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Abstract: The numerical solution of the Poisson-Boltzmann (PB) equation is a useful but a
computationally demanding tool for studying electrostatic solvation effects in chemical and
biomolecular systems. Recently, we have described a boundary integral equation-based PB
solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm
shows an order N complexity in both the computational cost and memory usage. Here, we
present an updated version of the solver by using an adaptive FMM for accelerating the
convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our
previous nonadaptive one, not only significantly improves the performance of the overall memory
usage but also remarkably speeds the calculation because of an improved load balancing
between the local- and far-field calculations. We have also implemented a node-patch
discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the
constant element method without sacrificing accuracy. As a result of these improvements, the
new solver makes the PB calculation truly feasible for large-scale biomolecular systems such
as a 30S ribosome molecule even on a typical 2008 desktop computer.

1. Introduction
Electrostatic interactions play essential roles in many biologi-
cal processes, such as enzymatic catalysis, molecular rec-
ognition, and bioregulation. Over the past three decades, the
Poisson-Boltzmann (PB)-based continuum electrostatic
calculation has become a common tool in theoretical studies
of biomolecular systems such as proteins and DNAs in
aqueous solutions. Many of these PB solvers rely on
numerical solution of the PB equation. Among them, the PB

solvers based on the finite difference methods, including
DelPhi, GRASP, MEAD, UHBD, and the PBEQ,1 have
gained wide popularity, most likely due to their ease of
implementation. A finite volume/multigrid PB solver APBS
also enjoys increasing popularity over biochemistry and
biophysical communities recently.2,3 To our knowledge,
APBS is the first program to enable distribution of PB
calculations to a great number of processors, thus allowing
extremely large-scale systems to be computed.

On the other hand, algorithms based on the boundary
integral equation (BIE) approach have shown great promise
for their efficiency on scaling and memory requirements.4-6

These methods rely on Green’s theorem and potential theory
to recast the linear PB equation into a set of boundary integral
equations that need to be solved only on the surface of the
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molecule. Therefore, the number of unknowns is reduced
relative to the volumetric discretization in finite difference
and finite element methods. This surface integral equation
idea is not new and was applied in the boundary element
methods (BEM) in the early 1970s for different kinds of
problems. Unfortunately most previous BEM implementa-
tions used Gauss eliminations to solve the resulting linear
system. Even when a Krylov subspace based iterative solver
was used for acceleration, the BEM approach was still limited
by the cost associated with numerous surface integrations
(matrix vector multiplications) that require an order ∼N2

operations for a system with N surface elements. In the last
20 years or so, however, many fast algorithms have been
introduced to efficiently evaluate these convolution type
surface integrations, examples include the FFT-based algo-
rithms (such as the precorrected FFT7,8 and particle mesh
Ewald methods9,10) and the multipole expansion-based
techniques (such as the tree code11,12 and fast multipole
methods13-17). In particular, we want to mention our recent
combination of the new version of the fast multipole method
with the BEM formulation for PB equation, which has been
shown numerically to be faster than existing PB solvers based
on the finite-difference method for relatively large systems.6

However, our earlier implementation of the BEM/FMM
approach for the PB equation adopts a nonadaptive tree
structure for the sake of easy implementation, which is
suitable for fairly uniform element distributions. For the
surface integral equation formulation, as the elements
distribute only on the surface of the molecule, at the lower
levels of the tree structure a large number of boxes beyond
the molecular surface are empty, which significantly com-
promises the computational efficiency of the algorithm
because of the time and storage spent on these empty boxes.
Moreover, the nonadaptive algorithm is more difficult to
strike a load-balance between the number of elements in the
local list (calculated directly) and those in the far-field
(calculated using multipole and local expansions), thus
further reducing its efficiency. By contrast, the adaptive
FMM (AFMM) continues to subdivide boxes only until
the number of elements in a box has reached a predefined
number, thus creating a practically ‘uniform’ partition of
particles in all childless boxes regardless of their sizes.
In this paper, we present an improved implementation of
the PB solver using an adaptive new version of FMM,18

a “node-patch” discretization approach,19 and the Krylov
subspace iterative subroutines from the open source
package SPARSKIT.20 The resulting adaptive solver shows
not only more efficient use of the memory but also significantly
improves the load-balance between the local and far-field
calculations, thus leading to faster calculation by several fold.

This paper is organized as follows. In Section 2, we
describe the boundary integral equation formulation for the
linearized PB solver. In Section 3, the “node-patch” dis-
cretization scheme is introduced to further reduce the number
of unknowns. In Section 4, we discuss the Krylov subspace
subroutines used in our solver, in particular, the package
SPARSKIT and its convenient “reverse communication
protocol”. In Section 5, we briefly discuss the adaptive new
version of FMM. In Section 6, numerical results are presented

to benchmark the efficiency and accuracy of the solver, and
finally in Section 7, we conclude this paper and discuss how
to further optimize the solver using optimized oct-tree
structure based on “spectral graph theory”21 and parallel-
ization on multicore multiprocessor computers.

2. Boundary Integral Equation Formulations

The Poisson-Boltzmann equation takes its most standard
form as

When the electrostatic potential φ is small, the linearized
PB equation can be obtained as

When Green’s second identity is applied, traditional
boundary integral equations for the linearized PB equation
for a single domain (molecule) can be written as,

where φp
int is the interior potential at position p of the

molecular domain Ω, qk is the kth source charge, and S )
∂Ω is the molecular boundary. There are a variety of ways
to specify the molecular boundary (solute-solvent dividing
surface), and it is known that different specifications of the
boundary can lead to very different results (see, e.g., ref 22).
This is a practically important issue but is beyond the scope
of this work. The particular surface types used in this work
will be noted in the later sections when encountered. φp

ext is
the exterior potential at position p, Dint is the interior
dielectric constant, t is an arbitrary point on the boundary,
and n is the outward normal vector at t. In the formulas, Gpt

and upt are the fundamental solutions of the corresponding
Poisson and Poisson-Boltzmann equations, respectively.
When point p approaches the surface S, by satisfying the
boundary conditions φint ) φext and Dint(∇φintn) )
Dext(∇φextn), eqs 3 and 4 become a set of self-consistent
boundary integral equations (denoted as nBIEs),

where PV denotes the principal value integral to avoid
the singularity when tfp, f ) φext, h ) ∇φextn, and ε )
Dext/Dint. The coefficient constant Rp is 1/2 for a smooth
surface, and more generally, it depends on the local surface
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geometry at node p. For a vertex of a polyhedron, the
coefficient Rp equals Ap/4π, where Ap is the interior solid
angle at p. The constant of 1/2 has been usually used in
previous BEM/PB work, while we have recently demon-
strated that the use of a geometry-dependent coefficient
significantly improves the overall numerical accuracy for the
potential evaluation.19

The derivative BIEs (dBIEs) can be obtained by linearly
combining eqs 5 and 6 and their derivative forms (for smooth
surface case).

where n is the unit normal vector at point t and n0 is the unit
normal vector at point p. The dBIEs lead to a well-
conditioned (Fredholm second kind) system of algebraic
equations. When Krylov subspace methods are applied to
such systems, the number of iterations remains bounded even
for a large number of elements. In our former work, we
extended this form to systems of more than one separated
molecules and provided a set of corresponding equations for
force calculation.6

3. “Node-Patch” Discretization

After a typical triangular discretization, eqs 7 and 8 become

where T is the total number of discretized patches of the
combined boundaries, while 2T represents the total unknowns
of the system (i.e., f and h), and ∑k encompasses all the
source charges of the system. The corresponding coefficient
matrices are defined as follows:

where the integrations are performed on the small patch ∆St.
To obtain the above form, f and h are assumed to be constant

in each ∆St patch. When p and t are nearby patches, eq 11
is performed by direct integration, otherwise the kernel for
each patch integral is taken as a constant. The patch
properties such as the normal vector and area are determined
by the discretization method. A “node patch” discretization
is employed in this work and will be described in the
following paragraphs. In a typical iterative solution of the
linear system eqs 9 and 10, the matrix-vector multiplication
(first summations in eqs 9 and 10) needs to be performed in
every iteration step, which accounts for the major compu-
tational cost. However, these computations can be conve-
niently accelerated by using FMM: for all the local pairs of
p and t as defined in the FMM oct-tree structure, direct
integration is performed over the corresponding patches,
while the far-field calculation is achieved through the
multipole expansion approximation. In addition, FMM is also
used in the summation over all the source point charges as
appeared in the last terms in eqs 9 and 10.

There are two ways to treat the unknown f (or h) in the
BEM approaches. The first is the so-called “constant ele-
ment” approach which treats f (or h) as a constant on each
element (face). Thus, the number of unknowns equals to the
number of elements. Alternatively, f (or h) on each element
can be obtained by linear interpolation from the unknowns
of the three constituent nodes (also known as linear element
approach), in which the number of unknowns equals the
number of nodes. It is easy to show that, compared to the
“constant element” approach, the “linear element” one leads
to a reduction of the total number of unknowns by ap-
proximately a factor of 2, but a major disadvantage of the
node-based approach lies in the introduction of additional
complexity in its numerical implementation. In a recent
communication, we introduced a node-patch scheme that
appears to enjoy the benefits of both methods.19

The idea of the “node-patch” approach is to construct
a “working” patch around each node instead of directly
using the facet patch (element). We further assume that f
(and h) is constant on this new “node-patch”. A simple
way to construct these new patches is illustrated in Figure
1, in which a “node patch” is constructed around the ith
node that has five neighboring elements. The new patch
is defined by the area encircled by a sets of points
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Figure 1. A “node patch” around the ith corner enclosed by
the dashed lines is constructed on a triangular mesh. O and
n are the centroid and normal vector of an element respec-
tively, and C is the middle point of an edge.
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{O1, C1, O2, C2, ...O5, C5, O1}, where {Ol, l ) 1, ..., 5} are
the centroids of the five adjacent triangles, and {Cl, l ) 1, ...,
5} are the midpoints of the five joint edges. It is easy to
show that each triangular element contributes one-third of
its area to the new “node-patch”. Consequently, the far-field
integrals on the new patch ∆Si become

where nl is the unit normal vector of the lth neighboring
element, ∆Sl is the area of the lth adjacent triangular element,
all the neighboring elements of the ith node form a set {L},
and ∆Si

b should be considered as a vector. For near-patch
integration, a normal quadrature method is used as in the
constant element method. Similar treatments apply to the
integrations for the kernel u and its derivative, as well as
for the second-order derivative terms if the dBIEs are used.

There are three main advantages of this “node-patch”
approach in BEM. First, as aforementioned, because of the
reduction of the total number of unknowns when compared
to the constant element method, the computational cost of
solving the resulting linear system is accordingly reduced.
The only additional computation is associated with the
preprocessing of the geometric coefficients ∆Si

a and ∆Si
b in

eqs 12 and 13. This, however, only constitutes a negligible
portion of the total PBE solution time, and the geometric
coefficients can also be saved for repeated use in iterative
solving procedures. The second advantage, which is not so
explicit, lies in the fact that relative to the linear element
method, the “node-patch” method is significantly more
efficient in searching and indexing the local list when used
with any practical matrix storage format such as the
Harwell-Boeing sparse matrix format or modified sparse
column (row) format. Finally, in the “node-patch” method,
the same as in the constant element method, the source and
target are the same set of points, the nodes, which makes it
straightforward to use any currently available FMM. Oth-
erwise, if the source is different from the target as in
the linear element method (where the convolution is done
between two sets of data: the nodes and the quadrature
points), still extra effort will be necessary to optimize the
current FMM code to achieve comparable efficiency.

4. Krylov Subspace Methods

The discretized eqs 9 and 10 form a well-conditioned
Fredholm second kind integral equation system, and a
common practice for its efficient solution is to use Krylov
subspace-based iterative methods. As the Fredholm second
kind operator consists of an identity operator plus a compact
operator whose eigenvalues only cluster at 0, it is well-known
that the number of iterations in the Krylov subspace methods
will be bounded, independent of the number of nodes in the
discretization. Hence, the total number of operations required
to solve eqs 9 and 10 is a constant (representing the number
of iterations) times the amount of work required for a matrix

vector multiplication. As will be discussed in next section,
when the new version of fast multipole methods (FMM) are
applied, the matrix vector product only requires O(N)
operations with an optimized prefactor; therefore, the linear
equation system can be solved in asymptotically optimal
O(N) time.

Given an initial iterate x0, the Krylov subspace method
solves the linear system Ax ) b by iteratively minimizing
some measure of error over the space x0 + Kk, where Kk )
span{r0, Ar0, A2r0, ..., Ak-1r0} and r0 is the initial residual
usually defined as r0 ) b - Ax0. On the basis of different
measures of the error and different types of matrices, there
are many different implementations of the Krylov subspace
method. As the matrix A in eqs 9 and 10 is nonsymmetric
and there is no fast algorithm for multiplying the transpose
of A with an arbitrary vector, in our solver, we have tested
four different Krylov iterative subroutines from the open
source package SPARSKIT developed by Saad and collabora-
tors.20,23 These are the full GMRES, the restarted GMRES,
the biconjugate gradients stabilized (BiCGStab) method, and
the transpose free QMR (TFQMR). Our preliminary numeri-
cal experiments show that all these solvers perform well in
most cases, and not surprisingly, the full GMRES seems to
perform the best. Also, as will be shown in Section 6, the
number of iterations using the iterative solvers in SPARSKIT
is often less than the numbers we observed in our previous
implementations in which a different Krylov subspace
package is used, partly because of our optimized initial guess
and a few other improvements in the present code.

An interesting feature of the iterative solvers in SPARSKIT
is the so-called “reverse communication protocol” (confer
the ITSOL directory in SPARSKIT20), which avoids having
to call the matrix vector product subroutine from inside the
Krylov solver. Instead, the Krylov solver provides a vector
and asks for the matrix vector multiplication result as future
input. Therefore, it is unnecessary to pass the parameters in
the FMM subroutines to the Krylov solver, which means
easier interface between the FMM and SPARSKIT, and
easier memory management.

5. Adaptive Fast Multipole Methods

The fast multipole method was first invented by Greengard
and Rokhlin in 198713 for the fast evaluation of the Coulomb
interactions of N particles. For any given cluster of particles,
as the far-field potential due to these particles is a smooth
function and can be represented by a few terms of spherical
harmonic expansions in 3D (the Laurent expansions in 2D),
the interactions can therefore be efficiently accounted for
using a divide-and-conquer strategy as follows: first, an oct-
tree structure is generated so each childless box (leaf node)
only contains a few particles; next, an upward sweep is
executed to form the multipole expansions which carry the
far-field information for all boxes, by using the particle
information directly for the childless boxes, and by shifting
the children’s multipole expansions to parent level boxes
(multipole-to-multipole); third, a downward sweep is used
for each box to gather far-field information which is stored
in a local expansion. At each level, the box first obtains very
far-field information from its parent using a local-to-local

∫∆Si
GpthtdS ≈ hiGpi∆Si

a, ∆Si
a ) 1

3 ∑
l∈{L}

∆Sl (12)

∫∆Si

∂Gpt

∂n
ftdS ≈ fiGpi∆S i

b, ∆S i
b ) 1

3 ∑
l∈{L}

∆Slnl (13)

Multipole Boundary Element Method J. Chem. Theory Comput., Vol. 5, No. 6, 2009 1695



translation and then shifts the multipole expansions from the
“interaction list” (far-field boxes of itself which are not far
field of its parent) to its local expansion (multipole-to-local);
fourth, the local expansions of the childless boxes are
evaluated at each particle location to account for all the far-
field particle interactions; finally, the local particle interac-
tions are evaluated directly. Notice that the number of boxes
is O(N) and the amount of work for local direction interac-
tions is also O(N); therefore, the algorithm is asymptotically
optimal O(N).

However, because of the large number of boxes in the
interaction list and O(p2) operations for each multipole-to-
local translation when p terms are used in the expansion,
many numerical implementations reveal that the 1987 version
of FMM is less competitive compared with other methods
including the PME9 and tree code,12,24 and the prefactor in
O(N) is often >10 000. To further accelerate its performance,
in 1997, a new version of FMM was presented by Greengard
and Rokhlin for the Laplace equation,14 in which exponential
expansions are introduced to diagonalize the multipole-to-
local translations, and a “merge-and-shift” technique is used
to further reduce the number of such translations. Numerical
experiments show that the new version of FMM breaks even
with direct calculation when the number of particles n )
500 for three digit accuracy, and n ) 1000 for six digits for
Coulomb interactions. In our previous work,6 the new version
of FMM was implemented for the Laplace and linearized
PB equations for the efficient calculation of electrostatic
interactions. As far as we know, this was the only LPB solver
using the new version of FMM.

In this paper, we further improve our solver by using an
adaptive new version of FMM. Unlike our previous imple-
mentation where a uniform oct-tree is generated, we remove
those empty nodes in the oct-tree structure by only subdivid-
ing a box when the number of particles it contains is more
than a prescribed number. Notice that this is important as
all the unknowns are only located on the surface of the
molecule. Figure 2 schematically shows a 2D adaptive tree
structure for a circular boundary problem. There would be a
total number of 256 smallest boxes when using 4 levels of
box subdivisions in the uniform quad-tree structure, while
only 64 boxes on the circular boundary are counted for in
the adaptive tree structure. As shown by our preliminary
numerical results in next section, the adaptive tree structure

not only improves the efficiency of the code but also reduces
the required memory storage so larger problems can be
computed.

Instead of discussing technical details of the adaptive new
version of FMM, we refer the readers to existing literatures.
The new version of FMM was introduced in ref 14 for the
Laplace equation, the corresponding adaptive version was
discussed in ref 16, the new version of FMM for the
linearized PB equation (also called Yukawa or modified
Helmholtz equation) was discussed in 17, and our LPB solver
using a uniform oct-tree structure was presented in ref 6.

6. Benchmarks

A. A Spherical Cavity. The first system selected is a point
charge located at the center of a spherical cavity. We examine
the accuracy of the algorithm at different discretization
resolution by comparing the calculated energy and potential
to those from the analytical solution. We first note that for
any relatively uniform particle distribution, AFMM and
FMM maintain almost the same level of accuracy because
the error is largely dependent on the box level and the
number of terms used for expansion but not on how the data
structure is represented, i.e., an adaptive vs nonadaptive tree
structure. This is confirmed by the results displayed in Figure
3 that for both the energy and potential calculations the data
lines obtained with AFMM overlap with those with FMM.
It is also worth noting that the energy and potential
calculations show similar errors, both of which reduce
roughly linearly as the element size decreases. The energy
and potential calculations converge with a relative error
<0.2% when the surface mesh resolution is finer than 0.25
Å2 (the surface area of a single triangular panel). At any
given mesh resolution, the numerical error is bounded with
the FMM (for far-field calculation) and the local numerical
integration, but how the resolution and quality of meshes
might affect the accuracy of the calculation is somewhat more
difficult to quantify. While very good converging behavior
(and well-defined converging resolution) is observed here
for a spherical case, the calculations are performed on a
single charge with a perfect geometry. Therefore, further
studies would be necessary to assess the convergence
criterion for more complex biological systems.

Figure 2. A schematic 2D adaptive tree structure. Figure 3. Accuracy of energy and potential calculations with
the conventional and adaptive solvers. The relative errors of
surface potentials are averaged over all node points.
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A particular advantage of the adaptive algorithm, when
compared to the nonadaptive one, is its lower memory usage.
This is due to the fact that in a nonadaptive tree structure,
when the elements only distribute on the surface as in BEM,
a large number of boxes beyond the molecular surface are
empty, leading to unnecessary memory usage for storing
these empty boxes and their associated expansion coef-
ficients. By contrast, the adaptive FMM continues to
subdivide boxes only until the number of elements in a box
has reached a predefined number, thus creating a practically
‘uniform’ partition of particles in all childless boxes regard-
less of their sizes. In our PB solver, the memory taken up
by the FMM part constitutes a considerable part of total
memory usage. But to what extent depends on how much
information for local-field calculations the BEM saves during
solution of the PBE. We here estimated the memory usage
in a stand-alone FMM code for a test case where all the
particles uniformly distribute on a spherical surface. Our
results show a memory reduction of >10 fold with a 5-level-
subdivision of the box, or more generally a reduction of
∼2n-1 fold when level n is greater than 6. In any real PB
calculation, the above simplified analysis is not valid
anymore because of several contributing factors, such as
nonideal shape and/or charge distribution of the system, and
additional memory usage by the other part of the program,
but the overall trend remains evident that the adaptive
algorithm still uses less memory than that of the nonadaptive
one (Table 1). The comparison becomes even more favorable
toward the adaptive solver when the subdivision becomes
finer and/or the system size becomes larger. Because of this
improvement, the PB calculations can now be performed on
our desktop computer for systems with much more surface
elements (e.g., 163 842 and 655 362 in Table 1) than what
can be handled previously by the nonadaptive solver. For
both solvers, the node-patch approach is used.

Furthermore, the adaptive FMM can strike a better load-
balance for treating elements in the local list (calculated
directly) and those in the far-field (calculated using expansion
coefficients), while in the nonadaptive algorithm the partition
between the local and far-field elements is greatly limited
by the power growth of memory (∼8n) as the number of
levels n increases in an oct-tree data structure. As shown in
Table 1, with 655 362 surface elements, the adaptive solver
can handle a maximum tree level of 9 without causing any
memory overflow problem on our 8-gigabyte desktop
computer. However, for the nonadaptive algorithm, the
maximum level that can be handled is only 6 (data not
shown). Further tests reveal that level 9 enables the most

balanced local and far-field calculations, thus is optimal for
this particular case. When the calculation is otherwise
performed at level 6, the FMM calculation is very unbalanced
in a sense that too many elements are assigned to the local
list for direct calculation. Specifically, the direct calculation
takes more than 90% of the total computing time, while the
far-field part takes less than 5%. The poor load-balance
significantly compromises the overall efficiency of the
calculation. For most of the calculations, an average speedup
of 2-3 fold has been observed by using the adaptive
algorithm, while better performance is generally expected
for larger systems. Therefore, as compared to the nonadaptive
solver, our new adaptive implementation not only makes
more efficient use of the memory but also increases the
calculation speed quite significantly.

B. Acetylcholinesterase Tetramer. As a representative
protein system, we chose the acetylcholinesterase tetramer,
which contains 36 638 atoms with a dimension of 135 Å ×
112 Å × 115 Å (Figure 4). The molecular surface (also
known as the solvent-excluded surface), which is the surface
traced by the inward-facing surface of the probe sphere, is
used as the boundary. The surface discretization using
MSMS26 resulted in 124 254 triangular elements and 62 095
nodes. Both the adaptive and nonadaptive solvers can handle
this system well on a typical 2008 desktop computer, giving
very comparable solvation energy (see Table 2). It would
have seemed surprising at the first sight that the adaptive
solver uses almost the same amount of memory as the
nonadaptive one, but when you note that far more levels of
box subdivision are used by the adaptive solver than the
nonadaptive one, the seemingly conflicting results are
actually easy to understand. Because of its ability to involve
more tree levels, the new adaptive solver runs about 7 times
faster than the old one, one of the greatest speedups observed
in all our test calculations. The main reason for the observed

Table 1. Performance Comparison on a Spherical Cavity
Case at Different Level of Discretization Resolution

CPU (s) memory (megabytes) max. level
number of
elements AFMM FMM AFMM FMM AFMM FMM

162 0.05 0.13 2.7 2.7 3 2
642 0.21 0.62 7.0 7.9 4 3
2562 0.89 2.66 24.4 54.0 5 3
10242 4.63 11.44 113.3 241.0 6 4
40962 19.26 57.73 511.8 935.0 7 5
163842 78.35 - 2152.1 - 8 -
655362 1051.20 - 7900.7 - 9 -

Figure 4. Electrostatic potential surface of the acetylcho-
linestase.

Table 2. Performance Comparison on the
Acetylcholinesterase Tetramer

old FMPB AFMPB

solvation energy (kcal/mol) -8341.3 -8342.4
CPU time (s) 695.5 94.2
memory (gigabytes) 1.40 1.05
max. level 6 9
number of iteration 18 15
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acceleration as aforementioned is because the new solver
can have a more balanced work load for both the local and
far-field computation. By contrast, the old nonadaptive solver
cannot run with more than 6 levels, thus leading to a too
heavy local computation load. Another acceleration factor
comes from the reduction of the iterative steps (Table 2) in
solving the linear system by using SPARSKIT as analyzed
above.

C. 30S Ribosome Subunit. Finally, we show the results
of a 30S ribosome system (PDB code: 1fjf25), which is
nontrivial to compute with other or our earlier PB solvers
using a serial version on a desktop, because of its far greater
memory requirement. The 30S ribosome subunit consists of
21 peptides and a 1540-nucleotide RNA subunit, with a total
of 88 431 atoms (including hydrogen atoms) and a dimension
of 211 Å × 177 Å × 200 Å (Figure 5). Because of its size,
the software MSMS fails to generate a molecular surface
mesh for ribosome. So, the Gaussian surface, which is a
level-set of the summation of the spherically symmetrical
Gaussian density distribution centered at each atom of the
molecular, is used as the molecular boundary, and the surface
discretization is performed using the software Gamer.27 The
surface discretization results in 343 028 triangular elements
and 171 288 nodes. The edge length resolution is about 1
Å. The whole computation takes ∼21 min on our desktop
machine (Intel(R) Xeon(TM) CPU 3.00 GHz, 4GB memory),
with a memory usage of 2.6 GB. An 11-level tree structure
is used for optimal efficiency, and 92 iteration steps are taken
to obtain a converged solution. Figure 5 shows the computed
electrostatic potentials mapped on the molecular surfaces of
the 30S ribosome.

7. Conclusions

We have described a new implementation of our BIE-based
PB solver that uses an adaptive FMM for accelerating the
N-body type surface integration. Other salient points of our
current implementation include (1) the well-conditioned
formulation that is extended to multidomain systems, (2) the
development of an efficient patch-node scheme for surface
discretization, and (3) efficient use of Krylov subspace method
for iterative solution of the linear system. The adaptive FMM
reduces the total number of boxes by using nonuniform oct-
tree structure and thus leads to significant reduction in

memory usage. Because of its ability to keep a better load-
balance for the local and far-field calculations, the speedup
is also quite significant when compared to our earlier version
of the nonadaptive solver.

The resulting solver was tested with several applications.
The accuracy of the new algorithm was first examined by
direct comparison with the analytical solution of a point
charge located at the center of a spherical cavity. It is found
that the solvation energy of our spherical cavity with radius
50 Å converges with a relative error <0.2% when the surface
mesh resolution is below 0.25 Å2 of each triangular element.
Our new PB solver significantly outperforms our earlier
nonadaptive solver and shows a stronger linear growth of
both memory and computational cost with the number of
unknowns. Primarily because of more efficient memory
allocation, the new solver enables very large-scale calculation
to be executed on a typical 2008 desktop machine. A PB
calculation on the 30S ribosome (88 431 atoms) illustrated
the capability of the code. The new solver is also very
suitable for doing calculation on large-scale biomolecular
assembly or complex systems that comprise a set of
molecules with large separations between them, though we
do not show any test calculation for such cases. Further
applications of the methodology are in progress, including
the coupling with molecular dynamics/Brownian dynamics
simulation and other continuum models for studying mo-
lecular interactions and dynamics of biological systems.

However, in order to perform dynamics simulation or study
other electrostatics-controlled dynamical process, our code
needs further improvement. To do this, our current efforts
include (1) generating an optimized oct-tree structure using
spectral graph theory,21 and (2) parallel implementation of
the code on computers with shared and/or distributed
memory. Another important direction is to come up with a
more efficient way to generate molecular surfaces, which
seems to be the current bottleneck for performing a fully
dynamical simulation (PB solution at every time step).
Finally, the surface specification itself is an important and
open issue as aforementioned. As the general practice in
BEM, this work uses a single surface separating the solute
and the solvent. On the other hand, in many finite-difference
methods, a second surface, the so-called Stern layer, is
introduced to account for the fact there is a layer in the
solvent to which mobile ions cannot access. Complicated
by some other factors (parameters) in the setup of a PB
calculation that can also affect the final results, it is hard to
conclude thus far which surface specification is the best.
Likewise, the surface model adopted in BEM will need
further tests and comparisons with experiments or other more
accurate computations.

Acknowledgment. We thank many of our colleagues
and collaborators for their contributions and suggestions. In
particular, our code uses many existing open source codes,
including the SPARSKIT by Saad and collaborators,20

MSMS,26 and Gamer27 for mesh generation, VMD28 for
visualization, and several important subroutines in the new
version of FMM from Profs. Greengard and Rokhlin’s group.
This work was supported by HHMI, NIH, NSF (J.H.:
NSF0811130 and NSF0411920, J.A.M.: MCB0506593), and

Figure 5. Electrostatic potential surface of the 30S ribosome
subunit.

1698 J. Chem. Theory Comput., Vol. 5, No. 6, 2009 Lu et al.



the NSF Center of Theoretical Biological Physics (CTBP).
B.Z. is partially funded by the “100 Talents Projects” of the
Chinese Academy of Sciences, China. X.C. is partially
funded by the Computer Science and Mathematics Division
at Oak Ridge National Laboratory. Their support is thankfully
acknowledged.

References

(1) Baker, N. A. Methods Enzymol. 2004, 383, 94.

(2) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon,
J. A. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10037.

(3) Holst, M.; Baker, N. A.; Wang, F. J. Comput. Chem. 2000,
21, 1319.

(4) Boschitsch, A. H.; Fenley, M. O.; Zhou, H. X. J. Phys. Chem.
B 2002, 106, 2741.

(5) Kuo, S.; Altman, M.; Bardhan, J.; Tidor, B.; White, J. Fast
methods for simulation of biomolecules electrostatics. Pro-
ceedings of the IEEE/ACM International Conference on
Computer Aided Design; San Jose, CA, November 10–14,
2002, p 466.

(6) Lu, B.; Cheng, X.; Huang, J.; McCammon, J. A. Proc. Natl.
Acad. Sci. U.S.A. 2006, 103 (51), 19314.

(7) Phillips, J. R.; White, J. A Precorrected-FFT Method for
Capacitance Extraction of Complicated 3-D Structures. In-
ternational Conference on Computer-Aided Design; San
Jose, CA, November 6–10, 1994.

(8) White, J.; Phillips, J. R.; Korsmeyer, T. Comparing Precor-
rected-FFT and Fast Multipole Algorithms for Solving Three-
dimensional Potential Integral Equations. Proceedings of the
Colorado Conference on Iterative Methods; Breckenridge,
CO, April 4–10, 1994.

(9) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98
(12), 10089.

(10) Lee, H.; Darden, T.; Pedersen, L. Chem. Phys. Lett. 1995,
243 (3-4), 229.

(11) Abramowitz, M.; Stegun, I. A. Handbook of Mathematical
Functions; Dover, New York, 1970.

(12) Appel, A. W. SIAM J. Sci. Stat. Comput. 1985, (6), 85.

(13) Greengard, L.; Rokhlin, V. J. Comp. Phys. 1987, 73 (2), 325.

(14) Greengard, L.; Rokhlin, V. Acta Numer. 1997, 6, 229.

(15) Greengard, L.; Wandzura, S. IEEE Comput. Sci. Eng. 1998,
5 (3), 16.

(16) Cheng, H.; Greengard, L.; Rokhlin, V. J. Comp. Phys. 1999,
155 (2), 468.

(17) Greengard, L.; Huang, J. F. J. Comp. Phys. 2002, 180 (2),
642.

(18) Fast Multipole Methods (Beta). http://www.fastmultipole.org/
(accessed Dec 14, 2008).

(19) Lu, B.; McCammon, J. A. J. Chem. Theory Comput. 2007,
3, 1134.

(20) SPARSKIT. http://www-users.cs.umn.edu/∼saad/software/
SPARSKIT/sparskit.html (accessed Mar 8, 2005).

(21) Chung, F. R. K. Spectral Graph Theory; Published for the
Conference Board of the mathematical sciences by the
American Mathematical Society, Providence, RI, 1997.

(22) Dong, F.; Vijayakumar, M.; Zhou, H. X. Biophys. J. 2003,
85 (1), 49.

(23) Saad, Y.; Schultz, M. SIAM J. Sci. Statist. Comput. 1986,
7, 856.

(24) Barnes, J.; Hut, P. Nature 1986, 324, 446.

(25) Wimberly, B. T.; Brodersen, D. E.; Clemons Jr., W. M.;
Morgan-Warren, R.; Carter, A. P.; Vonrhein, C.; Hartsch, T.;
Ramakrishnan, V. Nature 2000, 407, 327.

(26) MSMS. http://www.scripps.edu/∼sanner/html/msms_home.
html (accessed Feb 5, 1996).

(27) Yu, Z.; Holst, M.; Cheng, Y.; McCammon, J. A. J. Mol.
Graph. Model. 2008, 26, 1370.

(28) VMD. http://www.ks.uiuc.edu/Research/vmd/ (accessed Mar
20, 2006).

CT900083K

Multipole Boundary Element Method J. Chem. Theory Comput., Vol. 5, No. 6, 2009 1699


