 day (Fig. 3A, F). By

2 dpf, a more extensive reticular scaffold was present and

previously named neurons such as the Mauthner cell, Mi2, Mi3

and Ca groups, could be identified morphologically and served as

landmarks to distinguish individual rhombomeres (Fig. 3B) [32].

Neurons were continuously added to the reticular scaffold from 4

to 30 dpf (Fig. 3C–E; Table S4) while the primary hoxb4a activity

domain remained confined to r7–8 (Fig. 3G–J).

Reticular neurons in r7 located in the caudal rhombencephon

and originally called the Ca group [32] (Fig. 3B) aligned with the

anterior boundary of YFP expression (Fig. 3G). In all larvae

Figure 2. Mosaic hoxb4a expression within hindbrain nuclei. (A) Hoxb4a expression in hindbrain r7–8 of a 1 dpf larva detected by fluorescent
and colormetric procedures (inset). (B–C) Ventral composites of the precerebellar inferior olive (B) and Area II (C) nuclei (20 mm confocal stacks)
retrogradely labeled from the cerebellum at 4 dpf (green), with hoxb4a mRNA (red) detected by fluorescent in situ hybridization. (D) Graphs showing
only a subset of inferior olive and Area II neurons expressed hoxb4a mRNA (solid bar) and hoxb4a-YFP (open bar). P-values from Student t-test were
0.04 for both the inferior olive and Area II. (E–F) Single plane images showing mosaic hoxb4a expression in the olive (E) and Area II (F). Arrows and
arrowheads point to cells that did and did not expression hoxb4a. Scale bar = 20 mm (A) and 10 mm (B–C and E–F).
doi:10.1371/journal.pone.0005944.g002

Figure 3. Hoxb4a activity in reticulospinal neurons. (A–J) Composite dorsal views showing retrogradely labeled reticulospinal neurons (A–E)
and corresponding hoxb4a-YFP expression (F–J) from 116 mm (1 dpf), 176 mm (2 dpf), 148 mm (4 dpf), 190 mm (20 dpf) and 180 mm (30 dpf) confocal
stacks. (K–T) High magnification single plane images showing T-interneurons and hoxb4a expressing cells in r8. Arrowheads point to co-labeled cells.
Abbreviations: Ant, anterior. Ca, Caudal Rhombencephalon. M, Mauthner cell. M1–3, myotome pair 1–3. Mi2, Middle Rhombencephalon level 2. Mi3,
Middle Rhombencephalon level 3. Scale bars = 50 mm (A–J) and 5 mm (K–T).
doi:10.1371/journal.pone.0005944.g003
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Figure 4. Hoxb4a activity along the dorsoventral axis in r7–8. (A–J) Optically reconstructed transverse sections at the level of r7 (A, C, E, G, I)
and r8 (B, D, F, H, J) in 1, 2, 4, 20 and 30 dpf transgenic zebrafish. Dashed lines outline the hindbrain boundaries in the sections with anterior-posterior
position indicated in Fig. 4 (A–E). (K–L) Single plane images acquired from the ventral side of an isolated brain at 40 mm (K) and 70 mm (L) depth
showing hoxb4a-YFP expression and reticulospinal neurons from r7 to rostral r8 at 4 dpf. Arrowheads point to r8-reticular neurons that expressed
hoxb4a-YFP. Inset in L is an overview of the caudal reticular scaffold and hoxb4a cells imaged from the ventral side with the box indicating the
viewing field in K–L. Abbreviations: Ant, anterior. Ca, Ca neuron. Llf, lateral-longitudinal fasciculus. Mlf, medial-longitudinal fasciculus. r8-Ret, r8-
reticular neurons. Scale bars = 50 mm (A–J) and 10 mm (K–L).
doi:10.1371/journal.pone.0005944.g004
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examined, and at different stages (Summarized in Fig. 7K; Fig. S3;

Table S4), YFP was never observed in any r7-reticular neuron,

even at 1 dpf when the most immature neuronal morphology was

observed as illustrated by the two most rostral groups within the

expression domain (Fig. 3K and 4A). Optically reconstructed

transverse sections of r7 from 2 dpf onwards showed hoxb4a cells to

occupy a ,100 mm dorsal domain and be physically separated

from the reticular scaffold through 30 dpf (Fig. 4A, C, E, G, and I).

The entire r1–7 reticular scaffold of neurons was located ventrally,

and did not exhibit any hoxb4a activity (Fig. 4C) even though the

number of neurons increased considerably throughout 30 dpf

(Fig. 4E, G, I). Observations from the ventral side in isolated

hindbrains provided a higher resolution for the reticular scaffold

and confirmed that hoxb4a-YFP was not expressed in r7-reticular

neurons at 4 dpf after more neurons were added (Fig. 4K–L;

Movie S2). These findings suggest that hoxb4a is not involved cell

autonomously in either the early establishment or subsequent

maintenance of the reticulospinal system.

Reticular neurons in r8 were identified at 1 dpf (Fig. 3A and F)

and, in contrast to those in r7, ,18% expressed YFP (Fig. 3L and

7K; Table S4). From 2–30 dpf, considerably more r8-reticular

neurons were retrogradely labeled (Fig. 3B–E) and, by in large,

they resembled the previously described T-reticular interneurons

[33] (Fig. 3M–R). The percentage of hoxb4a cells within the

population decreased to ,2% by 2 dpf and remained ,7%

through 20 dpf (summarized in Fig. 7K and Table S4).

Surprisingly, at 30 dpf (and also at 60 dpf), none of the r8-

reticular neurons expressed YFP (Fig. 3S–T and 7K; Table S4).

Unlike the spatial separation observed in r7, many hoxb4a neurons

were in a close apposition to labeled r8-reticular neurons from 1–

30 dpf (Fig. 4B, D, F, H and J). Imaging the hindbrain from the

ventral side convincingly showed r8-reticular neurons intermin-

gled with YFP expressing cells (Fig. 4K–L; Movie S2). In contrast

with r7, the YFP activity in r8 reticular neurons indicates that

hoxb4a could play a role in the early, but not late, circuit

development.

2) Reticular neurons with axons ascending towards the

midbrain and rostral hindbrain. Midbrain labeling revealed

two large medial populations of neurons in r7–8 at 4 dpf (Fig. 5A).

These ventrally located neurons only partially overlapped with the

hoxb4a dorsal domain and ,9% expressed YFP (Fig. 5C; Table

S4). In contrast, discrete dye application directed at the center of

rhombomere 4 labeled neurons in r7–8 with axons projecting

locally or rostrally to targets in the midbrain and diencephalon

(Fig. S1G). The majority of identified neurons were located

mediodorsally, completely overlapped with the hoxb4a dorsal

domain, yet only ,32% expressed YFP at 4 dpf (Fig. 5B and

D). These percentages demonstrated that neurons with

connectivity within and/or between the hindbrain rhombomeres

exhibited a much higher hoxb4a activity than those ascending to

either the midbrain or descending to the spinal cord (Table S4).

3) Precerebellar neurons. Retrograde labeling of the entire

cerebellar plate at 4 dpf revealed two distinct subgroups in r7–8

largely representing, based on adult anatomy [29], Area II and

inferior olivary neurons (Fig. 6A–B; Movie S3) that provide the

classical mossy and climbing fiber input, respectively, to the

cerebellum as shown in Fig. S1F. Dorsolateral columns of neurons

(herein called Area II) were identified bilaterally across r6–8

overlapping with the dorsal hoxb4a domain in r7–8, but notably

separate from the YFP cells in r6 (Fig. 6A and inset). While the

Figure 5. Hoxb4a activity in rostrally projecting neurons. (A–B) Composite dorsal views from 110 mm (A) and 125 mm (B) confocal stacks
showing neurons retrogradely labeled from the midbrain (A) and r4 (B) at 4 dpf. Insets show the corresponding hoxb4a-YFP expression. (C–D) Single
plane high magnification images showing hoxb4a-YFP expression and retrogradely labeled neurons. Arrowheads point to co-labeled cells. Anterior is
to the left. Scale bars = 50 mm (A–B) and 10 mm (C–D).
doi:10.1371/journal.pone.0005944.g005
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Figure 6. Hoxb4a activity in precerebellar neurons. (A–B, E–F) Composite dorsal views from 110 mm (A), 125 mm (B), 60 mm (E) and 75 mm (F)
confocal stacks showing neurons retrogradely labeled from the cerebellum at 4 dpf (A–B) as well as the inferior olive at 30 dpf (E) and 60 dpf (F).
Insets in A–B show the corresponding hoxb4a-YFP expression at 4 dpf. (C–D, G–H) Single plane high magnification images showing hoxb4a-YFP
expression and retrogradely labeled neurons. Arrowheads point to co-labeled cells. Anterior is to the left. Scale bars = 50 mm (A–B, E–F) and 10 mm
(C–D, G–H).
doi:10.1371/journal.pone.0005944.g006
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Figure 7. Hoxb4a activity in vagal and r8-pectoral motoneurons. (A–B, G–H) Composite dorsal views from 125 mm (A), 180 mm (B), 130 mm (G)
and 70 mm (H) confocal stacks showing retrogradely labeled vagal (A–B) and pectoral (G–H) motoneurons at 2 and 4 dpf. Insets show the
corresponding hoxb4a expression. (C–F, I–J) Single plane high magnification images showing hoxb4a-YFP expression and retrogradely labeled
motoneurons. Arrows point to co-labeled cells. Anterior is to the left. Scale bars = 50 mm (A–B, G–H) and 10 mm (C–F, I–J). (K) Percentage of hoxb4a
cells in each identified neuronal subgroup versus time from 2–30 dpf.
doi:10.1371/journal.pone.0005944.g007
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column appeared continuous, YFP was only found in labeled r7–8

neurons as opposed to those located in r6 (inset in Fig. 6A). At

4 dpf, ,19% of the r7–8 Area II neurons expressed YFP

(arrowheads in Fig. 6C) and there was no discernable

distribution pattern (i.e., random) along the anterior-posterior

axis (Fig. 6C). The percentage of hoxb4a neurons decreased to 13%

and 3% at 20 and 30 dpf (summarized in Fig. 7K and Table S4)

while retaining a random distribution throughout the column.

The labeled inferior olivary neurons were located ventrolater-

ally in mid-r8 (Fig. 6B and inset) and they exhibited ,26% YFP

expression at 4 dpf (arrowheads in Fig. 6D). Similar to that

described for Area II, YFP expressing neurons were distributed

randomly within the inferior olive from 4–20 dpf. The percentages

of hoxb4a inferior olivary neurons decreased to 16% and 19% at 20

and 30 dpf (Fig. 7K; Table S4). However, interestingly, hoxb4a

activity was found to be largely concentrated in the caudal one

third of the olive at 30 (Fig. 6E) and 60 (Fig. 6F) dpf but the

distribution remained mosaic (Fig. 6G–H). Such an activity profile

in the inferior olive suggests a different requirement of hoxb4a

transcriptional activity among subdivisions of the precerebellar

circuits during growth and maturation (see Discussion).

From 4–20 dpf the total number of neurons increased in Area II

by ,2 fold and in the inferior olive by ,4 fold while the number

showing hoxb4a activity increased by ,1.5 and ,2 fold,

respectively (Table S4). These numerical data demonstrate that

both hoxb4a positive and negative neurons were recruited to

precerebellar circuits. This comparison also shows a similar trend

of hoxb4a activity in both precerebellar circuits as summarized in

Fig. 7K.

4) Vagal and pectoral motoneurons. Vagal motoneurons

were identified dorsomedially in r8 within the hoxb4a activity

domain (Fig. 7A–B and insets). YFP expression was observed in

,28% of neurons at 2 dpf (Fig. 7C–D), but then dropped to ,5%

by 4 dpf (Fig. 7E–F; Table S4) during a ,4 fold increase in neuron

number. During a further ,2 fold expansion of the nucleus, hoxb4a

activity was maintained at a similar level throughout 10 and

20 dpf (,7%; Fig. 7K; Table S4).

Pectoral motoneurons were located at the level of myotome 3

and 4 along the anterior-posterior axis at 2 dpf (Fig. 7G). The

motor column spanned the hindbrain/spinal cord boundary as

could be seen from the YFP expression pattern (inset in Fig. 7G).

Motoneurons were situated ventromedially, partially contained

within the hindbrain hoxb4a domain (inset in Fig. 7G). Axons

exited the hindbrain at successive anterior-posterior levels and

coalesced into distinct axon bundles that directly innervated the

pectoral fin bud (arrows in Fig. 7G). From 2 to 4 dpf, the pectoral

motoneurons pool size increased by ,10% (Table S4) while

maintaining a columnar location across the hindbrain/spinal cord

boundary (Fig. 7H and inset). YFP expression was observed in

,44% of the pectoral motoneurons at 2 dpf (Fig. 7I), and unlike

the drastic decrease observed in vagal motoneurons, 30–35%

remained YFP positive at 4–10 dpf (Fig. 7J–K). While the r8

pectoral motoneuron pool expanded considerably by 20 dpf (,3

fold in number), hoxb4a activity dropped to ,3% and only a few

cells expressed YFP (Fig. 7K; Table S4).

Since both YFP positive and negative neurons were added to

the vagal and pectoral motoneuron pool from 2 to 20 dpf (Table

S4), recruitment to either nucleus was not hoxb4a dependent. Vagal

motoneurons are part of the autonomic nervous system that

innervates numerous branchial-derived structures like the heart/

viscera whereas pectoral motoneurons innervate a diversity of fin

muscles that are somato-motor-related. Nonetheless, distribution

of the hoxb4a neurons within the two nuclei remained random at

all stages examined (Movie S4–5). These data did, however,

demonstrate hoxb4a activity was differentially regulated in these

two pools of r8 motoneurons and could be correlated to a

difference in circuit maturity (see Discussion).

Collectively, the temporal and spatial profiles of reticular,

precerebellar and motoneurons provided an anatomical map of

different neuronal subgroups in the caudal hindbrain together with

their hoxb4a activity pattern (Fig. 1I–J, 7K, Fig. S3 and Table S4).

Except for r7-reticular neurons, hoxb4a was mosaically present in

all hindbrain r7–8 neuronal subgroups. More significantly, activity

was differentially regulated both between and within different

neuronal populations. Overall a minority, ,40%, of the neurons

in a given subgroup exhibited a peak hoxb4a activity that occurred

within the first 4 dpf of development. Even though both Hox

positive and negative neurons were added during the larva to

juvenile transition, the expression percentage decreased at a

subgroup-specific rate (Fig. 7K; Fig. S3).

Clonal analysis in hoxb4a background after single-cell
injection

In order to determine whether the observed mosaicism and

randomness of hoxb4a activity was linked to a clonal neuronal

origin, single-cell injections were implemented during the gastrula

period. Individual clones were followed and studied in the

hindbrain and the spinal cord. Five key questions were addressed

and are illustrated by the three representative cases presented in

Fig. 8 (A–D; G–H; I–K) along with a summary in Table S3: Is

hoxb4a expression 1) cell-autonomous, 2) temporally confined, 3)

clonal, 4) down regulated and 5) necessary for neuronal

differentiation and/or survival?

The first example (Fig. 8A–D) shows a single cell injected during

early gastrula stage at ,6–8 hrs that expanded into bilateral

clones in r8 at 1.5 dpf (Fig. 8A–B). All the labeled cells at this time

were neuroepithelial (Fig. 8B). While the bottom clone in Fig. 8A–

B was completely YFP negative, the top clone exhibited mosaic

hoxb4a activity. This demonstrated an asymmetry between clones

across the midline (see Discussion). Single optical sections at high

magnification (Fig. 8C–D, marked in Fig. 8A–B) showed

neuroepithelial cells in the top clone shared the same origin and

remained in close proximity within r8. Yet they could be either

YFP negative (Fig. 8C) or positive (Fig. 8D). The data suggested

hoxb4a expression could be initiated non-cell autonomously and

constrained after cells divide across the midline (see Discussion).

The second example (Fig. 8E–H) shows an injected cell that

expanded into four bilateral clones in r8 by 2 dpf (Fig. 8E–F).

Again, asymmetry was observed between clones across the midline

as neuroepithelial cells in only one of the four clones expressed

YFP at 1 dpf. Expression was maintained in the neurons at 2 dpf

(marked in Fig. 8E–F) as shown at a higher magnification (Fig. 8G–

H). Mosaicism was not observed within the positive clone at 2 dpf

suggesting hoxb4a activity to be clonal with heterogeneity

originating at the neuroepithelial cell stage. The labeled cells at

2 dpf became neurons with dendritic arborizations and axons

(arrows in Fig. 8F). Neuronal maturation occurred independent of

either the presence or absence of hoxb4a activity and this paralog is

therefore not essential for either neuronal differentiation or

survival for every neuron in r7–8.

The third example (Fig. 8I–K) shows an injected cell that split

into two bilateral clones in the rostral spinal cord, with asymmetry

across the midline and mosaicism observed in the bottom clone.

One ventrolaterally located neuron in the clone expressed hoxb4a-

YFP at 3 dpf as shown in single optical section in Fig. 8J

(arrowhead). At 5 dpf, the same cell, as judged by following its

location within the clone, no longer expressed YFP (arrowhead in
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Figure 8. Clonal analysis by single cell injection. (A–B, E–F, I) Composite dorsal views from 165 mm (A–B), 170 mm (E–F) and 130 mm (I) confocal
stacks showing progenitors from a single cell injected during the gastrula period (red) and hoxb4a-YFP (green). (C–D, G–H, J–K) Single plane high
magnification images showing the progenitor cells and hoxb4a-YFP expression. Arrowheads point to the co-labeled cells. Arrows in F mark the
processes (dendrite/axon) extending from the neurons at 2 dpf. Anterior is to the left. Dashed lines marked the midline. Scale bars = 10 mm.
doi:10.1371/journal.pone.0005944.g008
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Fig. 8K). These data are consistent with a down regulation of

hoxb4a activity during circuit maturation.

Collectively, the clonal analyses showed mosaic hoxb4a activity

to originate at the neuroepithelial stage and to be confined to

neuronal progenies. By contrast, while not required for either

neuronal survival or differentiation for every neuron in r7–8,

hoxb4a activity was nearly always present in a subset of clones in

which expression could be down regulated during neuronal

maturation.

Discussion

Hoxb4a mosaicism and pleiotropism
The majority of the genes regulating development, including

Hox, function independently in different cell types at different

stages so the same protein is utilized in the formation of

structurally different germ layers and body parts. This broad

genetic property, termed pleiotropism, has been described in

invertebrate models [21]. The current study extends this usage to

individual nuclei originating from a finite segmental compartment

in the vertebrate hindbrain.

Instead of exhibiting a 100% presence in all subgroups, hoxb4a

activity was observed mosaically in a minority of the reticular,

precerebellar and motoneurons (Fig. 4–7; Table S2 and S4).

Activity was subgroup-specific and independently regulated within

each nucleus. Pectoral and vagal motoneuron pools illustrated this

feature best because hoxb4a activity decreased at a different rate

between 2–20 dpf (Fig. 7). The temporal activity profiles did not

correlate with global activity in r7–8 that was maintained at

,40%. Hoxb4a mosaic neuronal pleiotropism was a continuous

feature during the developmental acquisition of diverse behaviors

[2] with the presence of activity beyond embryonic stages

suggesting a role in circuit plasticity and maturation.

Evaluating hoxb4a activity in the developing hindbrain
Global YFP expression in this reporter line shares the enhancer

module of the endogenous gene and resembles the pattern of

hoxb4a mRNA within the r7–8/spinal cord (Fig. 1–2; [25]).

Temporally, the onset of YFP expression in the mesoderm

(,10 hpf) and neural keel (,11 hpf) matched that detected by in

situ hybridization [11]. At the cellular level, endogenous hoxb4a

expression was mosaic, as demonstrated by fluorescent in situ

hybridization in the two precerebellar nuclei (Fig. 2; Table S1;

Movie S1). The enhancer trap line was shown to report ,70% of

the endogenous expression in two representative hindbrain nuclei

(Fig. 2D). The slightly lower endogenous gene activity indicates the

YFP reporter did not fully capture the whole range of the gene

expression pattern within r7–8. Since the enhancer trap line

reported gene activity at a cellular level during dynamic in vivo

imaging, it provided greater insight to the spatiotemporal

characterization of hoxb4a mosaicism and allowed a better

evaluation of neuronal pleiotropism in the zebrafish hindbrain.

Possible roles for hoxb4a in neural development
Conventionally, Hox genes have been suggested to pattern the

neural tube along the anterior-posterior axis and determine

segmental identity in the vertebrate hindbrain [14]. Such a model

would suggest a ubiquitous Hox activity in all types of neuron

within the expression domain. In contrast, the current data

showed that hoxb4a activity is mosaic in rhombomere 7–8 as well as

in individual neuronal circuits throughout 30 dpf (Fig. 1, 7 and

Table S4). Such mosaicism would suggest hoxb4a, and perhaps

other Hox genes as well, do not act globally, but instead exert their

influence at a cellular level throughout vertebrate neural

development.

In our clonal analysis experiments, asymmetry of hoxb4a activity

was frequently observed between related clones on opposite sides

of the midline (Fig. 8A–H). This asymmetry suggested that clonal

restriction of hoxb4a activity follows the mirror-symmetric division

of neuroepithelial cells across the midline between 14–18 hpf [34].

Such a time course demonstrated that hoxb4a expression onset was

not cell-autonomous as neuroepithelial cells with the same clonal

origin could respond to extrinsic signaling like observed for

retinoic acid [35] and FGF [36] gradients. Neuroepithelial cells

without hoxb4a activity could differentiate into neurons with

dendrites and axons (Fig. 8E–H). Such observation indicates that a

single Hox4 paralog like hoxb4a may not be a general transcription

factor for neuronal differentiation. In contrast to the conventional

model, a Hox paralog may not be sufficient to give rise to all the

neuronal diversity in rhombomeres 7–8.

In all circuits studied (except the r7 reticular neurons), hoxb4a

activity was sustained during later development in a subset of

neurons. Such a continuous presence would then suggest a role for

hoxb4a during neuronal growth, late differentiation and/or

refinements that might contribute to the specification of discrete

neuronal phenotypes within a circuit. Many of the hindbrain

nuclei are heterogeneous, for instance, the inferior olive, pectoral

and vagal motor nuclei contain neurons with different morphol-

ogy, physiology and projection targets [4,6,29]. The mosaic hoxb4a

activity could be part of a transcriptional system for such

subdivision. Interestingly, clusters of YFP cells were never

observed in any of the labeled nuclei (Fig. 3–7) even though

hoxb4a activity was shown to be clonal (Fig. 8E–H), suggesting that

cells were not recruited to a given circuit based on either their

clonal origin or hoxb4a activity. The above properties may not be

unique to hoxb4a as the other Hox paralogs might behave similarly

during neuronal patterning.

Globally, hoxb4a was present in less than half of all cells in the

caudal hindbrain (Fig. S2E; Table S2) and the percentage was far

less in any of the nuclei studied (e.g. reticular and motoneuronal)

throughout the first 30 dpf (Fig. 3–7; Table S4). A matter of

considerable interest would be whether the other Hox4 paralogs

fill the gap such that all r7–8 neurons might be Hox4 positive.

Observations of mRNA expression and YFP reporter from other

Hox4 enhancer trap lines ([25]; unpublished data) showed hoxa4a

and hoxd4a expression to be mosaic, like the case for hoxb4a,

suggesting the activity of Hox4 paralogs might not be completely

overlapping. This conjecture is strongly supported by the notably

transient hoxa4a activity (i.e., not observable after ,10 dpf) as

compared to the hoxb4a activity that was still very robust at 60 dpf.

Therefore, Hox4 paralogs might only partially overlap, both

spatially and temporally, in some r7–8 neurons. Collectively, r7–8

quite likely contains a huge repertoire of neurons with various

Hox4 paralog combinations and/or gene doses, which perhaps

may have been a selected for consequence of the Hox cluster

duplication [37].

Hox regulatory networks in the spinal cord are suggested to

determine motoneuronal phenotypes and establish correct periph-

eral muscle innervation [18,38]. By contrast, our observations of

hindbrain vagal and pectoral motoneurons suggest a single Hox4

paralog would be insufficient to specify the phenotypes for an

entire motor nucleus. Our data of hoxb4a mosaicism is more in

agreement with data from hoxb22/2 mice where the r4–5 facial

motor nucleus exhibited maturational defects, including path-

finding and termination, instead of being absent [39]. Such alleged

‘maturational roles’ for Hox genes might only be elucidated by

physiological assessment of neural circuit performance through
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behavioral quantification [9] since any genetic manipulation

leading to possible maturational defects in either membrane

properties or neurophysiological signaling would not be easily

discernable at the level of a morphological marker.

With only a couple of exceptions (e.g. r4 and midbrain label;

Fig. 5A–D) all the neurons evaluated in this study gave rise to long-

range excitatory connections (e.g., precerebellar and motoneuro-

nal). Hox activity in an equally large population of intra/inter-

rhombomeric inhibitory pathways was not taken into account.

Excitatory (glutamatergic) and inhibitory (glycinergic and GA-

BAergic) neurons have been shown to organize in clusters along

the dorsoventral axis in the zebrafish hindbrain [40]. Such a

distinctive organization was not seen with hoxb4a activity (Fig. 4).

The ubiquitous mosaicism throughout the dorsoventral axis and

intra-/inter-rhombomeric axonal projections [25] suggests that

some hoxb4a neurons are inhibitory. If so, then gene activity does

not likely confer a specific neurotransmitter phenotype. A mosaic

hoxb4a activity in both excitatory and inhibitory neuronal circuits

would therefore define another level of pleiotropism.

Hoxb4a activity correlates with neuronal circuit maturity
The presence of hoxb4a activity observed through juvenile stages

strongly suggests a role in post-embryonic development (Fig. 1).

During this period, existing neurons expand their axonal and

dendritic structures while new neurons are continually added to

the blueprint in order to accommodate changes in the sensory and

motor periphery during acquisition of adult body form. However,

rather than being maintained at initial levels, hoxb4a activity

exhibited a decrease in all identified subgroups from 2–30 dpf

(Fig. 4–7; Fig. S3 and Table S4). Such an inverse temporal profile

in all neuronal subgroups suggests neuronal maturity and hoxb4a

activity may be temporally correlated as illustrated in pectoral and

precerebellar circuits.

In zebrafish, pectoral fins exhibit a progressive but considerable

change in musculature, central innervations pattern [6] and fin

movement [41] between larval and juvenile stages. The temporal

hoxb4a profile matches fairly well with this developmental timeline

as activity was maintained at a relatively high level (30–40%) in the

pectoral motoneurons from 1–10 dpf (Fig. 7G–J), during which

time period the number of fin muscles increased from 2 to 6

accompanied by change in innervation pattern [6,41]. The hoxb4a

activity only decreased later to ,3% at 20 dpf (Fig. 7K; Table S4).

Perhaps the hoxb4a activity from 1–10 dpf provides necessary

transcriptional plasticity [42] for modifications of existing circuits

which, in turn, accommodates the increasing complexity in fin

structure, innervation and movement control. By 20 dpf, fin

morphology reaches an adult conformation requiring less tuning of

the central neural circuits. If so, then hoxb4a activity might be

down regulated in the more mature neurons like in those observed

in the single-cell injection experiments (Fig. 8 I–K).

Precerebellar circuits further illustrate the suggestion that Hox

genes provide a developmental plasticity during neuronal circuit

maturation. Like described for pectoral fins, the cerebellum of

nearly all teleosts first appears as a plate in the early larval stages

(Fig. S1) and then exhibits considerable growth during develop-

ment. Subsequently, three distinct subdivisions (corpus, valvula

and caudal lobe) are formed that receive a multimodal input of

auditory, visual, proprioceptive and lateral line signals [29]. Of

particular interest here were the neurons, derived from r7–8 that

provide the afferent precerebellar input to the caudal lobe shown

to be essential for oculomotor learning and memory [7]. This

population appears as a homogeneous subgroup called Area II

that, functionally, exhibits a continuous range of physiological

properties signaling eye and head velocity [8]. Hoxb4a activity was

maintained at 10–20% in this population from 4–20 dpf and

decreased to ,5% by 30 dpf with no obvious distribution pattern

within the nucleus. Continuous presence of hoxb4a within the

nucleus might be envisioned to provide a transcriptional plasticity

for fine-tuning optokinetic and vestibuloocular circuitry as

improved performance and adaptation are proportional to

zebrafish size [9].

Based on an innervation pattern deduced from the adult teleost

cerebellum [43], the inferior olive is subdivided into rostral, medial

and caudal parts that innervate the caudal lobe, corpus and

valvula, respectively (unpublished observations; [29]). Like de-

scribed for precerebellar Area II, hoxb4a activity was present at 15–

25% in all 3 olivary subdivisions from 4–20 dpf with a random

distribution (Fig. 6F–H). This observation suggests that hoxb4a

might contribute to the early developmental wiring of hindbrain

neurons with both the granular (Area II) and ganglionic (inferior

olive) layers of the cerebellum.

At 30 and 60 dpf, however, hoxb4a activity was found mainly in

the caudal part of the olive that projects to the valvula (Fig. 6E–H),

which suggests a unique transcriptional requirement for this

particular precerebellar circuit. The lateral line provides the major

input to the valvula and its sensory field continues to expand with

fish size. As a result, motion detecting neuronal circuits in the

caudal part of the inferior olive are subjected to continuous

enlargement. Persistent and focused presence of hoxb4a activity in

this particular subdivision of the inferior olive would provide a

transcriptional plasticity accommodating expansion and growth of

the lateral line system which, in turn, underlies consolidation in

this precerebellar circuit [8].

In contrast, the rostral and medial subdivision of the olive

projecting to the caudal lobe and corpus exhibit minimal hoxb4a

activity at 30 and 60 dpf (Fig. 6E–H). In this case, both the

auditory and visual surrounds are largely invariant due to the early

maturation of the eye and ear sensory elements during juvenile

stages, hence reflecting a decreased requirement for transcriptional

competence. Collectively, the activity profiles in the pectoral

(locomotion) and oculomotor (motion sensing) precerebellar

circuits strongly implicate a role for hoxb4a in circuit formation

that accommodates growth-related reorganization in sensory and

motor fields accompanying the changes in body form.

Recently, one of the homeobox proteins, OTX2, has been

shown to be transported through a neuronal network in the visual

cortex [44]. Homeobox proteins can be secreted and internalized

through an endocytosis-independent, non-vesicular mechanism

[45] that includes hoxb4 [46]. By such a proposed mechanism,

hoxb4a could couple changes in hindbrain r7–8 with those in an

innervated target, like the cerebellum, during circuit maturation.

Absence of hoxb4a in the embryonic reticulospinal
scaffold

Reticular neurons in r7 are born between 12–27 hpf [47] but

none were hoxb4a positive at 1 dpf (,24–28 hpf; Fig. 3–4).

Transient expression in the early r7 precursors of reticular neurons

is unlikely because hoxb4a activity would have to be rapidly down

regulated by the time the cell bodies were labeled from axons in

the rostral spinal cord (Fig. 3–4). Consistent with this surmise,

hoxb4a was not observed in neurons subsequently added to the r7-

reticular group by 4 dpf (Fig. 4K–L and Movie S2). Observations

from two other Hox4 enhancer trap lines (hoxa4a and hoxd4a) along

with mRNA expression patterns (Fig. 1B–D in Punnamoottil 2008)

suggest that r7-reticular neurons might never exhibit Hox 4

activity. Therefore, perhaps no Hox4 paralogs, particularly hoxb4a,

may be required cell-autonomously for r7-reticular neurons to

achieve their proper innervation and functional operation. The
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reticulospinal scaffold forms the most precocious neuronal circuits

in the zebrafish hindbrain [47] that function very early for escape

behavior [5]. If, as suggested above, hoxb4a acts to provide a

developmental plasticity for juvenile circuit growth and expansion,

then the requirement may be less for reticulospinal circuits.

Hox genes have been envisioned to segment the hindbrain into

rhombomeres (e.g. Hox4 for r7–8), however, it has been argued

that Hox2 paralogs (a and b) are not required for generating r3–5

[39]. Our data agree with the latter observation as the mosaic

onset of hoxb4a activity would be insufficient to pattern an entire

rhombomeric segment and, thus, it alone could not be a causal

factor for segmentation. The concentration of YFP cells in a

,100 mm dorsal domain in r7 from 4 dpf onwards suggests a

possible role of hoxb4a in hindbrain dorsoventral patterning like for

other Hox paralogs [39]. Comparative studies have concluded that

co-linear Hox expression [48] and hindbrain segmentation are

independent processes in evolution as well as in development [49]

that have become more coordinated as evolution progressed

[48,50]. The mosaic hoxb4a activity observed in r7–8 is consistent

with this idea and implies that Hox genes may play a more

important role in neuronal patterning than segmentation.

Evolution in closely related hindbrain nuclei
Overall, this study has demonstrated a mosaic hoxb4a pleiotro-

pism to be present during neuronal maturation from 1–30 dpf.

Based on the different spatiotemporal dynamics among caudal

hindbrain nuclei, we propose Hox genes could act as a facilitator

in neuronal subgroup evolution. Cis-regulatory sequences very

often control spatiotemporal expression of a gene [26] and have

been suggested to play an important role during the evolution of

form [21]. Mutation in cis-regulatory sequences would modify the

expression profiles of Hox genes without affecting protein function

[21]. Temporal changes in Hox expression have been demon-

strated to alter neuronal projections [20]. Notably, an alternation

in Hox expression was shown to consequently allow for the

emergence of novel, functional neuronal circuits [51]. Mutations

built up in the cis-regulatory sequences during evolution might

modify the mosaic pattern, which could lead to the acquisition of

new neuronal Hox code and, thus, the creation of novel circuits

from the existing neuronal prototypes. Partial redundancy in

paralog function would further provide an extraordinary biological

flexibility for the occurrence of both developmental and

evolutionary events. This view is supported by the observation

that a majority of caudal hindbrain nuclei exhibit similar

pacemaker-like physiological properties. These circuits uniquely

originated in r7–8 and are responsible for many rhythmic

behaviors. It would not be surprising if the mosaic hoxb4a

pleiotropism is part of the underlying genetic mechanisms that

gave rise to more derived premotor circuitry using the more

ancient evolutionary blueprints.

Pleiotropy and modularity of Hox genes
The concept of modularity has emerged in developmental,

evolutionary and molecular biology to address a network of

interactions, like subgroup specializations occurring in r7–8, that

can be subdivided into relatively autonomous highly connected

components [52]. Since the evolution of higher organisms

apparently do not suffer from a ‘cost of complexity’ by mutations

that grossly affect a few traits, the Hox gene pleiotropy would

appear to be a remarkable means to minimize effects on multiple

phenotypic characters [52]. The impact for evolution in the

hindbrain is immediately clear, as pleiotropy appears to have been

introduced into nearly every nuclear module that in turn is

subjected to the processes of natural selection.

Behavioral phenotypes result from complex interactions be-

tween nature and experience. Development provides the stage for

this production, but the detail of how genes and experience

interact within the developing hindbrain to create complex

phenotypes is unknown. The long standing ‘problem with

anatomy’ is to explain how evolvability and adaptive radiation

occur within a finite region, like a hindbrain compartment. That

is, for example, to account for how pectoral, vocal, electromotor

and other evolutionarily-derived central neurons and circuits

originated from r7–8 in teleost fishes let alone any further

extrapolation to other, more derived, neuronal circuits in

vertebrates.

The mosaic Hox gene pleiotropy described in this paper

suggests a plausible rationale and practical origin for modularity,

in which selection pressures can favor developmental processes

that reinforce a beneficial bias in existing neuronal variations [53].

An emerging theme in developmental biology is to understand the

effects of a single gene (i.e. like hoxb4a) on a much larger molecular

network. This may be a plausible experimental approach to

identify the genuine origin of modularity, hence the genotype–

phenotype relationship. Observing behaviors emerge during

development in the zebrafish and establishing a correlation with

Hox gene expression is a sound first step; however to tackle any of

the comparative innovations mentioned, such as vocalization, will

require considerable neurogenetic approaches in other teleosts.

In conclusion, based on these data, we believe that the overall

developmental contribution of Hox genes has been altogether

underestimated by only considering the conventional roles

suggested in embryonic hindbrain segmentation and patterning

[14]. Rather, we propose that the maintained expression of Hox

transcription factors contributes to a progressive improvement of

behavior-specific circuit performance as new neurons are

continuously integrated in the context of experience-related

requirements [9]. Experimentally, our observations fit well with

the literature published on the concepts of neuronal ‘‘pleiotro-

pism’’ [21] and ‘‘modularity’’ [53] as currently discussed in

developmental and evolutionary biology. We suggest such

neuronal pleiotropism may be an economic usage of Hox genes

in the engineering and modification of various hindbrain neuronal

circuits during maturation. This additional genetic trait would also

offer a robust modifiable transcriptional substrate for neuronal

circuits to evolve [21].

Materials and Methods

Zebrafish husbandry
Zebrafish were maintained according to standard procedures

[54] and used in accordance with the Guide for the Care and Use of

Laboratory Animals (1996) following protocols approved by the NYU

School of Medicine Institutional Animal Care and Use Commit-

tee.

Retrograde labeling
Zebrafish were anesthetized with 0.02% ethyl 3-aminobenzoate

methanesulfonate (MS 222, Sigma) and immobilized in 2% low

gelling agarose (type VII, Sigma) prepared in 30% Danieau’s

solution. After dye application, larvae were placed in modified

artificial cerebrospinal fluid (ACSF; 67 mM NaCl, 2.9 mM KCl,

10 mM HEPES, 2.1 mM CaCl2, 1.2 mM MgCl2, 10 mM

glucose, 164 mM sucrose, pH 7.5, 323.8 mOsm) for at least

3 hours for dye diffusion and/or transportation before preparation

for imaging (see Confocal Microscopy below).

1) Reticulospinal neurons labelling. The spinal cord was

lesioned at the fifth myotome level with a sharp tungsten needle
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transecting the cord and overlaying muscles dorsal to the

notochord. A crystal of Alexa Fluor 647 dextran (10,000 MW,

anionic, Invitrogen) was placed at the lesion site for 2–3 minutes.
2) Midbrain, cerebellum and r4 labeling. Skin covering

the brain was removed by sharp tungsten needles and fine forceps

under ACSF. For midbrain labeling, optic tectum was removed to

expose the underlying midbrain. Alexa Fluor 488 or 647 dextran

(3% in 0.2 KCl with 0.1% triton X-100) was pressure injected into

the midbrain or cerebellum at 10–20 psi using glass electrodes of

5–10 mm tip. Injections were monitored under a dissection

microscope and repeated until the dye filled up the space in the

midbrain and cerebellum where projections were observed from

the caudal hindbrain (Fig. S1F–G). For r4 labeling, DiD

(Invitrogen) coated glass electrode tips were inserted into r4 area

using the otic vesicle as a landmark.

3) Vagal motoneuronal labelling. For larvae at 2 dpf, vagal

motoneurons were labeled by inserting a DiD coated glass

electrode tip into the vagal nerve located caudal to the otic

vesicle [55]. For 4 and 20 dpf larvae, a lesion was made with a

sharp tungsten needle between the otic vesicle and cleithrum after

which a crystal of Alexa Fluor 647 dextran was placed at the site.

4) Pectoral motoneuronal labelling. For larvae at 2 dpf,

pectoral motoneurons were labeled by inserting DiD coated glass

electrode tips into the fin buds. For 4 and 20 dpf larvae, Alexa

Fluor 647 dextran (3% in 0.2 KCl with 0.1% triton X-100) was

pressure injected into the abductor and adductor muscles of the

fins at 10–20 psi using glass electrodes of 5–10 mm tip and

repeated until both muscles were filled with the dye.

Single cell injection
Embryos at early gastrula period (,6–8 hrs) were dechorio-

nated manually, immobilized with 3% methylcellulose (in 30%

Danieau’s solution) and oriented using the dorsal embryonic shield

as landmark. Electrodes with 2–3 mm tips filled with 3% Alexa

Fluor 647 dextran solution (in 0.2M KCl) and exhibiting resistance

of 100–200 MV at 1 nA DC current were used to inject single

deep layer cells (DEL) by a 10 nA DC current. Cells giving rise to

hindbrain and rostral spinal cord were targeted at locations

between 20–40u longitude and 60–90u latitude [56]. Dye loading

was monitored visually using a florescent microscope. Embryos

were removed from the methylcellulose after injection and

incubated in 30% Danieau’s solution until the desired stages for

imaging.

Hoechst staining
Skin covering the brain in 1 to 30 dpf zebrafish was removed

under ACSF using sharp tungsten needles and fine forceps.

Exposed brains were incubated with Hoechst 34580 (Invitrogen;

5 mg/ml in ACSF, 0.1% DMSO) for 1 hour before preparation

for imaging (see Confocal Microscopy below).

In situ hybridization
Hoxb4a was cloned using the following primer sequences: 59-

TATAGAATTCATGGCCATGAGTTCCTATTTG-39 and 59-

TATAGCGGCCGCGCTTGCTCGGCTCTGATT-39. A DIG

labeled RNA probe against hoxb4a was made using T3 and T7

polymerase (Promega). Retrograde labeling from the cerebellum

was performed in 4 dpf larvae as described above. Brains were

isolated and fixed with 4% paraformaldehyde at room tempera-

ture for 4 hours in order to preserve perinuclear localization of

mRNA. In situ hybridization was performed using standard

protocol [57], except the hybridization temperature was set to

68uC. Signals were either detected colormetrically by alkaline

phosphatase conjugated anti-DIG antibody (Roche) and BCIP/

NBT (Roche), or fluorescently by peroxidase conjugated anti-DIG

antibody (Roche) and Alexa Fluor 647 tyramide (as part of the

TSA kit#16; Invitrogen) according to manufacturer’s instruction.

After signal development, retrogradely labeled precerebellar

neurons were detected using both anti-Alexa Fluor 488 and Alexa

Fluor 488 conjugated anti-rabbit antibodies (Invitrogen).

Confocal imaging
Confocal imaging was performed with a Zeiss META 510

confocal system using Achroplan 106/0.25, Achroplan 406/0.8

W, Achroplan 406/0.65, Achroplan 636/0.9 W and Achroplan

636/0.8 objectives. The excitation wavelengths used were

405 nm (Hoechst), 488 nm (Alexa Fluor 488), 514 nm (YFP)

and 633 nm (DiD, Alexa Fluor 647) and to avoid bleed-through,

channels were scanned sequentially.

Zebrafish larvae were anesthetized with 0.02% MS 222 and

immobilized in 2% low gelling agarose for imaging. For

experiments that involved 1–2 dpf zebrafish, embryos were raised

in 0.003% 1-phenyl-2-thiourea (PTU, Sigma) in 30% Danieau’s

solution. For experiments that used larvae 4 dpf or beyond, the

skin covering the brain was removed using sharpened tungsten

needles (under modified ACSF containing 0.02% MS 222) to

expose the brain for imaging from the dorsal side. For imaging

from the ventral side, brains were acutely isolated after labeling

and mounted between bridged coverslips. Post-acquisition image

processing was performed using NIH ImageJ, Adobe Photoshop

and Illustrator. Rhombomeric identity outside r7–8 was inferred

by referring to the classes of reticulospinal neurons retrogradely

labeled from the spinal cord [58].

In every experiment, 6–8 different embryos were examined to

ensure reliability of observations. Hoxb4a activity in any identified

group of neurons was determined by summing data from 3–4

specimens (Fig. 7K) exhibiting a similar degree of labeling and

then acquiring an average of the percentages calculated from

individual experiments (Fig. S3). The numbers (N) and statistical

analyses of experiments are listed on Table S1–4.

Supporting Information

Figure S1 Live imaging and immunohistochemically detected

hoxb4a activity in the midbrain, cerebellum, hindbrain and spinal

cord. Composite dorsal (A) and side (C) views of hoxb4a

expression in a live 5 dpf transgenic zebrafish from 210 mm and

150 mm confocal stacks, respectively. (B, D) Dorsal (B) and side (D)

views of hoxb4a-YFP using immunohistochemistry (anti-YFP) in a

fixed 6 dpf fish. Horizontal (E, G) and coronal sections (F, H) with

section planes indicated in (B, D). Target sites for retrograde

labeling are marked by 1 (spinal cord), 2 (Xth nerve), 3 (pectoral

fin), 4 (cerebellum), 5 (midbrain) and 6 (r4). Abbreviations: AII,

Area II; Ce, cerebellum; D, diencephalon; HB, hindbrain; llf,

lateral longitudinal fascicle; IO, inferior olive; MB, midbrain; mlf,

medial longitudinal fascicle; Oc N, occipital nerve; OV, otic

vesicle; Pon N, pontine nucleus; SC, spinal cord; Vagal N, vagal

nerve. B, D and E–H are cropped high magnification illustrations

of Figs. 5K, 5J, 5C, 5T, 5D and 4B, respectively, (from [25]).

Found at: doi:10.1371/journal.pone.0005944.s001 (6.92 MB TIF)

Figure S2 Mosaic hoxb4a activity. (A–D) Single plane images

showing hoxb4a (green) and Hoechst nuclear counterstain (red)

acquired from the dorsal 60 mm of r7–8 at 2 (A), 4 (B), 10 (C) and

20 (D) dpf in transgenic zebrafish. Dashed lines mark the

ventricular surface. (E) Graph showing the percentage change of

hoxb4a cells from 1 to 30 dpf in dorsal r7–8. Scale bars = 10 mm.

Found at: doi:10.1371/journal.pone.0005944.s002 (2.98 MB TIF)
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Figure S3 Percentage of hoxb4a cells in each identified neuronal

subgroup versus time from 2–30 dpf. Percentages are presented as

mean6S.E.M. calculated from individual experiments (also see

Table S2)

Found at: doi:10.1371/journal.pone.0005944.s003 (0.58 MB TIF)

Table S1 Statistical analysis of hoxb4a activity in precerebellar

nuclei using mRNA expression and the hoxb4a-YFP reporter.

Means are expressed as mean6S.E.M.

Found at: doi:10.1371/journal.pone.0005944.s004 (0.13 MB TIF)

Table S2 Statistical analysis of nuclear counter-stain experi-

ments. Means are expressed as mean6S.E.M.

Found at: doi:10.1371/journal.pone.0005944.s005 (0.14 MB TIF)

Table S3 Summary of single-cell injection experiments.

Found at: doi:10.1371/journal.pone.0005944.s006 (0.13 MB TIF)

Table S4 Statistical analysis of neuronal subgroup labeling

experiments.Numbers of labeled neurons and percentages are

expressed as mean6S.E.M. Reticulospinal neurons were not

morphologically distinguishable at 1 dpf. The two rostral-most

groups of labeled neurons within the hoxb4a-YFP domain were

considered to be progenitors that eventually give rise to r7-

reticular neurons.

Found at: doi:10.1371/journal.pone.0005944.s007 (0.38 MB TIF)

Movie S1 Mosaic hoxb4a expression in the inferior olive at

4 dpf. Stack of confocal sections imaged at 636 from the ventral

side of an isolated brain processed with in situ hybridization

showing hoxb4a mRNA (red) and inferior olivary neurons (green)

retrogradely labeled from the cerebellum.

Found at: doi:10.1371/journal.pone.0005944.s008 (3.76 MB

MOV)

Movie S2 Reticulospinal scaffold labeling in 4dpf hoxb4a-YFP

zebrafish. Stacks of confocal sections imaged at 406and 636from

the ventral side of an acutely isolated brain showing hoxb4a

(green) and reticulospinal neurons (red) retrogradely labeled from

the spinal cord. Rhombomeres 3–8 were identified by the presence

of characteristic reticulospinal neurons. The imaged stack

acquired at a higher magnification shows r7-reticular neurons

did not exhibit any hoxb4a activity while a small percentage of r8-

reticular neurons expressed YFP mosaically.

Found at: doi:10.1371/journal.pone.0005944.s009 (5.04 MB

MOV)

Movie S3 Precerebellar neurons in 4 dpf hoxb4a-YFP zebrafish.

Stacks of confocal sections imaged at 406 and 636 from the

ventral side of an acutely isolated brain show hoxb4a (green) along

with inferior olivary and Area II neurons (red) retrogradely labeled

from the cerebellum. Inferior olivary and Area II neurons were

located ventromedially and laterally, respectively. Imaged stack

acquired at a higher magnification illustrates mosaic hoxb4a

activity within both precerebellar nuclei.

Found at: doi:10.1371/journal.pone.0005944.s010 (4.44 MB

MOV)

Movie S4 Vagal motoneurons in 4 dpf hoxb4a-YFP zebrafish.

Stacks of confocal sections imaged at 406 and 636 from the

dorsal side of an intact zebrafish brain showing hoxb4a (green) and

vagal motoneurons (red) retrogradely labeled via the Xth nerve.

Vagal motoneurons were located medially in r8. The imaged stack

acquired at a higher magnification illustrates mosaic hoxb4a

activity within the nucleus.

Found at: doi:10.1371/journal.pone.0005944.s011 (4.44 MB

MOV)

Movie S5 Pectoral motoneurons in 2 dpf hoxb4a-YFP zebrafish.

Stacks of confocal sections imaged at 406 and 636 from the

dorsal side of an intact zebrafish brain showing hoxb4a (green) and

pectoral motoneurons (red) retrogradely labeled from the fin bud.

Pectoral motoneurons located ventromedially at the level of somite

3–4. The imaged stack acquired at a higher magnification shows

mosaic hoxb4a activity within the nucleus.

Found at: doi:10.1371/journal.pone.0005944.s012 (5.04 MB

MOV)
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