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Abstract
The house sparrow (Passer domesticus) is a common and abundant amplifying host of West Nile
virus (WNV) and many survive infection and develop humoral immunity. We experimentally
inoculated house sparrows with WNV and monitored duration and protection of resulting antibodies.
Neutralizing antibody titers remained relatively constant for ≥ 36 months (N = 42) and provided
sterilizing immunity for up to 36 months post-inoculation in 98.6% of individuals (N = 72). These
results imply that immune house sparrows are protected from WNV infection for multiple
transmission seasons. Additionally, individuals experiencing WNV-associated mortality reached
significantly higher peak viremia titers than survivors, and mortality during acute infection was
significantly higher in caged versus free-flight sparrows. A better understanding of the long-term
immunity and mortality rates in birds is valuable in interpreting serosurveillance and diagnostic data
and modeling transmission and disease dynamics.

INTRODUCTION
West Nile virus (WNV; family Flaviviridae, genus Flavivirus) is endemic in much of the United
States,1 and birds played a pivotal role in its rapid geographic expansion and establishment.
2–5 Since its arrival to the Western Hemisphere, WNV has caused mortality of many thousands
of birds,6 whereas survivors overcome infection and produce anti-WNV antibodies.7 West
Nile virus seroprevalence rates of various avian species have been documented within
numerous regions of the United States,8–12 whereas antibody duration has been assessed in
captive birds.13–15

The level of protection provided by primary immunity to WNV over multiple transmission
seasons has yet to be characterized in birds. This information is important for understanding
transmission dynamics, and long-term effects of WNV on avian populations. In addition, data
regarding long-term duration of antibodies and response to secondary exposure in a variety of
avian species will aid in understanding the epidemiology and ecology of WNV and in
interpretation of serosurvey data. Naturally induced WNV neutralizing antibodies were
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detectable and showed relatively little variation over ∼1 year in rock pigeons (Columba
livia) and fish crows (Corvus ossifragus), and > 4 years in raptors.13–15

We performed a 36-month controlled study of WNV infection in the house sparrow (Passer
domesticus), an abundant and ubiquitous passerine that is a competent reservoir host of WNV.
11,16 Our major objectives were to monitor WNV neutralizing antibody titers of
experimentally inoculated house sparrows for up to 36 months, to assess the protectiveness of
these antibodies over time, and to measure serologic responses to primary and secondary
exposure. Secondary objectives were to assess for contact transmission among communally
housed sparrows, to compare mortality rates in sparrows caged and handled through the period
of acute WNV infection with rates in sparrows in a free-flight aviary and not captured, and to
compare viremic responses and viral titers in tissues of birds that succumb with those that
survive infection.

METHODS
House sparrow capture and husbandry

From January to March of 2005, 179 adult house sparrows (hereafter, sparrows) were captured
by mist net in northern Colorado. Upon arrival, birds were leg-banded, weighed, and bled from
the jugular vein.

Sparrows were housed free-flight, divided equally between two rooms (each 3.7 m width × 3.7
m height × 5.5 m length) containing branches, stumps, ropes, sand baths, cuttlefish bone, and
multiple food and water stations. Fresh water and food were provided ad libitum; food consisted
of a dry mix of millet, milo, cracked corn, cracked sunflower seed, and oats (in equal parts),
as well as live mealworms 1–2 times/week. Birds were acclimated to captivity for 2–12 weeks
before WNV inoculation. Birds caged for daily bleedings were housed 2–5 individuals per
cage (each 0.4–0.5 m width × 0.4 m height × 0.6–0.8 m length).

Birds exhibiting clinical signs (lethargy, fluffed feathers, anorexia) before or during the study
were euthanized via sodium pentobarbital overdose administered intravenously. This study
was performed in accordance with regulations established by the Institutional Animal Care and
Use Committee at Colorado State University.

Experimental groups and inoculation
Sparrows were divided into three experimental groups based on initial WNV serostatus (Figure
1). Groups included WNV seronegative birds for experimental inoculation (hereafter, deemed
“experimentally immune;” N = 114), naturally infected birds with pre-existing anti-WNV
antibodies (hereafter, deemed “naturally immune;” N = 21), and WNV seronegative birds to
serve as antibody-negative controls (hereafter, deemed “non-immune;” N = 20). The former
two groups were experimentally inoculated subcutaneously with 1,000–2,000 plaque forming
units (PFU) of WNV strain NY99-4132 administered in 0.1 mL BA1 (M199-Hank's salts, 1%
bovine serum albumin, 350 mg/L sodium bicarbonate, 100 units/mL penicillin, 100 μg/mL
streptomycin, 2.5 μg/mL amphotericin B in 0.05 M Tris, pH 7.6). The latter group was not
experimentally inoculated with the initial groups but remained among the inoculated birds as
non-immune contact controls in the free-flight room to assess for potential contact
transmission. Some of these seronegative sparrows were housed in separate cages from
experimentally immune sparrows and inoculated as non-immune controls at 6, 12, 24, and 36
months post-inoculation (PI).
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Sample collection and preparation
After initial inoculation, all but 14 sparrows were housed free-flight within rooms. These 14
sparrows (seven naturally immune and seven non-immune) were caged and bled 0.1 mL via
jugular venipuncture from 1 to 6 days PI and then released into the room with the remainder
of the sparrows.

All sparrows were caught by hand-held nets and bled 0.2 mL via jugular venipuncture at 1, 6,
12, 18, 24, 30, and 36 months PI. At 6 months PI the 21 naturally immune sparrows that had
been inoculated 6 months prior were bled and euthanized.

Challenge experiments (i.e., re-inoculation or secondary exposure) occurred at 6, 12, 24, and
36 months PI. Sparrows were placed into cages for several days and then needle-inoculated
subcutaneously with 2,500–3,500 PFU of WNV strain NY99-4132. After challenge inoculation
(or initial inoculation for non-immune controls), blood samples were collected from 1–7 and
on 14 days PI, when birds were euthanized.

Blood samples were either added to BA1 with 20% fetal bovine serum (FBS) in cryovials for
an approximate 1:10 serum dilution (for viremia analysis) or dispensed undiluted into serum
separator tubes (for antibody analysis). Blood samples were held at room temperature for 20–
30 minutes for coagulation, centrifuged for 10 minutes at 6,000 × G and sera frozen to −80°C
(diluted samples) or for 3 minutes at 12,000 × G and sera frozen to −20°C (undiluted samples).

Sparrows that died or were euthanized as a result of morbidity < 10 days PI, any non-immune
controls that succumbed during the study, and eight non-immune controls euthanized at 14
days PI were necropsied, at which time oropharyngeal swabs, spleen, kidney, heart, and brain
were collected and placed in 1 mL BA1 with 20% FBS (tissues were weighed for a 10%
suspension). Tissues were processed as previously described17 and tested for WNV by plaque
assay. These birds were considered to have experienced acute WNV-associated mortality if
WNV was isolated from multiple tissues.

Vero cell plaque assay and plaque reduction neutralization test
Sera collected from 1 to 7 days PI, as well as oral swabs and tissue homogenates from birds
dying < 10 days PI, were tested for infectious WNV by Vero cell plaque assay as previously
described.18 Representative plaques were confirmed as WNV through reisolation and testing
by VecTest WNV Antigen Assay (Medical Analysis Systems, Camarillo, CA) as previously
described.17 The detection thresholds for WNV were 101.7 PFU/mL serum and 100.7 PFU/
swab or mL of tissue homogenate.

Sera were tested for neutralizing antibodies to WNV using the plaque reduction neutralization
test (PRNT)19 with the same WNV strain as for inoculation of sparrows. Sera that neutralized
≤ 60% of WNV PFU were considered negative for antibodies, whereas sera that neutralized >
90% were considered positive (no serum samples neutralized between 60–90% of viral
plaques). Antibody positive serum samples were serially diluted 2-fold and tested in duplicate
to determine reciprocal endpoint 90% neutralization (PRNT90) titers. Anamnestic antibody
responses to challenge were considered significant when a ≥ 4-fold increase in PRNT90 titer
was observed within ∼2–4 weeks of challenge.

Mathematical and statistical analyses
To assess the variation in PRNT90 titers of all sparrows alive for at least two consecutive time
points, the multiple-fold change in titer for each individual at a given time point and the one
immediately following was represented by a numerical value (e.g., −2 for a 2-fold decrease, 0
for no change in titer, 2 for a 2-fold increase). These values were averaged among all individuals
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to determine average changes in titer at each time period (Table 1). This analysis avoided
eliminating individuals that were not present throughout all time points.

A χ2 test (α = 0.05) was used to compare mortality rates (as proportions) of caged sparrows
that were frequently captured and sampled with those of free-flight sparrows not handled after
inoculation. Peak viremia titers in log10 PFU/mL serum (the dependent variable) were analyzed
as a function of disposition (death versus survival; the fixed variable) using general linear
model procedure (Proc GLM). This method was also used to compare tissue titers in log10
PFU/0.5 cm3 (the dependent variable), analyzed as a function of days PI when death occurred
(5–6 days PI versus 7–9 days PI; the fixed variable). Viral titers below the threshold of detection
were considered zero. Statistics were calculated in SAS/STAT MULTTEST software, version
9.1 (SAS Institute, Inc., Cary, NC).

RESULTS
Initial serology and mortality

Thirty-one of 179 (17.3%) free-ranging sparrows had WNV-neutralizing antibodies before
initiation of the study. A total of 125 seronegative sparrows were inoculated (114 at initiation
of the study, plus 11 controls during subsequent challenge time points), 14 of which
experienced acute WNV-associated mortality after experimental inoculation. An additional 32
deaths occurred over the 36-month study, including four seronegative control birds. Twelve
experimentally immune sparrows were euthanized at pre-determined time points for a separate
study. All deaths that occurred beyond the acute phase of infection were attributed to natural
causes, bird-induced trauma, or husbandry- or sampling-related causes.

Contact transmission
No serologic evidence of contact transmission was observed in non-immune control sparrows
(N = 20) throughout the study. Ten of these were alive at 36 months PI, six were euthanized
during challenge experiments, and four died during the study (the latter had no evidence of
acute WNV infection).

Acute responses to infection in non-immune sparrows
After inoculation with WNV, a total of 18 non-immune sparrows were caged and bled daily
to evaluate viremia, whereas 107 birds were released into large rooms and not handled until 1
month PI. Five of 18 (27.8%) caged sparrows had visible clinical signs after inoculation,
including lethargy, fluffed feathers, anorexia, and/or hind limb rigidity; these birds died or
were euthanized between 5–9 days PI. Mortality attributed to WNV infection (death at < 10
days PI and WNV isolated from multiple tissues) was significantly greater among the caged
sparrows handled daily (5/18; 27.8%) compared with free-flying sparrows that were not
handled (9/107; 8.4%) (N = 125, χ2 = 5.81, P = 0.016; 95% confidence interval [CI]: 0.069,
0.823).

All 18 non-immune control sparrows caged and bled daily after inoculation developed viremia
of ≥ 3 days duration. The peak viremia titers of sparrows that experienced WNV-associated
morbidity and mortality (105.5–10.2 PFU/mL serum; mean 109.7) were significantly higher than
in those that survived acute infection and showed no clinical signs (104.5–7.6 PFU/mL serum;
mean 106.6) (N = 18, P = 0.006, 95% CI: 0.694, 3.401) (Figure 2). Death occurred from 1 to 6
days after peak viremia, and viremia titers decreased ∼200–300,000-fold before death in 4/5
(80.0%) sparrows.

All of 14 necropsied sparrows that died of acute infection had WNV isolated from
oropharyngeal swab (102.2–6.6 PFU/swab), heart (101.7–6.5 PFU/0.5 cm3), and kidney
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(100.7–7.1 PFU/0.5 cm3); 13/14 (92.9%) also had virus isolated from brain (104.2–6.7 PFU/0.5
cm3) and 12/14 (85.7%) from spleen (103.8–7.1 PFU/0.5 cm3). Viral titers in all tissues were
significantly higher in birds that succumbed to acute infection earlier (5–6 days PI) versus after
this time (N = 14; oropharyngeal swab, P = 0.014, 95% CI: 0.380, 2.778; heart, P < 0.001, 95%
CI: 1.394, 3.610; kidney, P < 0.001, 95% CI: 2.822, 5.120; spleen, P = 0.001, 95% CI: 1.863,
5.573; brain, P = 0.006, 95% CI: 0.903, 4.206). West Nile virus was isolated from tissues
collected from three of eight necropsied individuals that remained healthy until euthanasia at
14 days PI (spleen from two individuals at 101.3–2.0 PFU/cm3, and kidney 101.0 PFU/0.5
cm3 and heart 100.7 PFU/0.5 cm3 from another individual).

Acute responses to challenge in immune sparrows
All but one of 71 (98.6%) house sparrows challenged by needle-inoculation at 6–36 months
PI demonstrated sterilizing immunity; one sparrow had low-titered viremia from 3 to 5 days
after challenge (Table 2). Antibody titers in this bird increased 256-fold by 14 days post-
challenge. Anamnestic rises in antibody titers of ≥ 4-fold by 14 days post-challenge were
observed in 72.9% (51/70) of experimentally immune sparrows, and rises were pronounced in
some cases (up to 512-fold).

No experimentally immune sparrows exhibited morbidity or mortality after challenge except
for one bird that died 5 days post-36-month challenge. This individual had no detectable
viremia after challenge, and heart, spleen, brain, and kidney were negative by virus isolation,
though a low titer (101.7 PFU/swab) of infectious WNV was isolated from the oropharyngeal
swab collected after death.

None of the naturally immune sparrows (N = 21) exhibited morbidity or mortality after
challenge inoculation, and none of the seven sparrows bled from 1 to 6 days after challenge
inoculation had detectable viremia.

Chronic responses to challenge in immune sparrows
All non-immune sparrows that survived inoculation seroconverted and 55% (55/100) had a ≥
4-fold decrease in antibody titer from 1 to 6 months PI. Thereafter, little variation in
PRNT90 titers was observed (Table 1), as titers of most sparrows (41/42; 97.6%) did not vary
≥ 2-fold over the subsequent 30 months.

Approximately 38% (8/21) of naturally immune sparrows exhibited a ≥ 4-fold increase in
PRNT90 antibody titer 1 month after challenge (Table 2). At 6 months PI, titers ranged from
40 to 1,280, with 19.0% (4/21) exhibiting a ≥ 4-fold decrease from 1 to 6 months post-challenge.

DISCUSSION
An understanding of the duration and protection provided by WNV immunity in passerine
birds is important because numerous members of this large taxonomic group are virus-
amplifying hosts20 that are commonly fed upon by mosquitoes.21–23 Some passerines, such
as the house sparrow, reside primarily or exclusively in areas where humans are present,16
suggesting that their WNV reservoir competence and immune responses could have
implications for public health.11 Although many passerines experience relatively high viremia
titers after WNV infection, some also mount an effective immune response and survive
infection.8–11,20 In addition, WNV immunity is long-lasting in some birds.13–15 However,
the ability of anti-WNV antibodies to protect against viremia upon subsequent infection in
birds, thereby effectively rendering a potential amplifying host into a dead-end host, remains
unknown.
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Elevated WNV transmission likely corresponds to relatively high proportions of infected birds,
and the resulting widespread immunity among survivors could potentially dampen
transmission.24 If immune birds survive multiple transmission seasons and their immunity
persists, the protective effect against infection among the remainder of the population (e.g.,
herd immunity) may be relatively long-lasting and lead to a reduction in disease incidence.
13,25 Humans and other vertebrates may also benefit from long-lasting protective WNV
immunity among birds. Annual adult survival of house sparrows is 57% and longevity has
reached > 13 years in the wild.16 In addition, house sparrows were recaptured after an average
of 559 days (range 502–649) in southern California,26 supporting the notion that some free-
ranging sparrows survive multiple transmission seasons. However, herd immunity may be
unattainable in some avian species based on life history traits such as population turnover rate
and life span. For example, the house sparrow often rears multiple broods of up to eight chicks
per brood in a given season, leading to an influx of naive offspring into the population at regular
intervals. Furthermore, annual survival of hatch-year house sparrows is estimated at only 20%.
16 Collectively, these factors may make it difficult to attain a sufficient proportion of immune
individuals to protect the remainder of the population.

Along with duration, the level of protection provided by anti-WNV antibodies affects
transmission dynamics and avian population health. Antibodies to other flaviviruses for which
birds also serve as amplifying hosts, such as St. Louis encephalitis virus (SLEV), have variable
persistence in birds, sometimes declining after 3 months PI and becoming undetectable by 6–
12 months PI. However, even with undetectable SLEV-neutralizing antibodies, some
experimentally inoculated house finches (Carpodacus mexicanus) and house sparrows were
protected from viremia at 6, 12, and 24 months PI with anamnestic rises in titers in those
challenged at 12 months PI.24,27,28 In the present study, nearly all sparrows were protected
from challenge for up to 36 months PI, as evidenced by sterilizing immunity. The significance
of the single experimentally immune house sparrow that experienced a relatively low-titered
viremia after challenge is unknown, but this bird apparently retained partial immunity, resulting
in titers below those observed in non-immune sparrows. West Nile virus was unlikely
associated with the death of one experimentally immune sparrow after challenge inoculation
because of a lack of virus detection in serum and tissues. However, low levels of virus were
detected in the oropharyngeal cavity upon death, the significance of which is also unknown.

Understanding patterns of anamnestic antibody responses subsequent to initial infection in
birds is useful for interpretation of serosurveillance and diagnostic data. Traditionally, a ≥ 4-
fold increase in antibody titer over several weeks to months indicates a recent infection.19
However, in the present study, ∼27% of experimentally immune and ∼62% of naturally
immune sparrows failed to meet this criterion. Similarly, 5/6 (83.3%) SLEV-immune house
finches failed to demonstrate a > 2-fold rise in anti-SLEV antibody titer 2 and 6 weeks after
homologous challenge; however, all of four WNV-immune finches exhibited a ≥ 4-fold
increase in anti-WNV antibody titer when challenged with WNV.7 Perhaps in some cases,
existing immunity is sufficient to neutralize challenge virus or rises in post-challenge titers are
delayed. Alternately, needle-inoculation could fail to stimulate a rise in antibody titer, though
needle versus mosquito inoculation did not lead to a difference in overall patterns of arbovirus
infection observed in chickens or house finches.29,30 In the present study, most house sparrows
experienced a ≥ 4-fold decrease in antibody titer between 1 and 6 months PI, likely reflecting
a decline after the initial peak that follows primary infection, a pattern that may suggest
relatively recent WNV infection in some birds.14

The significance and extent of bird-to-bird WNV transmission in nature remains unknown, but
the probability of contact transmission is likely dependent upon multiple factors, such as bird
behavior, habitat, and environmental conditions. Although bird-to-bird WNV transmission has
been observed in corvids, gulls, and domestic birds in controlled experiments,20,31–33 no
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house sparrows in the present study became infected through contact transmission. Unlike most
previous studies, in which birds were caged, housing in the present study was more similar to
a natural setting, consisting of spacious rooms with hundreds of perching options and numerous
food and water stations. The likelihood and frequency of bird-to-bird WNV transmission in
nature remain unknown.

Much of the currently available information regarding avian mortality rates associated with
North American strains of WNV derives from experimental infection studies involving wild-
caught birds subsequently caged and frequently handled for sampling. These birds likely
undergo intensified and frequent rises in stress levels because of confinement and repeated
close contact and handling by humans that differ from the more prolonged and continual stress
associated with life in the wild to which they are presumably more accustomed (e.g., underlying
competition for food and territories, constant need for foraging and vigilance against predators,
unfavorable climate, etc.). Thus, captive studies may lead to overestimates of WNV-attributed
morbidity and mortality rates in free-ranging birds. Mortality rates of caged house sparrows
bled daily after experimental inoculation with WNV NY99 have ranged from ∼38 to 50%.
20,34 In the present study, the mortality rate of caged birds handled daily was significantly
higher than that observed among birds in a free-flight aviary and spared the stress of capture,
restraint, and blood collection (27.8 versus 7.5%, respectively).

Although marked differences in responses to WNV infection among North American bird
species have been observed,20 intra-species differences suggest that individual variation is
also an important factor in infection outcome. Results from the present study suggest that
individuals that are unable to control viral replication in tissues, including blood, are less likely
to recover from infection. Some sparrows succumbed to infection near the period of peak
viremia, whereas others succumbed up to 6 days after viremia titers began to decline. This
inability to control virus replication and dissemination may be associated with immune
deficiencies, as was observed in antibody, IgM, and B cell-deficient mice that had higher
viremia titers, higher viral loads in the central nervous system, and were more vulnerable to
lethal WNV infection than wild-type mice.35,36 However, some birds that succumb to WNV
infection begin to mount WNV-neutralizing antibody responses prior to death.37 Studies are
needed that examine the potential underlying immune deficits that may be associated with
higher viremia titers, widespread viral dissemination, and eventual death in birds.

In conclusion, successful transmission of WNV in nature is dependent upon avian amplifying
hosts. Therefore, knowledge of patterns of immunity in birds will aid in understanding and
predicting future transmission patterns. Long-lasting protective immunity to WNV infection
in birds could potentially dampen transmission rates both within bird populations, and in
humans and other susceptible vertebrates.
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Figure 1.
Timeline of West Nile virus experimental inoculation of three experimental groups of house
sparrows. * Antibody (Ab) titer indicates when serum samples were titrated to determine WNV
PRNT90 antibody titers. † All birds were bled at 1 month post-inoculation to confirm
seroconversion and assess antibody titers.
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Figure 2.
Average daily viremia titers among house sparrows experimentally inoculated with West Nile
virus that succumbed and those that survived infection. Standard error bars are provided for
1–6 days post-inoculation.
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