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Human genomic data of many types are readily available, but the complexity and scale of human molecular biology make
it difficult to integrate this body of data, understand it from a systems level, and apply it to the study of specific pathways
or genetic disorders. An investigator could best explore a particular protein, pathway, or disease if given a functional map
summarizing the data and interactions most relevant to his or her area of interest. Using a regularized Bayesian integration
system, we provide maps of functional activity and interaction networks in over 200 areas of human cellular biology, each
including information from ;30,000 genome-scale experiments pertaining to ;25,000 human genes. Key to these
analyses is the ability to efficiently summarize this large data collection from a variety of biologically informative per-
spectives: prediction of protein function and functional modules, cross-talk among biological processes, and association of
novel genes and pathways with known genetic disorders. In addition to providing maps of each of these areas, we also
identify biological processes active in each data set. Experimental investigation of five specific genes, AP3B1, ATP6AP1,
BLOC1S1, LAMP2, and RAB11A, has confirmed novel roles for these proteins in the proper initiation of macroautophagy in
amino acid-starved human fibroblasts. Our functional maps can be explored using HEFalMp (Human Experimental/
Functional Mapper), a web interface allowing interactive visualization and investigation of this large body of information.

[Supplemental material is available online at www.genome.org; results from this study and the interactive HEFalMp tool
are available at http://function.princeton.edu/hefalmp.]

The completion of the Human Genome Project and the sub-

sequent flood of genomic data and analyses have provided

a wealth of information regarding the entire catalog of human

genes. Comprehensive assays of gene expression, protein binding,

genetic interactions, and regulatory relationships all provide

snapshots of molecular activity in specific cell types and envi-

ronments, but turning these biomolecular parts lists into an un-

derstanding of pathways, processes, and systems biology has

proven to be a challenging task. This abundance of data can

sometimes obscure biological truths: The size of the human ge-

nome, the complexity of human tissue types and regulatory

mechanisms, and the sheer amount of available data all contribute

to the analytical complexity of understanding human functional

genomics.

In order to take advantage of large collections of genomic

data, they must be integrated, summarized, and presented in

a biologically informative manner. We provide a means of mining

tens of thousands of whole-genome experiments by way of func-

tional maps. Each map represents a body of data, probabilistically

weighted and integrated, focused on a particular biological ques-

tion. These questions can include, for example, the function of

a gene, the relationship between two pathways, or the processes

disrupted in a genetic disorder. Functional integrations in-

vestigating individual genes’ relationships have been successful

with smaller data collections in less complex organisms (Lee et al.

2004; Date and Stoeckert Jr. 2006; Myers and Troyanskaya 2007),

although (as discussed below) it is particularly challenging to scale

these techniques up to the size and complexity of the human

genome. Each functional map, based on an underlying predicted

interaction network, summarizes an entire collection of genomic

experimental results in a biologically meaningful way.

While functional maps can readily predict functions for

uncharacterized genes (Murali et al. 2006), it is important to

take advantage of the scale of available data to understand entire

pathways and processes. Cross-talk and coregulation among

pathways, processes, and genetic disorders can be mapped by

analyzing the structure of underlying functional relationship

networks. This includes the association of disease genes with

(potentially causative) pathways; for example, many known breast

cancer genes are involved in aspects of the cell cycle and DNA

repair, and novel associations of this type can be mined from high-

throughput data. Similarly, associations between distinct but in-

teracting biological processes (e.g., mitosis and DNA replication)

can be quantified by examining functional relationships between

groups of genes, allowing the identification of proteins key to

interprocess regulation.

The functional maps we provide for the human genome in-

clude information on protein function, associations between dis-

eases, genes, and pathways, and cross-talk between biological

processes. These are all based on probabilistic data integration

using regularized naı̈ve Bayesian classifiers. Naı̈ve Bayesian sys-

tems have been used successfully to analyze protein–protein in-

teraction (PPI) data (Rhodes et al. 2005; von Mering et al. 2007),

whereas our focus is on functional relationships and the biological

roles of gene products. Prior work performing functional in-

tegration in simpler organisms with smaller data collections (Date
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and Stoeckert Jr. 2006; Myers and Troyanskaya 2007) has been

similarly successful; see Supplemental Text 1 for a complete dis-

cussion. Such integrations have not previously been scaled bi-

ologically (i.e., to complex metazoans) or computationally (over

very large genomic data collections) to provide a functional view

of the human genome driven purely by experimental results. In

addition to challenges of computational efficiency in the presence

of hundreds of genome-scale data sets, naı̈ve classifiers assume

that all input data sets are independent; this becomes increasingly

untrue and problematic as more data sets are analyzed, resulting in

a paradox of decreasing performance with increasing training

data. To address this, we use Bayesian regularization (Steck and

Jaakkola 2002), a process by which an observed distribution of

data can be combined with a prior belief in a principled manner.

Intuitively, this results in groups of data sets containing similar

information making a more modest contribution to the in-

tegration process, up-weights unique data sets, and prevents

overconfident predictions. Our regularization of the naı̈ve classi-

fier parameters using a score based on mutual information up- and

down-weighted appropriate subsets of data, maintaining both

efficiency and accuracy.

We applied our functional maps to a specific biological

question in the area of autophagy, the process by which a cell can

recycle its own biomass under conditions of starvation or stress

(Klionsky 2007). Among many proteins predicted to participate in

this biological process by our maps, we chose to investigate AP3B1,

ATP6AP1, BLOC1S1, LAMP2, and RAB11A in the laboratory. We

demonstrated through multiple lines of experimental evidence

that these proteins are indeed involved in macroautophagy in

amino acid-starved human fibroblasts, a specific type of auto-

phagy in which bulk cytoplasm is lysosomally degraded. The

results of our integration are available through a web-based in-

terface, HEFalMp (Human Experimental/Functional Mapper), at

http://function.princeton.edu/hefalmp. This tool allows a user to

interactively explore functional maps integrating evidence from

thousands of genomic experiments, focusing as desired on specific

genes, processes, or diseases of interest.

Results
Using the system outlined in Figure 1A, we generate functional

maps of predicted gene functions, pathway and process associa-

tions, and genetic disorders focused on 229 biological processes,

incorporating information from ;30,000 genome-scale experi-

ments. Within each biological area, maps are derived from

a functional relationship network predicted using regularized

Bayesian integration of the genomic data. The features and con-

tents of the resulting interaction networks are analyzed to produce

gene-, process-, and disease-centric functional maps specific to

each biological area. We have experimentally confirmed five genes

newly predicted to be active in the area of macroautophagy,

AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A.

Data integration for functional mapping

A functional map is a view of genomic data focused on a particular

area of interest: genes, processes, diseases, and their associations

and interrelationships. To derive these maps, we analyze func-

tional relationship networks predicted based on Bayesian in-

tegration of ;30,000 genome-scale experiments (Supplemental

Table 1). These are organized into 656 data sets (grouped by related

microarray experiments, individual interaction databases, and so

forth) and probabilistically weighted based on their functional

activity in 229 biological processes of interest (e.g., autophagy,

mitotic cell cycle, protein processing, etc.). As summarized in Ta-

ble 1 and Supplemental Table 2, one product of this integration

process is an estimate of the biological processes active in each

data set. Further, as highlighted in Table 2, over 25% of our pre-

dicted functional relationships are supported by at least 100 data

sets, and many genes’ predictions include information from over

500 genome-scale data sets.

Using only the information in these predicted functional re-

lationship networks before they have been further processed into

functional maps, we can accurately recapitulate known biology

from catalogs such as the Gene Ontology (GO). Specifically, Figure

1B quantifies the performance of the data integration process in

probabilistically ranking related gene pairs, and Supplemental

Figure 1 and Supplemental Table 3 decompose this performance on

a per-GO-term basis. As observed in Myers and Troyanskaya (2007),

functional integration benefits substantially from context aware-

ness, a fact we take advantage of in our use of process-specific

functional maps. Performance differs only slightly between an

evaluation of the entire genome and of a held-out test set, dem-

onstrating naı̈ve classifiers’ robustness to overfitting. Most signifi-

cantly, Bayesian regularization provides a dramatic increase in

performance by down-weighting groups of similar data sets and up-

weighting unique, informative data sets in each biological process.

Features of the functional relationship networks

Functional maps are generated by analysis of functional relation-

ship networks, and each network is based on probabilistic in-

tegration of genomic data within a particular biological area. In

addition to providing maps of higher-order associations among

processes and diseases, these functional relationship networks can

be examined directly to provide insights into protein function,

functional modules, and characteristics of the integrated experi-

mental data. Table 2 presents summary statistics for several of the

networks we analyzed. A substantial fraction (26%) of the net-

works’ edges are supported by evidence from more than 100 data

sets, and ;10,000 edges are supported by over 500 data sets. There

is strong variation in probabilities and data set weighting between

biological processes, with the most confident coverage offered by

reintegration across all available processes. While different genes

tend to be highly connected in each process-specific network,

commonalities emerge in the global networks and interprocess

averages. These proteins (HNF4A, RUNX2, GHRHR, and others

from the rightmost table column) tend to be components of

complexes or receptors; they are thus predicted to have a relatively

small number of extremely confident relationships with their

other complex members or ligands. This is confirmed by the fact

that these genes are also among the most variable, although their

predictions are not generally supported by the most data sets.

Instead, to find these particular relationships, subsets of appro-

priately reliable data are up-weighted by our integration system in

a process-specific manner.

Individual functional relationship networks can also be used

to predict protein function using ‘‘guilt by association,’’ as dia-

grammed in Figure 2A. If a gene has many strong, specific pre-

dicted relationships with genes in a particular biological process,

it is itself likely to participate in that process (Supplemental Table

4). ALOX5AP, for example, is a membrane protein required to

activate ALOX5 for leukotriene synthesis; this pathway is a clinical

target for the treatment of asthma, heart disease, and obesity
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(Peters-Golden and Brock 2003; Mehrabian et al. 2005). Our in-

tegration system predicts it to have many specific functional

relationships with other membrane proteins involved in the in-

flammatory chemotaxis response in leukocytes (among other

predicted relationships). While neither ALOX5AP nor ALOX5 are

annotated to a chemotactic pathway in the Gene Ontology, one of

their immediate biosynthetic products, LTB4, is a known activator

of chemotaxis (Peters-Golden and Brock 2003). This is an example

of uncovering an uncataloged protein function by functional

mapping, and we provide details below of our experimental con-

firmation of novel predicted functions for LAMP2 and RAB11A in

autophagy.

By extracting highly connected clusters from functional re-

lationship networks, we can also discover putative functional

modules showing high similarity in experimental data without

being directly associated with preannotated gene sets or processes.

These modules may represent novel pathways, complexes, or

other groups of proteins interacting to carry out cellular tasks. The

modules can be merged to create a hierarchical structure remi-

niscent of catalogs such as the Gene Ontology; a small subset of

our predicted functional modules appears in Supplemental Figure

2. We have automatically mined and hierarchically organized

;17,000 functional modules from our integrated data, spanning

all ;25,000 genes for which we have data and ranging in size from

three to 5600 genes (Supplemental Table 5; Supplemental Fig. 3).

Functional associations: Genetic disorders
and biological processes

By examining the behavior of entire pathways in integrated ge-

nomic data, we derive functional maps of cross-talk between re-

lated biological processes (Supplemental Fig. 4). Just as functional

relationships between genes are predicted by finding significant

agreement among many integrated data sets, functional associa-

tions between processes are discovered by observing strong rela-

tionships among many of their constituent genes, based on

similar behavior of the processes’ genes in many genomic data

sources and not on prior knowledge of genes shared between

processes. Maps associating interrelated biological processes (and

detailing the proteins predicted to drive those associations) can be

derived from high-throughput data for any biological area of in-

terest. This provides a way of exploring pathway cross-talk in ge-

nomic data and quickly identifying potential regulatory hubs.

In a similar manner, groups of known disease-related genes

can be associated with each other or with (potentially causative)

pathways and processes. An example in Figure 2B focuses on

ovarian cancer, currently recorded in OMIM (Online Mendelian

Inheritance in Man 2008) as being influenced by at least seven

genes. While known shared genes drive some of these associations

(e.g., MSH6 in aging or ERBB2 in epithelial cell proliferation),

others are more surprising. For example, AKT1, a protein known

to contribute to ovarian cancer, is predicted to be related to

B3GNTL1 and PHKG2 in biopolymer biosynthesis (i.e., DNA

synthesis) due mainly to high microarray correlation across a wide

variety of conditions; these proteins are also involved in the es-

trogen and insulin pathways, respectively, signaling systems that

have been observed to interact (Hamelers and Steenbergh 2003).

This is an example in which functional mapping provides a small

set of specific proteins that may serve as regulatory hubs joining

two or more interacting pathways. Similarly, while there is

a growing understanding of the link between breast and ovarian

cancer and hormone stimulus (Dumeaux et al. 2005), we predict

explicit molecular connections driven by LYN, EIF2B5, and

MMS19L. We also observe links between ovarian cancer and other

cancers, including breast cancer, osteosarcoma, colorectal cancer,

and hepatocellular carcinoma, mainly due to interactions or high

microarray correlation with BRCA1, MSH6, and other known

cancer-related proteins. Functional mapping can thus call out

potentially overlooked associations between diseases as well as

posit new molecular connections between biological processes

and genetic disorders.

Finally, if an investigator has a specific biological hypothesis

in mind, it can be explored using functional mapping of user-

provided gene sets. Figure 2C demonstrates a query of known

autophagy genes, ATG7, BECN1, and MAP1LC3B, with test genes,

LAMP2, RAB11A, and VAMP7, in the context of autophagy. This

produces two clear clusters, a group of known autophagy genes

related to a group of vesicular and transport genes (including the

Table 1. Summary of integrated genomic data

Data
points

Data
sets Publications

Experimental
conditions

Mean max.
posterior

Mean
normalized

weight
Most informative
functional areas

Interactions
(physical and
genetic)

11,244,053 14 >15,000 >15,000 0.375 0.000286 Response to DNA damage,
membrane potential, regulation
of cell cycle, cell death, DNA
metabolism

Sequence comparisons
(nucleotide and
protein)

452,199,430 7 6 NA 0.162 0.00197 Cell adhesion, cell surface receptor
signal transduction, phosphorus
metabolism, chromosome organization

Microarrays 27,248,177,875 635 417 14,671 0.0270 0.000606 Cell surface receptor signal transduction,
cell adhesion, RNA splicing and
metabolism, ion transport

All data 27,711,621,358 656 >15,500 ;30,000 0.0378 0.000619

Summary of integrated genomic data. A total of 21 interaction and sequence-based data sets were assembled from various sources consolidating >15,000
publications; 635 microarray data sets spanning >14,000 conditions were downloaded from GEO (Barrett et al. 2005) (see Supplemental Table 1 for
details). The mean maximum posterior and normalized weights are calculated across the 229 analyzed processes. Particularly active functional areas are
determined for each data set based on the weight given to the data by each process-specific classifier; microarrays, for example, are particularly good at
detecting the strong transcriptional signals of RNA processing and co-complexed proteins such as ATP synthases. While genetic and physical interactions
are generally the most reliable data sources, they are also the least common. This results in them being given a high weight (posterior) during Bayesian
integration, but when this weight is normalized by the amount of available data (prior probability), sequence-based data (shared protein domains,
transcription factor binding sites, etc.) are found to provide the best balance between coverage and informativity.
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Figure 2. Results of functional mapping from data integration. Functional maps derived from experimental data integration provide information on
groups of genes, including cross-talk between pathways, processes, and genes associated with genetic disorders. In all figure parts, thicker edges indicate
stronger associations. (A) The process-specific functional relationship networks underlying functional maps can themselves provide information on individual
genes’ and modules’ behavior in the underlying genomic data. Focusing on ALOX5AP, a membrane protein participating in leukotriene synthesis highlights
a predicted association with the process of chemotaxis in leukocytes, driven by multiple predicted relationships with known chemotaxis proteins. This
represents an instance of functional under-annotation; while ALOX5AP has not been formally cataloged as participating in chemotaxis, its immediate
biosynthetic product LTB4 is a known activator of chemotaxis (Peters-Golden and Brock 2003). (B) Associations between genetic disorders and biological
processes. To validate functional mapping’s ability to discover disease/process associations from data, a focus on ovarian cancer—known to be influenced by
at least seven genes (Online Mendelian Inheritance in Man 2008)—we predict associations with the cell cycle, cell proliferation, and hormone stimulus, as
well as with several other cancers. These associations are each based on relationships among individual genes predicted from integrated genomic data;
directed arrows point to the gene group in which the background connectivity was calculated. As above, additional novel predictions can be explored online
using HEFalMp. (C) Visualization of a functional map generated by querying a custom gene set. We chose to focus on the known autophagy proteins ATG7,
BECN1, and MAP1LC3B, in addition to genes of interest LAMP2, RAB11A, and VAMP7, in the context of autophagy. This extracts two clear clusters of
predicted autophagy-specific functional relationships, one consisting mainly of known autophagy proteins and one enriched for ER/Golgi and vesicular
trafficking proteins (including the three test genes). This led us to experimentally test and confirm the hypothesis that LAMP2 and RAB11A (as well as AP3B1,
ATP6AP1, and BLOC1S1) are involved in macroautophagy in amino acid-starved human fibroblasts.
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three test genes). These two clusters are associated primarily by

RAB11A/BECN1, CLTC/BECN1, ARPC5/CLN3, and SH3GLB1/

MAP1LC3B relationships, as well as less heavily weighted links

through DPM1 and PSMC2. The four primary relationships are

driven by a wide variety of microarray correlations, led by data sets

investigating retinal pigment epithelium (Tian et al. 2004), mac-

rophage infection (Detweiler et al. 2001), bone marrow (Graf et al.

2002), and DNA damage (Rieger and Chu 2004). The secondary

relationships are also predicted based on diverse microarray data

and information from the GSEA gene sets (Subramanian et al.

2005). All of these genes are known to be involved in ER/Golgi

trafficking, the secretory and vesicular system, and protein deg-

radation; these associations led us to investigate whether LAMP2,

RAB11A, and VAMP7 play roles in the specific activation of mac-

roautophagy. Our experimental confirmation of two of these

predictions is detailed below.

AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A are required
for macroautophagy in human fibroblasts

Autophagy is the process by which cells can consume their own

biomass in order to survive when starved or otherwise stressed.

Particularly in human biology, it is an area of active research, with

recent work discovering links to tumorigenesis and bacterial in-

fection (Klionsky 2007). Specifically, macroautophagy is the pro-

cess of engulfing and degrading the contents of bulk cytoplasm,

while chaperone-mediated autophagy and microautophagy use

different mechanisms to target specific proteins to the lysosome

(Yorimitsu and Klionsky 2005). We will use the terms autophagy

and macroautophagy interchangeably, as we focus here only on

macroautophagy. We chose to experimentally investigate six

proteins predicted to function in autophagy: three from an early

version of our maps, LAMP2, RAB11A, and VAMP7, and three from

the final version, AP3B1, ATP6AP1, and BLOC1S1. Previous work

has shown these proteins to be involved in the lysosome and ve-

sicular trafficking (Chen et al. 1985; Prekeris et al. 2000; Ward et al.

2000; Starcevic and Dell’Angelica 2004; Chapuy et al. 2008), with

LAMP2 playing a known role in chaperone-mediated autophagy

(Cuervo and Dice 1996), but they have not been specifically

associated with macroautophagy. Punctate localization of the

MAP1LC3 protein to autophagy-specific vesicles known as auto-

phagosomes and its cleavage from the MAP1LC3-I to the

MAP1LC3-II isoform are common markers for cells undergoing

autophagy; both of these markers are obviated by the inhibition of

proteins necessary for autophagy, e.g., ATG5 (Kabeya et al. 2000;

Mizushima et al. 2004). We found these markers to be decreased

in primary human fibroblasts, in which five of these six proteins

(AP3B1, ATP6AP1, BLOC1S1, LAMP2, or RAB11A) have been

knocked down by siRNA, suggesting that these proteins are re-

quired for successful autophagy (Fig. 3).

AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A depletions

all significantly diminish autophagy as measured by immuno-

blotting and quantification of fluorescent GFP-tagged MAP1LC3

(Fig. 3; Supplemental Fig. 5). These proteins’ siRNA depletions

specifically abrogate the processing of MAP1LC3 to the MAP1LC3-

II isoform (Fig. 3A,B), which is incorporated into autophagosome

membranes during normal macroautophagy. In knockdowns of

these five predictions, we also detect a reduction in autophagy by

localization of MAP1LC3 to autophagosomes, as quantified by the

number of fluorescent MAP1LC3-labeled puncta in a collection of

80 microscopic images (Fig. 3C,D; Supplemental Fig. 5B); this

manual quantification is also supported by automated image

analysis using CellProfiler (Carpenter et al. 2006; Supplemental

Fig. 5A). A VAMP7 knockdown showed no effect in any assay,

which is possibly due to known variation in its behavior in dif-

ferent cell types; this is discussed in more detail below. The modest

decrease in MAP1LC3-II incurred by the RAB11A knockdown (see

Fig. 3A,B), as opposed to its strong fluorescence and localization

effect (Fig. 3C,D), raises the interesting possibility that it partic-

ipates in the formation of autophagosomal membranes contain-

ing MAP1LC3 after it has been processed by ATG3 and ATG7 to

the MAP1LC3-II isoform (Kabeya et al. 2004). Further in-

vestigation is necessary to determine the specific roles of AP3B1,

ATP6AP1, BLOC1S1, LAMP2, and RAB11A in mammalian

autophagy, but these assays provide strong evidence for their in-

volvement as predicted by functional mapping.

HEFalMp: A web-based interface for interactive
functional mapping

Our functional maps can be explored interactively using the

HEFalMp (Human Experimental/Functional Mapper) tool at

http://function.princeton.edu/hefalmp. As shown in Figure 4,

HEFalMp provides an interface through which a user can focus on

a particular subject of interest—a gene, group of genes, biological

process, or disease—and examine its predicted associations. For

example, this can predict gene function (gene/process associa-

tions), cross-talk between pathways (process/process associations),

or processes associated with genetic diseases, and all predictions

can be made in any of the >200 biological areas for which we have

constructed functional maps. A variety of visualizations are used

for different query types, and all results can be downloaded for

offline analysis. All predictions between groups of genes can be

expanded into the specific functional relationships driving the

analysis, and individual functional relationships can always be

traced to the genomic data sets on which they are based. HEFalMp

provides a convenient and informative way to explore functional

maps summarizing data from ;30,000 genome-scale experiments.

Discussion
While the growing amount of publicly available genomic data can

answer a wide variety of biological questions, usefully integrating,

mining, and summarizing these data is an ongoing challenge.

Using information from over 650 genome-scale data sets drawn

from thousands of publications, we produce functional maps that

provide specific information focused on an investigator’s area of

interest. This can include gene function, functional modules,

cross-talk between pathways and processes, or interactions among

genetic disorders. We have experimentally confirmed predicted

involvements of AP3B1, ATP6AP1, BLOC1S1, RAB11A, and

LAMP2 in human macroautophagy, and we provide the HEFalMp

web-based interface for biologists to explore our results and to

generate new functional maps in their areas of interest.

Applications of functional mapping

Functional mapping can guide further laboratory and computa-

tional investigations by taking advantage of large collections of

genomic data in a biologically meaningful way. As demonstrated

by our confirmation of the participation of five specific proteins

in autophagy, functional associations of individual genes with

pathways and processes can be used to suggest directed laboratory

experiments. In the area of human disease, this can be even more

Exploring the human genome with functional maps
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significant, since functional mapping predicts associations of

genetic disorders with potentially causative processes and with

specific individual genes. It is key that computational methods

take advantage of modern high-throughput biology to guide

researchers to novel disease genes based on information from

thousands of experimental results.

Functional mapping can further leverage high-throughput

data to better inform functional cataloging and annotation efforts.

As seen above with ALOX5AP, many human proteins have ample

literature evidence to link them to established pathways and

processes, but have not yet been fully annotated in catalogs such

as GO or KEGG. Functional mapping can rapidly direct annotators

to such under-annotated genes, providing an opportunity to

substantially improve functional catalogs based on existing liter-

ature evidence.

Bayesian regularization enables very large-scale
data integration

It is notable that previous data integration techniques do not scale

adequately to the size of the human genome and the amount of

currently available genomic data. Bayesian structure learning has

been applied successfully to very small groups of genes with fo-

cused datasets (Sachs et al. 2005), but its computational com-

plexity makes it inapplicable on a whole-genome scale. Even TAN

classifiers, which are only minimally more complex than naı̈ve

networks, can be inefficient to learn from very large, incomplete

data collections (Tian et al. 2005). While naı̈ve Bayesian classifiers

can perform rapid data integration and can be learned and eval-

uated very quickly, their inherent independence assumption can

produce overly confident predictions in the presence of many data

sets (Supplemental Fig. 6). In order to maintain accuracy when

dealing with very large data collections, we use Bayesian param-

eter regularization (Steck and Jaakkola 2002) to assign a uniform

prior to each data set with belief inversely proportional to the

amount of unique data in the data set. This allows particularly

diverse, informative data sets to efficiently provide a stronger

contribution to the integration and mapping process.

Mutual information, which we use to evaluate similarities

between data sets when performing regularization, also reveals

surprising large-scale structure in our collection of genomic data

(Fig. 5; Supplemental Table 6). While most data sets share very

little information by an absolute measure, small but consistent

patterns emerge when considering hundreds of data sets spanning

Figure 3. Impaired autophagosome formation confirms the predicted involvement of AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A in human
macroautophagy. Our functional maps predict AP3B1, ATP6AP1, and BLOC1S1 to be involved in autophagy; an early version also predicted the in-
volvement of LAMP2, RAB11A, and VAMP7 in the process, which recycles cellular biomass in order to survive under conditions of starvation or stress.
While VAMP7 knockdowns showed no effect (see Discussion), siRNA knockdowns of the other five proteins inhibited normal autophagy. (A) Measurement
of the MAP1LC3-I and autophagosome-bound MAP1LC3-II isoforms by immunoblotting. Under a control condition (luciferase siRNA), starvation (+)
induces autophagy in human fibroblasts and up-regulates the autophagy marker MAP1LC3-II; this up-regulation is generally inhibited by knockdown of
proteins required for autophagy, e.g., ATG5. (B) Quantification of MAP1LC3-II band intensities. Intensities for each condition are calculated relative to
GAPDH using the ImageJ software. Replicates (e.g., controls run on multiple gels) have been averaged when available. (C) Quantification of punctate
autophagosome formation. The numbers of fluorescent puncta (MAP1LC3-II-labeled autophagosomes) per cell were averaged over counts from three
independent investigators in 10 images per normal (�) or starvation (+) condition, unlabeled and randomized (80 images total; see Supplemental Fig. 5
for standard errors). The resulting distribution of puncta frequencies is low under all nonstarved conditions and significantly increased under a negative
control (luciferase) condition. It is only slightly increased for the ATG5 positive control and for the AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A
predictions. (D) Punctate localization of fluorescent GFP-LC3 to the autophagosome during autophagy. Under normal conditions (�), MAP1LC3-I is
localized diffusely through the cytoplasm; starvation (+) induces autophagy and localization to the autophagosome membrane. Knockdowns of ATG5
(positive control) or the five validated genes abrogate this localization, indicating that these proteins are required for successful macroautophagy.
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thousands of experimental conditions. Since most available

genome-scale data is expression based, microarray platform is one

of the broadest factors by which data sets cluster. Within these

large platform-based groups, other similarities are detectable based

on a variety of factors ranging from tissue type to array normali-

zation algorithm. It is striking that a straightforward data mining

measure such as mutual information, when applied to a suffi-

ciently large collection of genome-scale data, can discover various

underlying classes of data sets. Even though the amount of in-

formation shared based on factors such as array platform is small,

its ubiquity violates the independence assumption of naı̈ve clas-

sifiers, and it thus provides the basis for the performance im-

provement that we observe when using regularized parameters.

Next steps: Tissue specificity and temporal resolution

A variety of biological features and prior knowledge could be

added to further improve functional mapping’s integration of

genomic data. Most significantly, tissue and cell type are key

aspects of metazoan biology that are not currently taken advan-

tage of by our functional maps. This is perhaps evident in our

investigation of VAMP7, a vesicle-association membrane protein

known to show widely varying behaviors in different tissue types

(Advani et al. 1999; Siddiqi et al. 2006). It has characterized roles in

the late endosome/lysosome, and our functional maps predict

extensive relationships with other synaptosomal proteins, in

agreement with VAMP7’s function in neuronal morphogenesis

Figure 4. The HEFalMp tool for functional mapping. We have provided a web interface, the Human Experimental/Functional Map (HEFalMp), at http://
function.princeton.edu/hefalmp for interactively exploring our predicted functional maps. A user can focus on a gene, gene set, biological process, or
genetic disorder of interest and investigate its predicted associations with other genes, processes, or diseases. These predictions are presented using
a variety of visualizations, and all data is downloadable for further analysis. (A) Associating a gene with biological processes. An investigator wishes to
study which biological processes the TROAP protein is predicted to participate in. (B) Associating a gene with genetic disorders. In the context of one of
TROAP’s most likely biological processes, chromosome segregation, it is predicted to be particularly associated with genes causing melanomas and breast
cancer. (C ) Visualizing a predicted functional relationship network for specific genes. Focusing on a gene set consisting of TROAP, two of its most likely
relationship partners (UBE2C and TPX2), and two of its most likely partners in chromosome segregation (TOP2A and NCAPH) retrieves a predicted
functional relationship network specific to the area of chromosome segregation. (D) Viewing genomic data contributing to a prediction. Clicking on
a predicted functional relationship or specifically focusing on TROAP’s relationship with CDC25C displays the genomic data used to generate the
prediction. Here, TROAP is predicted to relate to CDC25C, a highly conserved mitotic regulator, due to very high correlation between the genes’
expression in a variety of microarray conditions. Taken together, this evidence suggests that TROAP is strongly cell cycle regulated and may play an as-yet-
uncharacterized role in mitosis.

Exploring the human genome with functional maps

Genome Research 1101
www.genome.org



(Rossi et al. 2004). While we found that decreasing the expression

of VAMP7 in human fibroblasts did not detectably influence their

induction of autophagy, it is possible that VAMP7 participates in

autophagy in other cell or tissue types.

Similarly, just as many functional associations are cell-type

specific, others are dependent on subcellular localization or on

temporal characteristics (e.g., cell cycle phase). Our results, as well

as previous work (Myers and Troyanskaya 2007), show that ex-

plicitly modeling functional relationships within individual bi-

ological processes significantly improves accuracy. Differences in

cell type, localization, and temporal character represent equally

significant cases in which the same proteins can carry out different

functions. Incorporating information such as cell and tissue types

is thus an important way in which the mapping process can be

further developed in the future.

The features, diversity, and amount of genomic data will

certainly continue to increase, and functional maps provide

a flexible means by which this data can be informatively sum-

marized and explored. By integrating over 650 data sets spanning

thousands of experimental conditions, we have predicted func-

tional relationship networks specific to a variety of individual bi-

ological processes. Mapping these networks allows an investigator

to mine this data from several different perspectives, focusing on

associations between genes, pathways, processes, or genetic dis-

orders of interest. We have experimentally confirmed predicted

participation of AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A

in the process of macroautophagy, demonstrating that functional

mapping can accurately direct experiments to specific genes and

functional areas. These predicted associations can be extended to

any group of genes, e.g., allowing an experimenter to investigate

novel associations among genes linked to genetic disorders. Our

results and functional maps have been made available to

the community through the interactive HEFalMp tool at http://

function.princeton.edu/hefalmp.

Methods
We integrated 656 genome-scale data sets, comprising ;15,000
microarray conditions and ;15,000 interaction and sequence-
based results, to predict process-specific functional relationship
networks in 229 biological processes. Data integration was per-
formed using naı̈ve Bayesian classifiers, with parameters regular-
ized using a mutual information score between data sets. The
resulting functional relationship networks were analyzed to gen-
erate functional maps for genes, processes, and diseases within
each biological area. Evidence from immunoblotting and fluo-
rescent microscopy was used to confirm novel predictions of the
involvement of the AP3B1, ATP6AP1, BLOC1S1, LAMP2, and
RAB11A proteins in macroautophagy.

Briefly, functional mapping relies on the construction of
process-specific functional relationship networks. These are in-
teraction networks in which each node represents a gene, each
edge a functional relationship, and an edge between two genes is
probabilistically weighted based on experimental evidence re-
lating to those genes. We integrate evidence from many data sets,
with each data set weighted in a process-specific manner. To
generate functional maps, these networks are mined for functional
associations between groups of genes, which might represent in-
dividual genes, pathways, processes, or diseases. A functional as-
sociation summarizes the overall strength of predicted association
between the two groups, and it takes four features into account:
relationships between genes spanning the two groups, relation-
ships within the groups, each group’s background strength of
relationship to the entire genome, and the baseline probability of
relationship for all genes. These four features are converted
into a P-value by comparing their ratio with a randomized null
distribution.

Data preparation

We collected 635 human microarray data sets from the NCBI Gene
Expression Omnibus (GEO) repository (Barrett et al. 2005) com-
prising 14,671 conditions; see Supplemental Table 1 for a com-
plete list. These were processed largely as in Huttenhower and
Troyanskaya (2008), with additional manipulation to handle
single-channel data and the ambiguity of human probe mapping.
Within each data set, negative and very small (less than two)
single-channel values were removed, genes with missing values in
>30% of the conditions were removed, and the remaining missing
values were imputed using KNNImpute (Troyanskaya et al. 2001)
with k = 10 (cutoff values recommended by Hibbs et al. [2007] and
Troyanskaya et al. [2001], respectively).

Probe IDs were mapped to HGNC symbols using the appro-
priate GEO platform files. When multiple probes mapped to

Figure 5. Overview of hierarchically clustered mutual information (MI)
between genomic data sets. We used MI among 656 genomic data sets to
perform regularization of the parameters of our 230 process-specific
Bayesian classifiers. Data sets with a greater proportion of shared in-
formation were more heavily mixed with a uniform prior, resulting in the
overall up-weighting of particularly unique and informative data. Addi-
tionally, a global view of the mutual information scores reveals structure in
the data. Primarily platform-based effects can be observed among the
expression data sets we obtained from GEO (Barrett et al. 2005), most of
which use Affymetrix arrays; tissue type, cell type, and array normalization
algorithms can all cause small amounts of information to be shared
between many data sets. For example, Robust MultiArray (RMA) nor-
malization causes a noticeable shift in the information shared among
HG-U133A arrays. While the amount of MI between any two data sets is
generally low (this figure saturates at one bit of shared information), an
accumulation of many small overlaps can result in overconfidence dur-
ing Bayesian data integration, accounting for the success of parameter
regularization.
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a single HGNC symbol, a consensus set of probes was generated by
finding pairwise Euclidean distances more likely to have been
generated from the data set’s distribution of intragene probe pairs
than from the distribution of intergene probe pairs. If this con-
sensus set contained at least half of the probes mapping to a gene
symbol, the consensus set’s average value became the expression
vector for that gene.

Within each data set, a similarity score for each pair of genes
was generated by first calculating the Pearson correlation r be-
tween the vectors. These correlations were normalized using
Fisher’s z-transform, shifted by the mean, and divided by the data
set standard deviation, yielding a collection of pairwise scores with
distribution N(0, 1). Finally, these were binned into one of seven
discrete values in the ranges (�N, �1.5], (�1.5, �0.5], (�0.5, 0.5],
(0.5, 1.5], (1.5, 2.5], (2.5, 3.5], (3.5, N).

Nonmicroarray pairwise data sets were, for the most part,
discretized into two bins: interaction and no interaction/no data.
In some cases, negative interactions were explicitly recorded by
a third bin. Pairwise data was generated from sequence in-
formation (transcription factor binding sites, protein domains,
etc.) by calculating either the inner product or the Euclidean dis-
tance of the occurrence vectors for each gene pair; see Supple-
mental Table 1 for details.

Gold standard construction

Biological processes of interest were selected from the Gene On-
tology (Ashburner et al. 2000) by polling a panel of six biologists as
described in Huttenhower and Troyanskaya (2008). Of the 433 GO
terms selected to be experimentally informative, 229 had at least
10 human gene annotations, becoming our processes of interest
(see Supplemental Tables 2–4).

An answer set of known functionally related and unrelated
proteins was derived by combining these gene sets with in-
formation from KEGG (Kanehisa et al. 2008), HPRD (Mishra et al.
2006), Pfam (Finn et al. 2006), Reactome (Vastrik et al. 2007), the
Pathway Interaction Database (PID) (Schaefer 2006), and the cu-
rated GSEA pathways (Subramanian et al. 2005), all of which
represent manually curated databases of functional interactions. A
gene pair was considered functionally related if annotated as
such in any of these databases and unrelated if annotated to two
different terms in GO, KEGG, or PID (the other databases not
providing explicit negatives). Genes pairs annotated to terms
overlapping with a hypergeometric P-value below 0.05 were
excluded from unrelated pair generation (i.e., they were neither
related nor unrelated for training and evaluation purposes). This
resulted in a gold standard containing 16,184 genes, 8,692,471
functionally related pairs, and 45,712,399 unrelated pairs.

To train and evaluate process-specific classifiers, this answer
set was decomposed into subsets related to each biological area of
interest. A gene pair was used for training/evaluation in a partic-
ular biological process if either (1) both genes were annotated to
the process in GO or (2) one of the two genes was annotated to the
process and the pair was unrelated in the standard (i.e., not
coannotated to another process).

Evaluation was performed using a randomly selected holdout
set of 6129 genes (;25% of the genome). Any gene pair including
at least one of these genes was withheld from training and used
for evaluation of precision/recall and AUPRCs (e.g., Supplemental
Fig. 1).

Data integration

One naı̈ve Bayesian classifier was trained per biological area
of interest, using the appropriate subset of the gold standard as

described above in addition to one global process-unaware classi-
fier trained using the complete gold standard. Each classifier f
consisted of a class node predicting the binary presence or absence
of a functional relationship (FR) between two genes and n nodes
conditioned on FR, each representing the value of a data set Dk.

Parameter regularization was performed as described in Steck
and Jaakkola (2002) using mutual information between data sets
to estimate a strength of prior belief for each data set. While a large
amount of shared information does not guarantee a redundant
data set, since the same subset of information could be shared
many times, it provides a valuable quantitative estimate of data set
uniqueness. For each data set Dk, we calculated a heuristic sum of
shared information Uk relative to the data set’s entropy:

Uk = 1 + HðDkÞ�1 +
i6¼k

IðDi; DkÞ ð1Þ

We then used this value to weight the strength of prior belief in
a uniform distribution for the data set, based on the technique in
Steck and Jaakkola (2002). This exponentially decreased the
weight of a data set as its shared information increased. Let us
notate |Dk| as the number of possible observations in data set Dk

(discretization levels). For some gene pair (gi, gj), supporting data
{d1(gi, gj), d2(gi, gj), . . ., dn(gi, gj)}, and an effective document count
of two, the probability of a FR in function f is thus:

P
f
i; j ðFRÞ}

Yn
k = 1

2P½Dk = dkðgi; gjÞ� + 2Uk � 1

2 + jDkj2Uk � 1
ð2Þ

When fewer than 25 gene pairs were available for a particular data
set/relationship combination, the global probability distribution
was used for that condition. Remaining zero counts were Laplace
smoothed.

An additional global process-aware FR network was generated
by transforming each set of process-specific probabilities into
Z-scores and averaging the results for each gene pair across all
processes. Specifically:

Zi; jðFRÞ= 1

jFj +
f2F

P
f
i; j ðFRÞ �ave½Pf ðFRÞ�

std½Pf ðFRÞ�
ð3Þ

We used the C++ implementations of naı̈ve Bayesian learning and
inference provided in Huttenhower et al. (2008), relying on the
SMILE library and GeNIe modeling environment (Druzdzel 1999)
from the University of Pittsburgh Decision Systems Library for
Bayesian network manipulation.

Process-specific analysis

The parameters learned by the naı̈ve classifiers in this manner
yield a functional activity score (FAS) indicating the strength of
the contribution of each data set within each biological process of
interest. A data set’s FAS is the sum of the change each of its
possible values makes in the classifier’s posterior times the prior
probability of observing that value; this yields high scores for data
that are both frequent and accurate. The score for data set D within
function f was thus calculated as:

FASD;f = +
i2D

PðD = iÞjPðFRÞ � PðFRjD = iÞj ð4Þ

Functional modules

Novel functional modules (FMs) are defined within the global
process-aware FR network using an algorithm based on Charikar
(2000). We begin with a minimum initial score s and a minimum
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final ratio r and fill a set of genes Gk and a set of excluded edges E.
We repeatedly selected the most related pair of genes not being
excluded. To this set, we repeatedly add the gene most related, on
average, until this average relationship probability reaches some
fraction r of the seed pair’s original score. If no such gene can be
added, the seed pair is marked as excluded; otherwise, each edge
weight in the resulting set is reduced by the average connection
weight, and the current Gk is output as a functional module.

Each FM is generated with two parameters: the input ratio r

and a final average edge weight score S(Gk). r is akin to a depth
within GO. FMs generated at low r are larger, more general, and
‘‘higher’’ in the functional hierarchy; FMs generated at high r are
smaller, more specific, and ‘‘lower’’ in the hierarchy. The score
S(Gk) is an estimated confidence in the FM such that a higher value
indicates a more self-contained, certain module. In pseudocode,
the algorithm is:

1. Input minimum initial score s and minimum final ratio r

2. Define:

SðGkÞ=
1

jGkj
+

gi ;gj2Gk

Zi;jðFRÞ and Sðgi;GkÞ= SðGk[fgigÞ

3. Let E = {}
4. Let:

ðgs1; gs2Þ= arg max
ðgi ;gjÞ=2E

Zi;jðFRÞ

5. If Zi,j(FR) < s, stop
6. Let Gk = {gs1, gs2}
7. Begin loop
8. Let:

gt = arg max
gi

Sðgi;GkÞ

9. If S(gt, Gk)/Zs1,s2(FR) < r, break
10. Gk = Gk [ {gt}
11. If |Gk| = 2
12. E = E [ {(gs1, gs2)}
13. Go to step 4
14. Output module Gk with parameters r, S(Gk)
15. For all gi,gj 2 Gk

16. Zi,j(FR) = max({Zi,j(FR) � S(Gk), 0})
17. Go to step 4.

To generate novel FMs, we ran this algorithm on the global
process-aware human FR network with s = 0.95 and r 2 0.01,
0.025, 0.05, 0.075, 0.1, 0.2, . . ., 0.5}, generating a set of preliminary
FMs M = M0.01 [M0.025 [. . .[M0.5. To remove redundant FMs,
we merged by union any pair with Jaccard index at least 0.5, with
the newly formed FM occupying the more specific depth. Specif-
ically, for all pairs of modules Mi and Mj within module sets Mx

and My (r depths x and y):

1. Until no changes occur
2. For all Mx, My 2M

3. For all Mi 2Mx, Mj 2My

4. If J(Mi, Mj) $ 0.5
5. Mx = Mx � {Mi}
6. My = My � {Mj}
7. Mmax(x, y) = Mmax(x, y) [ {Mi[Mj}

To form the resulting merged FMs into a DAG similar to the
structure of GO, parent/child relationships were established only
from higher to lower depths when (1) an indirect descendant re-
lationship did not already exist and (2) the higher FM contained at
least two-thirds of the lower FM’s genes. This generated parent/
child relationships p(Mp, Mc):

1. For x from 0.5 to 0.01
2. For y from x to 0.01

3. For all Mi 2Mx and Mj 2My

4. If Mj is not a descendant of Mi and jMi \Mjj = jMjj$ 2=3
5. p(Mi, Mj) = 1

This process resulted in 17,759 FMs across the nine depth levels,
11,674 parent/child relationships, and 10 connected components
in the DAG (nine singletons). A functional evaluation of the FMs is
shown in Supplemental Figure 3, and their contents and hierar-
chical structure are provided in Supplemental Table 5.

Functional mapping associations and P-values

The functional association of two gene sets quantifies the
degree of specific overall relationship between their constituent
genes. This score is made up of four parts. The score between two
gene sets within a process is the average probability of all edges
between them. Their background score in a process is the aver-
age probability of all edges incident to either set. The baseline
score is the average probability of an edge in the process-
independent network. The score within a single gene set is the
average edge probability assuming nodes are self-connected
with baseline strength, and the score within two gene sets is their
unweighted average. The between and baseline scores are divided
by the background and within scores to calculate two gene
sets’ functional association, which is thus increased if they
are more interconnected and decreased if they are more self-
connected.

This score was designed to mitigate several sources of varia-
tion and potential false positives in the networks. Known disease
genes tend to be well-studied, providing them with more data and
increasing their overall probability of functional relationship. Sets
of genes representing genetic disorders can thus be very small and
highly connected, which is normalized by the within-score and its
unweighted average. This and the baseline are calculated in the
process-independent network, which also has lower variability
than the process-specific networks. Normalizing by the baseline
guarantees an expected value of one, and assuming self-
connections with baseline weight allows the functional association
score to extend seamlessly to arbitrarily small sets.

Thus, within any functional relationship network f, two gene
sets G1 and G2 were assigned a functional association score as
follows. For f0 the global process-independent network and n
genes in the genome, let:

betweenf ðG1;G2Þ=
1

jG1jjG2j
+

gi2G1 ; gj2G2

P
f
i;jðFRÞ ð5Þ

bgrndf ðG1;G2Þ=
1

n
+
gi

1

jG1j
+

gj2G1

P
f
i;jðFRÞ + 1

jG2j
+

g12G2

P
f
i;jðFRÞ

 !
ð6Þ

baseline =
1

n
+

gi ;gj

P
f 0
i;j ðFRÞ ð7Þ

withinðG1Þ =
1

jG1j2
+

gi ;gj2G1

P
f 0
i;j ðFRÞ
baseline

�
i 6¼ j

i = j
ð8Þ

withinðG1;G2Þ=
1

2
ðwithinðG1Þ+ withinðG2ÞÞ ð9Þ

All averages are Winsorized by 10% of their length to mitigate
outliers; Winsorization is a standard robust averaging process in
which the n largest and smallest values are replaced by copies of
the n-first largest and n-first smallest value, respectively. This
defines the functional association between two gene sets as:
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FAf ðG1;G2Þ =
betweenf ðG1;G2Þ
bgrndf ðG1;G2Þ

� baseline

withinðG1;G2Þ
ð10Þ

This score was converted into a P-value by interpolating over
a bootstrapped null distribution. For each combination of sizes 1,
2, 5, 10, 15, 20, 25, 50, 100, and 500, pairs of sets were generated
randomly 62,500 times within each process, and the resulting
functional association score calculated. The distributions of these
scores were approximately normal, and the standard deviations
were asymptotic in the sizes of the two gene sets (Supplemental
Table 7). Fitting these empirical curves with a ratio of linear
polynomials allowed real-time computation of an approximate
standard deviation for any pair of gene set sizes, which then
allowed the conversion of functional association scores into
P-values using a normal distribution function.

Web-based interface

HEFalMp was implemented in two parts, combining a web-based
front end using Ruby on Rails (37 signals) with a C++ back-end for
rapid data processing using the Sleipnir library (Huttenhower et al.
2008). For details, see http://function.princeton.edu/hefalmp.

Experimental validation

Human dermal fibroblasts were cultured in subconfluent con-
ditions in fibroblast basal medium supplemented with FBS, in-
sulin, and fibroblast growth factor (Lonza Group Ltd.). Cells
received fresh medium every 2 d.

For siRNA transfection, 1.2 3 105 fibroblasts were transiently
transfected with 100 nM duplex siRNA designed by the Rosetta
algorithm (Sigma) against control targets (ATG5 or luciferase) or
experimental targets (AP3B1, ATP6AP1, BLOC1S1, RAB11A,
LAMP2, VAMP7) using Oligofectamine transfection reagent (Invi-
trogen). On the day of experimentation, cells were either supplied
with fresh medium (not starved), or starved for amino acids for 4 h
in Kreb’s Ringer Bicarbonate (KRB) solution (Sigma) at 37°C.

Western blots were performed using cell lysates collected on
ice by scraping each plate into RIPA buffer (50 mM Tris-Cl at pH
7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate,
and 0.1% SDS) supplemented with a protease inhibitor cocktail
tablet consisting of chymotrypsin (1.5 mg/mL), thermolysin
(0.8 mg/mL), papain (1 mg/mL), pronase (1.5 mg/mL), pancreatic
extract (1.5 mg/mL), and trypsin (0.002 mg/mL) (Roche Diag-
nostics) at either 48 h (default) or 72 h (LAMP2 and VAMP7) post-
transfection. Freeze-thawing of lysates was avoided whenever
possible, and freshly denatured samples were run on appropriate
percentage SDS–polyacrylamide gels and transferred onto PVDF
membranes (Perkin Elmer) using BioRad electrophoresis equip-
ment (BioRad). Antibodies for Western blot analysis were used at
the following concentrations in PBS plus BSA: rabbit anti-LC3 at
2 mg/mL (Novus Biologicals), rabbit anti-RAB11A at 1 mg/mL
(Sigma), rabbit anti-LAMP2 at 1 mg/mL (Sigma), rabbit anti-
VAMP7 at 1 mg/mL (Abcam Inc.).

A GFP-LC3 fusion was used as a fluorescent marker for
autopaghy. We generated fibroblasts stably expressing a GFP-LC3
fusion protein by infecting subconfluent fibroblasts with a retro-
viral construct encoding GFP and the rat LC3 sequence (C.
Thompson, University of Pennsylvania). GFP-LC3 fibroblasts
transfected with siRNA against control or experimental targets
were cultured in uncoated glass bottom culture dishes (MatTek
Corp.) and visualized either 48 h (default) or 72 h (LAMP2 and
VAMP7) post-transfection. Transfected GFP-LC3 fibroblasts were
imaged using a Zeiss LSM510 confocal microscope.
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