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Abstract

It is now well established that stromal interaction molecule 1 (STIML1) is the calcium sensor of
endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels
at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated
muscle where the complement of calcium regulatory molecules is rather disparate from that of non-
excitable cells. Here, we show that STIML1 is expressed in both myotubes and adult skeletal muscle.
Myotubes lacking functional STIML1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking
functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency
confers a contractile defect only under conditions where rapid refilling of stores would be needed.
These findings provide novel insight to the role of STIML1 in skeletal muscle and suggest that STIM1
has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.

Store-operated calcium entry (SOC) is a well established mechanism to refill internal calcium
stores in many types of cells. Refilling of internal calcium stores depends on an endoplasmic
reticulum (ER) calcium sensor that was recently identified as Stromal Interaction Molecule 1
(STIMl) 2 STIMLis a single-pass transmembrane phosphoprotein located in the membrane
of the ER, where it interacts with SOC channels in the plasma membrane 3 . Following the
release of stored calcium, STIM1 molecules sense internal store depletion and aggregate at
sites within the ER (called punctae) in close proximity (10-15 nm) to SOC channels located
in the plasma membrane 4-6 sTIM1 punctae thus serve as crltlcal links between internal
calcium stores and SOC channels on the plasma membrane /. STIM1- -dependent SOC is
important for many cell processes, including calcium-dependent gene expression.

STIM1 influences the activity of several different types of calcium channels including store-
operated (Orarl and TRPC1/4 channels) and receptor-operated channels (TRPC3/6 and ARC
channels) . Orai 1 has been shown to be required for store- operated calcium entry by genome-
wide screens, and STIM1 is needed to activate Orai channels 9 10 Recent work has also
identified several TRP channels and ARC channels as STIM1- regulated channels that are
activated following agonist stimulation in non-excitable cells 11,12 oraj (CRACM) family
members (Orail-3) form highly selective calcium channels with the characteristics of lgyac
when co-expressed with STIM1. In contrast, Orai channels co-expressed with STIM2 display
both store-operated and store-independent gating 13 orai1 may also exist in a complex with
transient receptor potential channels (TRPC1) where, together, STIM1, Orail and TRPC1 form
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store-operated channels as has been described in epithelial cells of salivary glands 14 sTiM1
has also been shown to influence TRPC1 channel gatingsthrough a direct interaction that
requires the C-terminal ERM or lysine rich region 12,15 Finally, STIM1 can also influence
other TRPC channels through an indirect mechanism that requires TRPC1, as silencing STIM1
reduced TRPC3 currents 12. Thus, it seems clear that STIM1 is required as part of a more
general mechanism to activate plasma membrane calcium entry channels of several types.

While substantial evidence supports the critical role of STIM1 signaling in regulating SOC in
non-excitable cells, far less is known about SOC in excitable cells such as striated muscle,
where huge fluctuations in cellular calcium are required for muscle contraction®. Muscle
contraction requires excitation-contraction (EC) coupling, a process whereby changes in the
membrane potential evoke release of the SR calcium stores by the ryanodine receptor (RYR1).
Refilling of internal stores for EC coupling was previously thought to occur exclusively through
the resequestration of calcium by the highly efficient calcium pumps (SERCA) located in the
SR membrane 17. However, SOC was recently shown to exist in myofibers where it can be
activated rapidly in response to store-depletion 18,

It is thought that the fundamental role for SOC in muscle is to refill internal calcium stores to
ready the myofiber for subsequent muscle contraction 19 Defects in muscle SOC are believed
to lead to muscle fatigue and exercise intolerance 20, However, we recently proposed that SOC
is also necessary to maintain NFAT transactivation during both muscle development and the
remodeling response to exercise 19,21 | this context, we hypothesize that NFAT
transactivation through sustained SOC confers a form of memory of recent neurostimulation
to the trained muscle. The identification of STIM1 as the sensor of calcium store depletion
allowed for the generation of a genetic model to test our hypothesis that SOC provides a pool
of calcium required not only for skeletal muscle contraction, but also for muscle development
and remodeling.

We pursued studies of STIM1 to assess a previously unrecognized role for this protein in
skeletal muscle, where SOC is necessary for NFAT translocation and NFAT signaling is known
to play an important role in myogenesis and in the adaptation to exercise (see Supplemental
information Fig. sla) 19,22, 23 e first analyzed the spatial and temporal expression pattern
for STIM1 during myogenesis. We found that STIM1 is expressed at low levels in myoblasts,
but that its expression is increased following differentiation into multinucleated myotubes (Fig.
1A). Interestingly, STIM1 redistributes from a peri-nuclear localization in myoblasts to the
cell periphery of differentiated myotubes (Fig. 1B—C). This localization of STIM1 near the
plasma membrane appears to occur under basal conditions even when stores are fully loaded
with calcium, unlike the redistribution of STIM1 to the cell periphery following store depletion
in non-excitable cells 4 24, The STIM1 redistribution appears to be a unique feature of
myotubes and may reflect the spontaneous calcium release required for myogenesis. Consistent
with the increase in STIM1 expression and its peripheral location in myotubes, the rate of
Ba*2 entry (a surrogate for Ca*2 entry) in myotubes was 4-5 times faster (2.72 x 1073 arbitrary
units/second), than in myoblasts (5.57 x 1074 arbitrary units/second) (p<0.001) (Fig. 1D and
E). In addition, myotubes overexpressing a wildtype (WT) or a constitutively active form of
sTim1L displayed an increase (2.5 and 4.5 fold respectively) in basal NFAT transactivation
when compared to myotubes expressing endogenous STIM1 or compared to myotubes in which
STIM1 expression was silenced using an ShRNA plasmid directed against mouse STIM1
(see Supplemental Information Fig. s1B-D). These data suggest that differentiation signals
upregulate STIM1 in skeletal myotubes which is correlated with greater SOC. Moreover,
myotubes overexpressing WT STIML1 or a constitutively active form of STIM1 (D76A) show
enhanced NFAT-dependent transcriptional regulation during myogenesis (Fig. s1B).
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Calcineurin/NFAT signaling controls mogahogenetic events of muscle formation, which occur
around embryonic day 15.5 (E15.5) 25-27_STIM1 mRNA expression increases in the embryo
starting at E7.5 through E15.5: concomitant with this period are morphogenic events that are
controlled by NFAT transactivation (see Supplemental Information Fig. s2A). A STIM1
specific probe detected STIM1 mRNA by in situ hybridization in the embryonic limbs and
brain at E16.5 (see Supplemental Information Fig. s2 B-D), whereas the sense probe failed to
detect any signal (see Supplemental Information Fig. s2 C-E). Thus, results of these in vitro
and in vivo studies indicate STIM1 may have relevant role in muscle differentiation.

We next established a loss of function model for STIM1 using a gene-trap approach that results
in expression of a STIM1-LacZ fusion protein under the control of the endogenous STIM1
promoter (ES cell line RRS558) (Fig. 2A-C). The STIM1-LacZ fusion protein leaves the N-
terminal SAM and EF hand domains of the native STIM1 protein intact, but disrupts the ERM
coiled-coiled domains that are required for SOC activation 15, 28 The localization of the
STM1-LacZ fusion protein in STIM1*/9t heterozygous mice can thus be used to determine
which cells express the endogenous STIM1 protein. We detected the STIM1-LacZ fusion
protein in all muscle groups that were harvested from STIM1*/9t heterozygous mice, and also
in the Purkinje neurons of the cerebellum and in a selected subset of cells of the spleen and
thymus (see Supplemental Information Fig. s3A-E). Intercrossing STIM1*/9t heterozygotes
revealed neonatal lethality affecting most STIM19Y9t animals before weaning (Table 1).
Surviving STIM19Y9t mice exhibited a significant reduction in body weight, hypotonia of the
lower limbs on hindlimb suspension, and generalized fatigue (Fig 2D). Embryos harvested
between E11.5 and E16.5 revealed normal Mendelian ratios for STIMIY9t mice (25%), but
only ten percent of neonates examined between PO to P7 were STIM19Y9t, indicating late fetal
or neonatal demise.

Primary myotubes were isolated from STIM1*/*, STIM1*/9tand STIM19Y9t mice to determine
whether deleting the C-terminus of STIM1 affected SOC. SOC, as assessed using the rate of
Ba*2 entry, was significantly reduced in Fura-2 loaded myotubes from STIM19Y9t and
STIM1*/9t mice (1.62 x 1074 and 2.92 x 1073 arbitrary units/sec respectively) compared to
STIM1*"* myotubes (7.0 x 1073 arbitrary units/sec) (Fig 2E-F). These studies demonstrate
that the mutation in the STIM1 gene results in a loss of function model.

We analyzed the properties of SOC currents (Isoc) in primary myotubes isolated from
STIM1**, STIM1*/9t and STIM19Y8t mice using whole-cell patch-clamp recording. For these
studies, we used recording solutions and protocols that are standard for recording Isoc in other
cells 29 30 and SOC was activated by depleting calcium stores with the SERCA antagonist
thapsigargin (2uM) (Fig. 3A). SOC currents were analyzed from 33 STIM1+/+ myotubes that
exhibited a voltage-gated Na* current. SOC currents recorded from these myotubes displayed
current-voltage relationships with two distinct patterns: an inwardly rectifying current (19/33
cells) and a linear current (14/33 cells) (Fig. 3A—C, and Fig. sS4A-C, respectively). The inwardly
rectifying current displayed a current density at —80mV of —5.05 pA/pF for STIM1*/* and
—1.98 pA/pF for STIM1*/9 myotubes. In contrast, store depletion with thapsigargin (2uM)
evoked little change in the current density in STIM19Y9t myotubes. The inwardly rectifying
currents recorded from STIM1*/* and STIM1*/9 myotubes resembled SOC currents recorded
in other systems 31 and were therefore studied in greater detail. The myotube SOC current was
as permeable to barium (98%) or cesium (90%) as to calcium (Fig 3D and E), which is
consistent with the ion selectivity profile of SOC channels 32 Moreover, switching the external
solution from 2 mM calcium to a divalent-free solution resulted in a large increase in the current
amplitude (278% control) (Fig 3D-E), indicating an increase in the permeability of monovalent
cations in the absence of Ca*2, which is another hallmark of SOC currents. Finally, myotube
SOC currents were inhibited by the trivalent cation Gd*3 (10 uM) (Fig. 3D-E) and the
compound SKF96566 (10 uM) (not shown). These findings suggest that the SOC currents
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recorded from STIM1*/* myotubes resemble calcium release activated calcium (CRAC)
currents recorded from many non-excitable cells 33,34 The linear currents that were recorded
from a subset of myotubes suggest that, in addition to (classic) CRAC-like SOC currents, other
plasma membrane currents may also be activated following store depletion in skeletal
myotubes. Although the nature of these currents is currently unknown, future studies to further
characterize the currents activated by store depletion in skeletal myotubes will more fully
define the mechanism(s) underlying SOC in these excitable cells. It is possible, for example,
that the observation of a linear current in some myotubes and an inwardly rectifying current
in other myotubes may reflect differences in the complement of channels that are activated by
store depletion in these two populations of myotubes and may also reflect differences in SOC
currents between excitable cells and non-excitable cells.

We next examined the localization of STIML1 in skeletal muscle from the hindlimbs of adult
mice. Immunostaining for STIM1 using two independent antibodies displayed a striated pattern
that partially co-localized with the RYR channels that are known to be present at the terminal
cisternae (Fig. 4A-C). These studies suggested that STIM1 may localize to the skeletal
myofiber SR. We next examined STIM1 expression in subcellullar fractions of rabbit skeletal
muscle. Isolated microsomal fractions were obtained using sucrose gradients and revealed
STIM1 expression in fractions corresponding to the t-tubule, longitudinal SR, and the terminal
cisternae (Fig. 4F). We also examined the expression of the STIM1-LacZ fusion protein by
electron microscopy (Fig. 4D-E). Aggregates of the reaction products of beta-galactosidase
were detected in the longitudinal SR as well as the junction of the t-tubule and terminal
cisternae. The STIM1-LacZ aggregates were detected in the majority of, but not all, foot
processes, which is mostly likely because we examined only STIM1*/9t muscles. These results
provide insight into the structure of SOC complex in muscle and may explain differences in
gsoc kinetics that we and others have observed in myofibers compared to non-excitable cells

We next carried out a series of studies to investigate how the loss of STIM1 affects skeletal
muscle structure and function. Histological sections of muscles from STIM19Y9t mice revealed
increased central nucleation (see Supplemental Information Fig. s5A-C), a hallmark of a
congenital myopathy. In addition, dystrophin staining of muscles from STIM19Y9t mice
revealed markedly reduced muscle cross sectional area compared to STIM1*/* mice (Fig 5A-
B). Ultrastructural analysis of tibialis anterior (TA) muscle of STIM19Y9t mice using
transmission electron microscopy revealed markedly swollen mitochondria in the
subsarcolemmal and intramyofibrillary space compared to control STIM1*/* littermates (Fig.
5C-D, STIM19Y9t and Fig. 5E, STIM1*/*). These ultrastructural abnormalities in muscles of
STIM19Y9t mice were also associated with altered expression of muscle specific proteins of
the SR and sarcomere (Fig. 6A). There was a marked decrease in the expression of SERCA1
and myosin heavy chain in hindlimb muscles from STIM19Y9t neonatal mice, supporting the
histological evidence of muscle damage.

Based on these indications of muscle pathology, we hypothesized that the perinatal lethality
in STIM19Y9¢ is due to a congenital myopathy. To test our hypothesis, we assessed the physical
and functional characteristics of skeletal muscle from STIM1*/9t mice as well. Although
sarcomeric architecture was basically preserved, foot processes appeared intact, and the
weights, lengths and single twitch contractions of isolated extensor digitorum longus (EDL)
muscles evoked with stimulation at 60 and 80 mV were not different between eight-week old
STIM1*/9t and STIM1*/* mice (not shown), force frequency measurements of isolated EDL
muscles 36 from STIM1*/+ and STIM1*/9 mice revealed an inability of STIM1*/9t muscles to
generate the same level of tetanic forces as STIM1*/* mice (Fig. 6D-E). Moreover, EDL
muscles isolated from STIM1*/9t mice displayed a marked reduction in the time to fatigue as
compared to those taken from STIM1*/* mice (24 + 4.7 sec vs. 35.6 + 0.5 sec, p<0.002) (Fig
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6F). Taken together, these results suggest that muscles from STIM1*/9t mice display severe
defects in force generation and fatigue resistance and support the notion that neonatal STIM1
mutant mice manifest significant muscle weakness.

Refilling of internal calcium stores following membrane depolarization has long been
recognized to occur through the rapid action of the calcium pump (SERCA) located in the
longitudinal SR 37, However recent evidence that store-operated calcium influx is required to
refill internal stores has implicated SOC in the regenerative calcium oscillations observed in
muscle and suggests that SOC is required to prevent muscle fatigue 20 calcium oscillations
in myotubes depend in part on calcium entry and may play a role in regulating gene expression
during muscle differentiation 21, 38, 39 \We therefore examined KCl-evoked calcium
transients from STIM1*/*, STIM19Y* and STIM19Y9t myotubes. While a single KCl-evoked
calcium transient was not significantly different between STIM1*/*, STIM19Y* and
STIM19Y9t myotubes, indicating comparable levels of internal calcium stores, a train of KCI
pulses resulted in a rapid decrement in the amplitude of subsequent calcium transients in
STIM1*/9t and STIM19Y9t myotubes. Control STIM1*/* myotubes responded to subsequent
KClI-pulses with a minor decrement in calcium transient amplitude (Fig. 7A-D). At the end of
each KCI stimulation protocol, we measured the SR calcium store content by depleting stores
with thapsigargin (2 uM) and caffeine (10 mM) and found that STIM1*/9t and STIM19Y8t
myotubes showed significant defects in refilling of internal stores compared to STIM1*/*
myotubes (Fig. 7E). These results indicate that SOC is needed to refill internal calcium stores
in a muscle that is subjected to repeated stimulation, in order to prepare for the next
depolarization.

DISCUSSION

In this study, we provide evidence that mice carrying mutant STIM1 have defects in muscle
differentiation and in muscle contractile activity. We find that neonatal mice lacking functional
STIM1-dependent SOC die from a perinatal myopathy and that haploinsufficiency of STIM1
in adult mice confers increased susceptibility to fatigue. These findings support a model where
STIM1 is required to activate SOC and refill internal stores in myotubes in response to signals
associated with muscle differentiation and in myofibers subjected to increased motor nerve
activity. Although the precise signals are not known at this point, it is likely that STIM1-
mediated SOC is important for both short term calcium responses, i.e. muscle contraction, and
long term responses such as a remodeling through calcium dependent gene expression.

In this work, we provide evidence that STIM1 is critical for myotube development and that the
loss of STIML1 results in defective SOC, which underlies defective muscle differentiation both
invitro and in vivo. STIM1 expression increased during myotube differentiation and correlated
with increased SOC activity in myotubes compared to myoblasts. STIM1-dependent SOC
plays an important role in NFAT dependent gene expression as was evident from STIM1 gain
and loss of function studies in CoCy5 cells. Itis also likely that STIM1-dependent store refilling
is important to maintain calcium oscillations that are needed for muscle differentiation 40 For
example, STIM19Y9 myotubes fail to exhibit SOC in response to thapsigargin induced SR store
depletion or in response to repeated KCl-pulses. Moreover, STIM1*/* myotubes exposed to a
series of depolarizing signals maintain full calcium stores, while STIM19Y8t myotubes fail to
refill their stores. These results suggest that STIM1 is important for store refilling following
calcium release from RYRl-containini; calcium stores by membrane depolarization, which is
important for muscle differentiation 41

In mature muscle, we found that STIM1 haploinsufficiency confers a contractile defect only
under conditions of increased contractile demand, where calcium store depletion is most likely
to occur. Under these conditions of increased muscle usage, STIM1 haploinsufficiency likely
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results in ineffective sensing of store depletion that occurs with high frequency stimulation,
thus resulting in a defect in force generation and early fatigue. In the present study we were
unable to distinguish whether the increased fatigue results from defective refilling of RYR1-
containing calcium stores or a developmental defect. We did find, however, that muscles from
STIM19Y8t mice expressed reduced levels of SERCA1 and myosin heavy chain. Reduced
expression of either of these proteins might result in reduced muscle performance. Taken
together, these studies of STIM1 mutant mice indicate that SOC is an important calcium
signaling pathway in muscle operating to refill calcium stores needed for muscle contraction.

We found that STIM1 is localized to the muscle SR where calcium is released by RYR1 and
refilled by SERCAL. In fact, STIM1 localizes to both the foot process and longitudinal SR. It
is possible, therefore, that SOC is important in muscle to augment EC coupling, through a
mechanism in which STIM1 senses the depletion of RYR stores with augmented contractile
activity, activates SOC channels in the t-tubule membrane, and thus increases calcium store
refilling. In this way, STIM1 may function as a sensor of contractile stress. In this model,
muscles under ambient conditions would cycle calcium through the RYR calcium stores in
rapid fashion; however muscles under conditions of increased motor nerve activity would
activate STIM1-dependent SOC to rapidly refill internal stores. SOC would provide a sustained
increase in subsarcolemmal calcium that would set in motion a series of remodeling events
aimed at optimizing muscle performance. This muscle remodeling might include the
upregulation of TRPC3 channel expression that serves to augment SOC with subsequent bouts
of exercise 19, Interestingly, recent reports suggest that STIM1 can interact with TRPC1 and
indirectly with TRPC3 channels to mediate SOC in diverse cell types 12,15,42,43 The
findings presented here provide the first genetic evidence for essential physiological functions
of SOC in skeletal muscle and validate a conceptual model whereby SOC confers cellular
memory of recent motor nerve activity. In this way, STIM1-dependent SOC in muscle provides
a mechanism to sustain increases in [Ca*?]; in order to preserve contractile function during
repeated contractions and to activate calcium-dependent signaling events that underlie
remodeling responses associated with neurostimulation.

SOC has been recognized as mechanism of calcium overload in skeletal myopathies such as
muscle dystrophy 44-46 vet the only physiological functions known to date for STIM1 and
Orail have been revealed by mutations in human Orail gene, where a defect in SOC leads to
severe combined immunodeficiency, and in C. elegans mutants, where mutations in STIM1
and Orai homologues lead to abnormal gut function and infertility 47,48 However, one patient
with a mutation in Orail also manifests a skeletal myopathy that may involve impaired
calcineurin/NFAT signaling (3). Moreover, Orail reporter mice indicate the robust expression
of Orail in mature skeletal muscle 49. Here we provide direct evidence that loss of STIM1 in
mice produces a skeletal myopathy. Taken together, these studies indicate that STIM1
participates in a conserved calcium signaling network that is active in diverse cell types which
utilize calcineurin signaling to respond to changing environmental stimuli.

METHODS

Cell culture

C,C1 cells were propagated in Dulbecco’s Modified Eagle Medium (DMEM)-low glucose
media supplemented with 10% fetal bovine serum (FBS) and 100U/mL penicillin-
streptomycin. C,Cy5 differentiation from myoblasts to myotubes took place over 5 days while
incubated in differentiating media (DM) containing DMEM-high glucose media with 2% horse
serum, 10pg/mL transferrin, 10pug/mL insulin, 50mM HEPES buffer pH 7.4, 100 U/mL
penicillin-streptomycin. Experiments involving C,Cq, cells were performed after 5 days in
DM except when otherwise noted. Primary myoblasts were isolated from STIM19Y9t,
STIM1*/9t and STIM1*/* neonates by collagenase digestion using a previously described
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protocol and subsequently allowed to differentiate into myotubes as described above for
CyoCqo cells 50.

[CaZ*]; imaging
C,C1 cells were plated on 0.1% gelatin-coated glass coverslips at least 12 hours prior to
imaging. Imaging of myotubes was performed after switching over to differentiating media for
5 days. CaZ* imaging was performed with a 40 X objective on an automated fluorescence
microscope with a Photometrics CoolSnap camera. C,C15 cells were loaded with 10 uM
Fura-2-acetoxymethyl ester in extracellular buffer (140 mM NaCl, 2.8 mM KCI, 2 mM
CaCly, 2 mM MgCl,, 10 mM glucose, and 10 mM HEPES) for 30 minutes at room temperature
while shielded from light. Fura-2 fluorescence was measured by illuminating the cells with an
alternating 340/380 nm light every 1-2 seconds and fluorescent images were captured at 510
nm. Changes in intracellular CaZ* concentration were derived from changes in the ratio of
fluorescent intensity at 340 and 380 nm. For Ca?* add-back experiments, C,C1 cells were
bathed in Ca2*-free media (140 mM NacCl, 2.8 mM KCI, 4 mM MgCl,, 10 mM glucose, 10
mM HEPES, and 10 mM EGTA), and then treated with 2 uM of thapsigargin and 10 uM of
verapamil, followed by 2 mM barium after Ca2* store depletion.

Immunhistochemistry

C,C15 cells were fixed as myoblasts or myotubes with ice-cold methanol at —20 °C for 10
minutes. Immunostaining with anti-STIM1 antibody (BD Biosciences) was performed at a
dilution of 1:100. Images were obtained with a 40x objective on Zeiss-LSM 510 META
fluorescence microscope and analyzed with MetaMorph software (Universal Imaging). For
immunofluorescence studies of muscle tissues, muscles were frozen in OCT and then
cryosectioned. Images were obtained using a 40X objective on a Zeiss LSM 510 inverted
confocal microscope. Rabbit anti-RYR1 antibody was obtained from Dr. Gerhard Meissner
(UNC Chapel Hill).

Whole-cell Patch-Clamp Recordings

Patch clamp experiments were performed to record currents in the whole cell mode with
pipettes filled with solutions containing 137 mM cesium aspartate, 2 mM CsCl, 8 mM
MgSQOy, 15 mM HEPES, 12 mM BAPTA, pH 7.2 (with CsOH), 310 mOsm (with d-Mannitol).
The external solution consisted of 150 mM NaCl, 2 mM CaCl,, 1 mM MgCl,,10 mM HEPES,
10 mM glucose, 20 mM sucrose, pH 7.4 (with NaOH), 320 mOsm(with d-mannitol); in NMDG
solution, Na* was replaced with equivalent concentration of NMDG; in Ba2* solution, Ca2*
replaced by Ba2™; in divalent -free (DVF)solution, Ca?* and Mg2* were omitted and 10mM
EDTA was added. To block the L-type Ca2* channel, verapamil (10uM) was added in external
solutions; K* channel blocked by Cs* in the internal solution; and the voltage-dependent
Na* channel was inactivated by the stimulation protocol. The osmolarity of each solution was
verified with a freezing-point osmometer (Advanced Instruments). Voltage across the cell
attached membrane patch was controlled and currents recorded using an Axonpatch-200A
amplifier with Digidata 1200 interface and analyzed with pCLAMP software. Currents were
induced by 200 ms voltage ramp protocols every 2 seconds (1 mV/ms, from 100mV to
—100mV), at a holding potential OmV. Experiments were performed at room temperature with
a sample rate of 4 kHz (filter 2 kHz). For analysis of I, the first ramps before activation of
SOC currents (usually 1-3) were pooled and used for leak-subtraction of all subsequent current
recordings.

Antibodies and western blotting

Cell extracts were prepared by washing the cells with PBS and then extracting proteins with
lysis buffer: PBS, 5mM EDTA, 5mM EGTA, 1mM sodium vanadate, 10mM sodium
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pyrophosphate, 50mM sodium fluoride, and 1% Triton X-100. Proteins were resolved on SDS-
polyacrylamide gels and electroblotted onto nitrocellulose membranes (Amersham
Biosciences, Hybond-C Extra). After transfer, nitrocellulose membranes were blocked for 1
hour at room temperature in 5% milk with Tris-buffered saline/Tween 20 (TBST): 10mM Tris
HCI, pH 8.0, 150mM NacCl, 0.1% Tween 20. Next, the membranes were incubated overnight
at 4°C with anti-STIM1 primary antibody (BD Biosciences) diluted 1:250 with 1% milk in
TBST. After washing with TBST, membranes were incubated at room temperature for 1 hour
with secondary antibody. Peroxidase activity was visualized with enhanced
chemiluminescence (Amersham Biosciences, ECL Advance™ Western Blotting Detection
Kit). SERCAL and MyoD antibodies were obtained from Affinity Bioreagents. Unless
otherwise stated, equal loading was confirmed by immunaoblotting with alpha-tubulin Ab
(Santa Cruz).

STIM1 Gene Silencing

DNA templates for the synthesis of silencing RNA were cloned into an expression plasmid for
subsequent transfection. The selection of the coding sequence for targeting STIM1 mRNA was
done by using the siRNA Target Finder and Design Tool from Ambion. The potential target
sequence was subjected to a BLAST search against mouse EST libraries to ensure specificity
of the target. The oligonucleotide sequences were: si-4 construct, sense, 5’
GACCTCAATTACCATGACC 3, antisense, 3 CTGGAGTTAATGGTACTGG 5'; si-6
construct, sense, 5 CCGTTACTCTAAGGAGCAC 3/, antisense 3’
GGCAATGAGATTCCTCGTG 5'. C,C12 myocytes were transfected using Fugene reagent
(Roche).

STIM1-targeted mice

T he ES cell line RRS558 from BayGenomics was generated by using a gene trap protocol
with pGTOLXf vector containing the engrailed 2 gene and p-galactosidase/neomycin-resistance
fusion protein. A comparison between the BayGenomics database and the NCBI UniGene
database suggested that the insertion site for this gene-trap construct is in exon 8 of STIM1,
which corresponds to a fusion protein consisting of the extracellular and transmembrane
domain of STIM1 with a B-galactosidase protein on the N terminus. A PCR based strategy was
used to map the exact location that the gene-trap construct inserted into the STIM1 gene.
Genotyping of littermates using tail digest genomic DNA first involved amplifying the LacZ
gene to identify the mice with a targeted allele and then a second round of PCR using primers
specific to the insertion site of the gene-trap construct was performed to identify homozygous
mice.

B-galactosidase staining

All mouse tissues were dissected with cold PBS and immediately fixed with 4% PFA at 4°C
for 1 hour. After rinsing the tissues with rinsing solution (5 mM EGTA, 0.01% deoxycholate,
0.02% NP40, 2 mM MgCly) 3 x 15 minutes at room temperature, the tissues were incubated
in the dark with staining solution (5 mM KzFe(CN)g, 5 mM K4Fe(CN)g, 5 mM EGTA, 0.01%
deoxycholate, 0.02% NP40, 2 mM MgCl,, 1 mg/mL X-gal solution) at 37°C until desired
intensity was reached. The specimens were then washed with PBST, post-fixed with 4% PFA
overnight, and then stored in 70% EtOH. Paraffin sectioning of the stained organs was
performed by standard methods and subsequently stained with H&E. For electron microscopy
of STIM19Y* muscle, samples were post-fixed in 2% PFA and 2% glutaraldehyde in 0.1 M
cacodylate buffer pH7.4 for 12 hours. Sections were fixed in 1% OSO,4 and embedded in an
epoxy resin mixture. Ultrathin sections were studied with an EM 410 electron microscope
(Phillips). For control experiments STIM1*/* samples were processed as above.
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Skeletal Muscle Contractility and Fatigability

STIM1*/9tand STIM1*/* control mice were anesthetized and intact EDL muscles were
removed and placed in Krebs buffer (pH 7.4). The intact whole muscles were placed in a 30
ml chamber between platinum stimulating electrodes and bathed in Krebs buffer continuously
aerated with 95% O,. The force transducer measurements were recorded and analyzed on
computer using Polyview software (Grass, West Warwick, RI). Muscles were subjected to
multiple frequencies of stimulation of 200 msec duration to produce the force-frequency
relationship. Muscles were fatigued by stimulation at the frequency which produces maximum
tetanic force, as well as submaximal frequencies, at 1 second intervals for 5 minutes while
recording the changes in force production over time. All animal studies were performed under
an approved IACUC protocol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Muscle differentiation is associated with increased expression of STIM1 and
redistribution of STIM1

A) Differentiating C,Cq2 cells were harvested at the indicated times and protein lysates were
separated by SDS-PAGE and immunoblotted for STIM1 and SERCA1 using specific
antibodies. Complete scans of these gels are shown in supplemental information (supplemental
fig 6). B) STIM1 expression in CoC1, myoblasts (MB, scale bar = 10 um) and C) in C,Cq»
cells allowed to differentiate into myotubes (MT, scale bar = 20 um). STIM1 aggregation and
redistribution to the cellular periphery occurs during myogenesis. Arrows represent
peripherally localized STIM1. D) Store-operated calcium entry was greater in myotubes than
inmyoblasts. Fura-2 loaded C,C1, myoblasts and myotubes were placed in zero calcium media,
and treated with thapsigargin to induce store depletion and verapamil to inhibit L-type Ca2*
channels. Once cytoplasmic Ca2* returned to baseline, barium was added to the extracellular
medium as a surrogate for Ca?*. Representative average tracings of individual myoblasts and
myotubes showed a significant increase in store-operated influx in myotubes. E) The rate of
store-operated barium influx, calculated by the first derivative of the 340/380 nm ratio in the
first 100 seconds of influx, was 5.57 x 1074 + 4 x 10~ arbitrary unit/sec (n = 23) in myoblasts,
and 2.72 x 1073 + 3 x 104 arbitrary unit/sec (n = 6) in myotubes (p<0.001). The data shown
represent the mean + SE.
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Figure 2. Gene trap strategy for STIM1

A) Mouse STIM1 gene showing the exon structure in boxes (upper panel). Corresponding
STIMZ1 locus with gene trap vector insertion (lower panel). The gene trap vector carries the
engrailed? intron (en2) and splice acceptor site (SA), B-galactosidase reporter gene and a SV40
polyadenylation site (SV40pA) inserted between exons 7 and 8. B) Both WT and gene-trapped
STIM1 protein contain the EF hands and SAM domain of the N-terminus that localizes to the
ER lumen, and the membrane spanning region (TM). The cytosolic loop is depicted at the C-
terminus only in the WT locus as the gene trap product fuses the first 30 amino acids of STIM1
N-terminus to B-gal. C) Lysates prepared from muscles of WT, +/gt, and gt/gt mice and
immunoblotted for STIM1 revealed WT STIM1 and STIM1 fusion protein. Complete scans
of these gels are shown in supplemental information (supplemental Fig 6). D) Two week old
gt/gt mice appeared smaller and weaker compared to WT littermates. (STIM1gt/gt is seen on
the left.) E-F) Store-operated calcium entry in primary myotubes prepared from WT, +/gt, and
gt/gt mice. Fura-2 loaded primary myotubes were placed in zero calcium media, and treated
with thapsigargin to induce store depletion and verapamil to inhibit L-type CaZ* channels.
Once cytoplasmic Ca2* returned to baseline, barium was added to the extracellular medium as
a surrogate for Ca2*. Representative average tracings of individual myotubes showed a
significant decrease in store-operated influx in +/gt and gt/gt myotubes compared with
myotubes prepared from WT littermate controls, with minimal influx in gt/gt myotubes.
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Figure 3. Store depletion fails to activate SOC current in primary myotubes lacking functional
STIM1

SOC currents in response to TG (2uM) were recorded from myotubes prepared from
STIM19Y9t STIM1*/9t, and STIM1*/* mice. A) Examples of thapsigargin (TG)-induced Igoc
responses in STIM1 gt/gt, +/gt, and +/+ myotubes. The currents were induced by a 200ms
voltage ramp protocol (ImV/ms), from 100mV to —100mV, from a holding potential of OmV
(see inset). Sweeps occurred every 2 seconds. Peak I was leak-subtracted and normalized
by membrane capacitance. lqoc current density was measured at —80mYV. Store-depletion
resulted in a large lsoc peak in STIM1 +/+ myotubes (green trace) and a smaller lgo. response
in STIM1 +/gt myotubes (red trace), but no significant response in STIM1 gt/gt (blue trace)
myotubes. I, Was inhibited rapidly after the addition of gadolinium (Gd3*, 100uM). B) I/V
plots of the I¢oc currents after TG perfusion at the times indicated in A) of STIM1 +/+ (a, green
trace), STIM1 +/gt (b, red trace), STIM1 gt/gt (c, blue trace). Note the stimulatory effect of
TG was absent in STIM1 gt/gt myotubes. C) Group mean values of peak Iso; at —=80mV and
+80mV in STIM1 +/+ (n=19), STIM1 +/gt (n=8), vs. STIM1 gt/gt (n=8) myotubes; *, P<0.05,
STIM1 gt/gt vs. STIM1 +/+, and STIM1 +/gt myotubes. D) An example of TG-induced gy
response at +80mV and —80mV in solutions containing Ca2*, Ba2*, divalent-free (DVF), and
Gd3* containing solutions respectively. E) Group mean changes of peak Iy at —80mV in the
presence of BaZ* (maroon bar, n=12), DVF (yellow bar, n=10), and Gd3* (blue bar, n=9)
containing external solutions. Open bars represent control Iy (100%). *, P<0.05, control
versus Ba%*, DVF, or with Gd3*.
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Figure 4. STIM1 Localization

A) Immunostaining for STIM1 in skeletal muscle using a STIM1 specific antibody displayed
a striated pattern. B) Immunostaining for RYR. C) Merged panel shows partial overlap of
STIM1and RYR. Scale bar (A—C) =5 um. D-E) Expression of the STIM1-LacZ fusion protein
by electron microscopy. Aggregates of the reaction products of beta-galactosidase were
detected in the longitudinal SR (white arrowhead) as well as the junction of the t-tubule and
terminal SR (black arrowhead). Scale bar (D—E) = 500 nm. F) Isolated microsomal fractions
were obtained using sucrose gradients from rabbit muscle which revealed the absence of
STIM1 expression in the fraction corresponding to the contractile proteins and debris (1), and
the presence of STIM1 expression in the terminal cisternae (2), longitudinal SR (2 and 3), and
t-tubular fractions (4 and 5). * indicates fraction with greatest [H3*] RYR binding. Complete
scans of these gels are shown in supplemental information (supplemental Fig 6).
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200um

Figure 5. Mice without functional STIML1 display a neonatal skeletal myopathy

A-B) Dystrophin immunostaining of cross sections taken from neonatal muscle of
STIM1** and STIM19Y9t mice. Nuclei were counterstained with DAPI. Scale bar = 200 um.
C-E) Transmission electron microscopy was used to examine muscle ultrastructure from
STIM1 98t (C and D) and STIM1*/* mice (E). TA muscles were taken from 7-10 day old
STIM1** and STIM19Y9! mice. 5000X images were obtained from muscles of two mice. Scale
bar = 500 nM.
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Figure 6. Muscle gene expression and functional analysis of mutant STIM1 mice
A-C) Muscle protein lysates taken from neonatal mice (STIM19Y3t STIM1*/9t versus
STIM1**) displayed a reduction in SERCAL1 (top panel) and Myosin Heavy Chain (middle
panel) in mutant STIM1 mice as assessed by immunoblotting with specific antibodies for
SERCA1 and MHC (MF20). Quantification using densitometry is provided for studies of three
mice for each genotype for SERCA1 (B) and MHC (C). Complete scans of these gels can be
found in supplemental information (supplemental Fig 6). D) Contractile force measurements
after tetanic stimulation of EDL muscles taken from STIM1*/9t (n=4) and STIM1*/* mice
(n=4). E) Bar graphs represents maximal forces (mean £ SE) following tetanic stimulation for
STIM1*/9t and STIM1*/*. F) Bar graph of time to fatigue after repetitive stimulation for
muscles taken from STIM1*/9t and STIM1*/* mice. Time to fatigue was measured using a
protocol of one 100Hz stimulation per sec, for a duration of 200ms. Values (mean + SE)
represent the time required for a decay in force generation to 50% maximal force, following
stimulation of 4 muscles from each genotype.
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Figure 7. STIM1 mediated store refilling is required for fatigue resistance in skeletal myotubes
A-C) Calcium transients were measured from STIM1*/*(A), STIM1*/9t (B) and STIM19Y9t
(C) myotubes by a series of KCI pulses (55mM) in the presence of [Ca*?],. SR store content
was then determined by stimulating myotubes in a zero [Ca*?], solution with TG (2uM) and
caffeine (10mM). D) STIM1+/+ myotubes responded to a series of KCI stimulations with little
change in the amplitude of the calcium transient (black trace). STIM1*/9t (red trace) and
STIM19Y9t (blue trace) myotubes responded to the series of KCI-pulses with a decrement in
peak amplitude of the calcium transient as measured by the ratio of the amplitude of subsequent
KCI pulses to the initial KCI pulse (Px/P1). E) Calcium store content after KCI stimulation in
STIM1*"*, STIM1*/9t and STIM19Y9t myotubes. Data shown represent mean + SE.
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