Published in final edited form as: *Mol Psychiatry*. 2009 April ; 14(4): 351–353. doi:10.1038/mp.2008.122.

Findings from bipolar disorder genome-wide association studies replicate in a Finnish bipolar family-cohort

HM Ollila¹, P Soronen¹, K Silander¹, OM Palo¹, T Kieseppä^{1,6}, MA Kaunisto^{1,4,5}, J Lönnqvist⁶, L Peltonen^{1,2,7}, T Partonen⁶, and T Paunio^{1,3}

¹Department of Molecular Medicine, National Public Health Institute and Institute for Molecular Medicine Finland, Helsinki, Finland ²Department of Medical Genetics, University of Helsinki, Helsinki, Finland ³Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland ⁴The Finnish Genome Center, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland ⁵Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland ⁶Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland ⁷The Wellcome Trust Sanger Institute, Cambridge, UK

Recently, genome-wide association studies (GWAS) have yielded replicable findings and confirmed previous candidate genes as important factors in non-psychiatric diseases such as type 2 diabetes.1 However, there has been more controversy of GWAS studies related to bipolar (BP) spectrum disorder and other complex psychiatric traits. Part of the controversy is explained by a small effect of single single nucleotide polymorphisms (SNPs) to the development of these diseases and the difficulty of detecting rare alleles. Also, the diagnosis and lack of measurable physiological parameters in these diseases is still challenging the field.2 However, three GWAS studies on BP have been published up to date.1,3,4 These recent studies identified several candidate genes but shared only a small amount of findings. 5 In this replication study, our aim has been to elucidate the role of these variants in Finnish BP families.

We have analysed the strongest associating SNPs from the Welcome Trust Case Control Consortium,1 from Baum *et al.* and from meta-analysis5 in a Finnish family-based study sample of BP. From Baum *et al.* and WTCCC, we selected the best associating SNPs (P-value < 0.0001 and P < 0.000054, respectively) and those SNPs that are located at lithium pathway genes. Altogether we genotyped 26 SNPs in 723 individuals from 180 families with type I bipolar disorder, using Sequenom iPLEX technology.6,7 We studied the patients' phenotypic association using dichotomized diagnostic classes of bipolar type I disorder and broad mood disorder spectrum as assessed with *Diagnostic and Statistical Manual of Mental Disorders*, fourth edition criteria. Single SNP and haplotype association analyses were carried out using FBAT8 coding the unaffected family members as unknown.

Interestingly, we could confirm findings for six associating SNPs: DFNB31, rs10982256, (P < 0.01), SORCS2, rs4411993, rs7683874 and rs10937823, (P < 0.01), SCL39A3, rs4806874, (P < 0.05) and diacylglycerol kinase- η (DGKH), rs9315885, (P < 0.05).3,5 However, no association was seen with SNP rs420259 of PALB2 gene (P = 0.4), which yet mapped the strongest associating genome region in WTCCC study.1 The association results in Finnish bipolar families are presented in Table 1.

Interestingly, four SNPs that associated in this study were allelic replications, which further supports the role of these genes as probable players in BP even though the functional variants still remain to be identified. SORCS2 is expressed in the central nervous system, where this receptor is related to act upon synaptic stimuli.9 All three SNPs from SORCS2 represented the same signal as judged by haplotype analysis. The best signal in this study comes from DFNB31, which remained significant also after correction for multiple testing. It is widely expressed in central nervous system where it might enhance synaptic transmissions. Mutation of this gene cause recessive form of hearing loss.1,3 It also gave more significant association in broad mood disorder spectrum making it a candidate gene also in other psychiatric diseases. In addition, the replicated signal from DGKH is also

worth noting because of its crucial role in phosphatidylinositol pathway in lithium signalling.10 Though many of the tested SNPs did not associate in our study, they may still contribute to the development of this disease. Part of this may be explained by genetic heterogenity between the Finnish and other European populations or the requirement of large sample size needed to find these variants.

It has been challenging to obtain replicable findings in psychiatric diseases using traditional candidate gene linkage and association studies.2 However, the recent GWA studies have now provided us with new tools for finding the genes that affect these conditions, as shown in this study and thus give us new insight to the pathways and brain systems that are involved in development of psychiatric disorders and give us targets for development of medication.

References

- 1. WTCCC. Nature. 2007; 447:661-678. [PubMed: 17554300]
- 2. Craddock N, O'Donovan MC, Owen MJ. Mol Psychiatry. 2008; 13:649-653. [PubMed: 18504426]
- Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, et al. Mol Psychiatry. 2008; 13:197–207. [PubMed: 17486107]
- Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, et al. Mol Psychiatry. 2008; 13:558–569. [PubMed: 18317468]
- Baum AE, Hamshere M, Green E, Cichon S, Rietschel M, Noethen MM, et al. Mol Psychiatry. 2008; 13:466–467. [PubMed: 18421293]
- Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P, et al. Hum Mol Genet. 2007; 16:2517–2528. [PubMed: 17673452]
- Soronen P, Silander K, Antila M, Palo OM, Tuulio-Henriksson A, Kieseppä T, et al. Biol Psychiatry. 2008; 64:438–442. [PubMed: 18466879]
- Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM. Genet Epidemiol. 2004; 26:61–69. [PubMed: 14691957]
- Hermey G, Plath N, Hübner CA, Kuhl D, Schaller HC, Hermans-Borgmeyer I. J Neurochem. 2004; 88:1470–1476. [PubMed: 15009648]
- 10. Berridge MJ. JAMA. 1989; 262:1834-1841. [PubMed: 2674489]

Table 1

Genotyping results of associated SNPs

							MAF	BP (I	N = 214)	Broad mo	ood (N = 298)	
Gene	SNP	Chr	Replication	Major allele	Minor allele	Cases	Unaffected	Z	Ь	Z	Ь	
1p31	rs2989476	-	WTCCC	U	C	0.951	0.376	-0.135	0.892598	0.149	0.81483	
TCF7L1	rs6732834	2	Baum (sup)	С	Т	0.072	0.07	0.245	0.806607	0.3	0.764179	
DPP10	rs1375144	2	WTCCC	А	Ū	0.480	0.434	-1.056	0.290897	-0.775	0.438352	
CMTM8	rs4276227	ŝ	WTCCC	C	Т	0.191	0.203	-0.308	0.758132	-0.415	0.678012	
LAMP8	rs683395	3	WTCCC	А	IJ	0.084	0.081	0.377	0.705905	1.056	0.290942	
SORCS2	rs4411993	4	Baum <i>et al</i> .	C	Т	0.191	0.162	2.475	0.006045	2.455	0.014106	
SORCS2	rs7683874	4	Baum <i>et al</i> .	Ð	А	0.124	0.114	2.492	0.012695	2.612	0.008991	
SORCS2 ^a	rs10937823	4	Baum <i>et al</i> .	C	Т	0.112	666.0	2.864	0.004187	2.827	0.004703	
6p21.1	rs6458307	9	WTCCC	C	Т	0.290	0.283	0.550	0.582353	1.03	0.303185	
GABBR2	rs3802477	6	Baum (sup)	Н	С	0.048	0.056	-0.531	0.595076	-0.399	0.689954	
DFNB31 ^a	rs10982256	6	WTCCC	C	Т	0.441	0.414	2.584	0.009756	3.226	0.001255	
DFNB31	rs942518	6	Baum <i>et al</i> .	А	IJ	0.052	0.052	1.165	0.243882	0.657	0.511144	
JAM3	rs10791345	11	Baum (meta)	Ð	А	0.228	0.254	0.422	0.672997	0.664	0.506783	
DGKH ^a	rs9315885	13	Baum <i>et al</i> .	Т	С	0.368	0.411	-1.818	0.069024	-0.709	0.478431	
DGKH	rs1170191	13	Baum <i>et al</i> .	IJ	А	0.202	0.252	-1.469	0.141857	-1.345	0.178471	
NALCN	rs9513877	13	Baum <i>et al.</i>	IJ	А	0.347	0.321	0.202	0.840305	-0.195	0.845672	
TDRD9	rs11622475	14	WTCCC	С	Т	0.292	0.249	-0.278	0.781012	0.142	0.886769	
A2BP1	rs10500336	16	Baum <i>et al</i> .	А	Ū	0.102	0.125	-1.275	0.202177	-0.512	0.60885	
A2BP2	rs7204975	16	Baum <i>et al</i> .	С	Т	0.214	0.217	-0.708	0.478677	-0.238	0.811732	
PALB2	rs420259	16	WTCCC	Α	IJ	0.308	0.32	-0.880	0.378765	-0.406	0.6847	
16q12.2	rs1344484	16	WTCCC	Т	C	0.431	0.415	-1.014	0.310807	-0.063	0.949499	
PLCG2	rs4586425	16	Baum <i>et al</i> .	С	Т	0.262	0.231	0.280	0.779841	0.03	0.976307	
NXN	rs2360111	17	Baum <i>et al.</i>	С	Т	0.432	0.418	1.233	0.217596	0.893	0.37204	
FZD2	rs4792948	17	Baum <i>et al</i> .	С	Т	0.128	0.146	1.241	0.21447	1.715	0.086303	
SLC39A3 ^a	rs4806874	19	Baum (meta)	A	Ð	0.414	0.372	-2.116	0.034354	-1.129	0.258847	
CDC25B	rs3761218	20	WTCCC	Т	С	0.264	0.287	0.952	0.340967	0.231	0.816992	
Abbreviations:	BP, bipolar; Ch	r, chro	mosome; MAF, 1	minor allele freq	uency; SNP, sin	ıgle nucle	otide polymorj	bhism; W ⁷	rccc, Wello	ome Trust	Case Control Con	sortium.

Mol Psychiatry. Author manuscript; available in PMC 2009 October 01.

Europe PMC Funders Author Manuscripts

Bold values signify P < 0.05.

 ${}^{a}\!$ The associating allele is same as in previous association studies.