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Widespread adoption of massively parallel deoxyribonucleic acid (DNA) sequencing instruments has prompted the recent
development of de novo short read assembly algorithms. A common shortcoming of the available tools is their inability to
efficiently assemble vast amounts of data generated from large-scale sequencing projects, such as the sequencing of in-
dividual human genomes to catalog natural genetic variation. To address this limitation, we developed ABySS (Assembly By
Short Sequences), a parallelized sequence assembler. As a demonstration of the capability of our software, we assembled
3.5 billion paired-end reads from the genome of an African male publicly released by Illumina, Inc. Approximately
2.76 million contigs $100 base pairs (bp) in length were created with an N50 size of 1499 bp, representing 68% of the
reference human genome. Analysis of these contigs identified polymorphic and novel sequences not present in the human
reference assembly, which were validated by alignment to alternate human assemblies and to other primate genomes.

[Supplemental material is available online at www.genome.org. Software binaries and instructions are available at http://
www.bcgsc.ca/platform/bioinfo/software/abyss.]

Massively parallel sequencing platforms, such as the Illumina, Inc.

Genome Analyzer, Applied Biosystems SOLiD System, and 454

Life Sciences (Roche) GS FLX, have provided an unprecedented

increase in DNA sequencing throughput. Currently, these tech-

nologies produce high-quality short reads from 25 to 500 bp in

length, which is substantially shorter than the capillary-based

sequencing technology. However, the total number of base pairs

sequenced in a given run is orders of magnitude higher. These two

factors introduce a number of new informatics challenges, in-

cluding the ability to perform de novo assembly of millions or

even billions of short reads.

The field of short read de novo assembly developed from

pioneering work on de Bruijn graphs by Pevzner et al. (Pevzner

and Tang 2001; Pevzner et al. 2001). The de Bruijn graph repre-

sentation is prevalent in current short read assemblers, with Velvet

(Zerbino and Birney 2008), ALLPATHS (Butler et al. 2008), and

EULER-SR (Chaisson and Pevzner 2008) all following this ap-

proach. As an alternative, a prefix tree-based approach was in-

troduced by Warren et al. (2007) with their early work on SSAKE.

This paradigm was also followed in the VCAKE algorithm by Jeck

et al. (2007), and in the SHARCGS algorithm by Dohm et al.

(2007). On a third branch, Edena (Hernandez et al. 2008) was an

adaptation of the traditional overlap-layout-consensus model to

short reads.

These short read de novo assemblers are single-threaded

applications designed to run on a single processor. However,

computation time and memory constraints limit the practical use

of these implementations to genomes on the order of a megabase

in size. On the other hand, as the next generation sequencing

technologies have matured, and read lengths and throughput

increase, the application of these technologies to structural anal-

ysis of large, complex genomes has become feasible. Notably, the

1000 Genomes Project (www.1000genomes.org) is undertaking

the identification and cataloging of human genetic variation by

sequencing the genomes of 1000 individuals from a diverse range

of populations using short read platforms. Up to this point how-

ever, analysis of short read sequences from mammalian-sized

genomes has been limited to alignment-based methods (Korbel

et al. 2007; Bentley et al. 2008; Campbell et al. 2008; Wheeler et al.

2008) due to the lack of de novo assembly tools able to handle the

vast amount of data generated by these projects.

To assemble the very large data sets produced by sequencing

individual human genomes, we have developed ABySS (Assembly

By Short Sequencing). The primary innovation in ABySS is a dis-

tributed representation of a de Bruijn graph, which allows parallel

computation of the assembly algorithm across a network of

commodity computers. We demonstrate the ability of our assem-

bler to quickly and accurately assemble 3.5 billion short sequence

reads generated from whole-genome sequencing of a Yoruban

male (NA18507) on the Illumina Genome Analyzer platform.

Results

Algorithmic approach

The ABySS algorithm proceeds in two stages. First, all possible

substrings of length k (termed k-mers) are generated from the se-

quence reads. The k-mer data set is then processed to remove read

errors and initial contigs are built. In the second stage, mate-pair

information is used to extend contigs by resolving ambiguities in

contig overlaps. Details of the assembly algorithm are provided in

the Methods section.

Evaluation of ABySS performance

Simulated data

We assembled two sets of simulated, error-free short reads gener-

ated from the human reference genome sequence (NCBI Build
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36.1) (International Human Genome Sequencing Consortium

2004) to characterize the performance of the algorithm under

ideal conditions and to evaluate the frequency of misassembled

contigs. Contigs that have an exact, full-length match to the ref-

erence genome, or a full-length match with mismatched bases and

no alignment gaps, are considered to be correct. Mismatched bases

are an artifact of the single nucleotide polymorphism (SNP) re-

moval algorithm, which cannot distinguish sequence ‘‘bubbles’’

formed by heterozygous SNPs in a diploid genome from distinct

paralogous regions that differ by one or a few base pairs (see

Methods). Since the alternative sequences are retained in a log

file, contigs with mismatched bases are not considered to be

misassembled. Contigs with more extensive differences from the

reference human genome, such as alignment gaps, partial align-

ments, or split alignments to different chromosomes, are consid-

ered to be misassembled.

The first synthetic data set represented all possible error-free

36-mer paired sequences, using a fixed fragment size of 200 bp. We

generated simulated reads by sliding a 200 bp window, with a step

size of 1 bp, along each chromosome of the reference genome and

reporting the first 36 bp and the reverse complement of the last 36

bp. This process produced a data set of perfectly tiled 72-fold read

coverage of the reference genome. This data set was assembled

using the assembly parameter k = 36 (see Supplemental material)

and produced 1.60 million contigs $100 bp with an N50 size of

3656 bp. The assembled contigs are highly accurate with 94.4% of

the contigs aligning perfectly to the reference human genome and

another 5.0% aligning full length with internal mismatches. To-

gether, these contigs represent 80% of the reference genome. The

remainder of the genome is represented by contigs <100 bp in size,

which correspond to repeat structures that cannot be resolved by

the short read paired-end data. In addition, a very small portion of

the genome is represented by misassembled contigs (see below).

This simulation forms a baseline for the proportion of the refer-

ence genome that can be assembled into contigs $100 bp given 36

bp paired-end reads from a 200 bp fragment. The assembly sta-

tistics are summarized in Table 1.

The second synthetic data set simulated a random sampling

of error-free 36-mer paired-end reads. Instead of a fixed fragment

size of 200 bp, we applied a fragment size distribution corre-

sponding to the empirical distribution of the experimental data set

SRA000271 (see the next section and Supplemental Fig. 1). We

sampled the genome to provide an average of 42-fold sequence

coverage of the reference genome, again mimicking the experi-

mental data, and assembled using the assembly parameter k = 27.

Similar to the assembly of the perfectly tiled simulated data, 95.6%

of the contigs $100 bp aligned perfectly to the reference genome

and 3.8% aligned with internal mismatches. These contigs repre-

sent 71% of the reference genome. These assembly statistics are

summarized in Table 2.

A small number of contig misassemblies are anticipated to

arise during the contig merging process because the merging al-

gorithm accommodates imperfect data and a wide distribution of

fragment sizes, such as one would expect in experimental data

sets. These misassemblies can range in severity from minor, for

example, a small indel introduced by incorrectly estimating the

copy number of a local repeat (found in 0.5% of contigs for the

tiled simulation and 0.5% for the sampled simulation), to major

misassemblies where distinct regions of the genome are in-

correctly brought together (found in 0.04% and 0.1% of the tiled

and sampled simulations, respectively). In total, misassembled

contigs represent less than 1% of the total contigs and less than

1% of the genome in both assemblies using error-free data.

Experimental sequence data

We obtained sequence data for the genome of an African male

individual (HapMap DNA identifier NA18507) (International

HapMap Consortium 2003, 2007) from the NCBI short read ar-

chive (accession no. SRA000271). The sequence was generated

by Illumina, Inc. using their Genome Analyzer platform (Bentley

et al. 2008).

The data set consists of 3.5 billion paired-end tag reads with

read lengths ranging from 36 to 42 bp and a median fragment size

of ;210 bp (see Supplemental Fig. 1), representing the human

genome with an average of 42-fold sequence redundancy. An

initial quality check of the data was performed by aligning the

sequences to the human reference genome using the MAQ aligner

(Li et al. 2008). Analysis of the alignments revealed that 72% of the

aligning reads perfectly matched the human reference. The per-

base error rate was estimated to be ;1.4% based on the number of

mismatches in the alignments, however, this includes mismatches

that represent polymorphic sites.

The genome assembly was performed using the assembly

parameter k = 27 (see Supplemental material). The first phase of

the assembly, which does not use the paired-end information,

required 15 h to complete. An additional 3 d were required to

merge contigs using the paired-end information (see Supplemen-

tal material for a description of the cluster architecture). After

merging with paired-end data, there were 2.76 million contigs

$100 bp in size, with an N50 size of 1499 bp (Table 3).

Of these 2.76 million contigs, 94.2% were assembled cor-

rectly, with full-length alignments to the reference genome,

a minimum of 95% sequence identity, and alignment gaps no

greater than 50 kb (see Methods). An additional 4.6% of the

contigs align to the reference genome with at most four un-

matched bases at contig termini. Unmatched bases at the termini

Table 1. Assembly statistics for perfectly tiled, fixed 200-bp fragment, error-free simulated data

Contig statistics

k = 36, Without paired-end information k = 36, With paired-end information

Contigs $100 bp Contigs $1000 bp Contigs $100 bp Contigs $1000 bp

Number of contigs 3,211,485 654,000 1,602,329 646,202
Median size (bp) 233 2012 700 2337
Mean size (bp) 762 2676 1572 3327
Max. size (bp) 50,850 50,850 85,410 85,410
N50 size (bp) 2167 3214 3656 4410
Number of contigs >N50 298,085 165,571 189,583 143,471
Sum (Gbp) 2.45 1.75 2.52 2.15
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occur where sequence errors are undetected due to poor sequence

coverage; therefore, we also consider these contigs to be correct.

Together, 98.8% of the contigs are deemed correct, covering 68.2%

of the human reference sequence. These figures are only slightly

lower than the results obtained from the stochastic 423 simula-

tion. When the restriction on contig size is removed, we observe

that 90% of the reference genome is covered by contigs (see Sup-

plemental Fig. 2). If we only consider uniquely aligning contigs,

81% of the reference genome is covered.

For a small portion of the 2.76 million contigs (0.08%) we

observe significant alignment inconsistencies, where contigs have

either both ends aligning to different chromosomes, ends aligning

to the same chromosome but on the opposite strand, or with ends

aligning over 50 kb apart; these may represent contigs crossing

breakpoints of translocations, inversions, or large deletions, re-

spectively. However, the observed frequency of such contigs is

within range of the 0.04% and 0.10% of contigs with these types

of anomalous alignments that we observed in the assemblies with

simulated perfect-coverage data and simulated sampled data, re-

spectively, indicating that the majority of these are likely to be

incorrectly assembled contigs.

Polymorphic and novel human sequence identified in the assembled
experimental data

Analysis of the alignments of correctly assembled contigs to the

NCBI human reference genome revealed 110,177 deletions and

101,578 insertions (see Fig. 1). The distribution of deletion sizes

has a prominent peak in the 280–350 bp range, which has been

previously observed in other human genome sequencing projects

(Levy et al. 2007; Bentley et al. 2008; Wheeler et al. 2008). The

peak represents 545 deletions, 95% (517) of which overlap with

Alu insertions in the human reference genome. Approximately

24% of these (125) have not been identified as retrotransposon

insertion polymorphisms (RIPS) in dbRIP (Wang et al. 2006). In

addition, we have identified 23 sites at which ;6 kb known

polymorphic L1 retrotransposons are absent in the genome of the

Yoruban male. Structural variation in this individual relative to the

reference genome has been previously identified (Redon et al.

2006; Bentley et al. 2008; Kidd et al. 2008); however, comparison

with this data is beyond the scope of this paper.

Approximately 2% of the contigs assembled by ABySS, con-

sisting of 32,577 contigs totaling 22.4 Mb, aligned only partially or

not at all to the NCBI human reference genome. We evaluated

alignments of these ‘‘orphaned’’ contigs to the HuRef (Levy et al.

2007) and Celera (Venter et al. 2001) human assemblies. Of these

32,577 contigs, 9208 comprising 5.8 Mb of sequence align full

length or near full length (with at most four unmatched bases at

contig termini) to HuRef (Levy et al. 2007) (NCBI accession nos.

AC000133–AC000156). An additional 1529 contigs (664 kb)

aligned to the Celera assembly (Venter et al. 2001) (NCBI accession

nos. AC000044–AC000068) or to unassigned Celera contigs. These

10,737 contigs, representing known human sequence not present

in the NCBI human reference genome, bring the total percentage

of contigs considered to be correctly assembled to 99.4%.

We attempted to validate the remaining contigs by alignment

to the chimpanzee genome. Of the remaining 21,840 contigs, we

identified 3431 contigs totaling over 1.8 Mb that align completely

or near full length to the chimpanzee reference genome (Chim-

panzee Sequencing and Analysis Consortium 2005) with at least

95% identity. The majority of these contigs (2231 contigs repre-

senting 750 kb) aligns partially or poorly to the human genome

and aligns to nonorthologous regions in the chimpanzee genome,

and we were therefore unable to identify the genomic location of

these novel human sequences. For 1200 contigs with a partial

alignment to the human genome and alignment to an ortholo-

gous region in the chimpanzee genome we attempted to identify

the insertion sites (see Methods). We were able to identify precise

insertion sites from 246 such contigs, two of which walked into

a sequence gap in the NCBI human reference assembly. Approxi-

mately one-third of the remaining 244 insertion sites occur within

Table 2. Assembly statistics for 423 sampled, error-free simulated data

Contig statistics

k = 27, Without paired-end information k = 27, With paired-end information

Contigs $100 bp Contigs $1000 bp Contigs $100 bp Contigs $1000 bp

Number of contigs 3,541,461 639,762 1,914,370 673,469
Median size (bp) 258 1660 598 2010
Mean size (bp) 610 2021 1174 2632
Max. size (bp) 20,660 20,660 30,543 30,543
N50 size (bp) 1317 2166 2433 3131
Number of contigs >N50 454,444 195,608 260,813 174,603
Sum (Gbp) 2.16 1.30 2.25 1.77

Table 3. Assembly statistics for data from the NA18507 Yoruba individual

Contig statistics

k = 27, Without paired-end information k = 27, With paired-end information

Contigs $100 bp Contigs $1000 bp Contigs $100 bp Contigs $1000 bp

Number of contigs 4,348,132 549,522 2,762,173 680,203
Median size (bp) 253 1463 435 1696
Mean size (bp) 484 1703 791 2093
Max. size (bp) 15,911 15,911 18,800 18,800
N50 size 870 1731 1499 2282
Number of contigs >N50 674,953 188,171 408,890 202,166
Sum (Gbp) 2.10 0.94 2.18 1.42
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a larger region of known structural variation annotated in the

Database of Genomic Variants (Iafrate et al. 2004), and almost half

of these are known to include an insertion.

Another 1725 contigs, encompassing 630 kb, appear to con-

tain novel sequence, since no high-quality alignment to the three

human assemblies or the chimpanzee genome could be deter-

mined. Only 22% of these could be aligned (with a minimum 90%

identity spanning at least 50% of the contig) to either the orang-

utan genome (ftp://genome.wustl.edu/pub/organism/Primates/

Pongo_pygmaeus_abelii) or the rhesus macaque genome (Rhesus

Macaque Genome Sequencing and Analysis Consortium et al.

2007). The remaining 16,684 contigs have partial alignments to

the human or chimpanzee genomes, but do not meet our criteria

as correctly assembled contigs.

Comparison of short read assemblers

To provide context to the performance of ABySS, we performed

a comparison with previously published short read assemblers. We

used a data set consisting of 20.8 million paired-end 36 bp Illu-

mina reads from a 200 bp insert E. coli library (NCBI Short

Read Archive, accession no. SRX000429). We performed assem-

blies with ABySS, Velvet (Zerbino and Birney 2008), EULER-SR

(Chaisson and Pevzner 2008), SSAKE (Warren et al. 2007), and

Edena (Hernandez et al. 2008). All assemblers were run in paired-

end mode with the exception of Edena, which does not support

the use of paired-end information in contig construction. Velvet

generates scaffolds by joining contigs with a series of ‘‘N’’ bases.

The scaffolds were split at these junctions into their constituent

contigs for analysis. Contigs aligning to the reference genome

with fewer than five consecutive base mismatches at the termini

and at least 95% identity were considered to be correct. A sum-

mary of the assembly comparison is presented in Table 4. All the

assemblers were able to accurately reconstruct the majority of the

E. coli genome with contigs $100 bp. However, there is a wide

range in terms of contig size and accuracy. ABySSs performance is

competitive with the other short read assemblers.

Discussion
We report here on ABySS, a parallel sequence assembler. With the

novel distributed de Bruijn graph approach in ABySS, we are able

to parallelize the assembly of billions of short reads over a cluster

of commodity hardware. This method allows us to cost effectively

increase the amount of memory available to the assembly process,

which can scale up to handle genomes of virtually any size. We

have used ABySS to assemble billions of short reads from a human

resequencing project. While our initial results are promising, the

field of de novo assembly of short reads—especially from mam-

malian genomes—is still rapidly developing. Improvements to

both the underlying sequencing platforms and the assembly

algorithms will help increase the quality and utility of the result-

ing assemblies. The next generation sequencing platforms are

continuing to achieve longer read lengths. This will allow a larger

k-mer size to be used, which will improve the assemblies by re-

ducing the number of spurious overlaps and consequently de-

creasing the complexity of the de Bruijn graph. Paired-end

sequencing from longer inserts will be critical to increasing the

contiguity of mammalian assemblies as long repeat regions are

a significant barrier to contig growth. New assembly techniques,

such as a hybrid assembly using the high coverage read depth

provided by the Illumina platform with the longer GS FLX reads, is

also a promising avenue for improving the contiguity of the as-

sembly and resolving repetitive regions.

Unlike alignment-based approaches for analyzing short

reads, a de novo assembly allows direct identification and precise

localization of insertions and deletions relative to the human

reference genome sequence, in addition to identifying novel se-

quence. From our short read assembly of a single individual, we

have identified ;8.9 Mb of sequence not represented in the hu-

man reference assembly, 2.4 Mb of which is also not present in the

alternate human assemblies. We believe this unbiased approach

will lead to substantial insights into the variation present in hu-

man genomes, especially in cases where significant variation is

anticipated, such as tumor genomes. ABySS will be particularly

useful when sequencing organisms for which no reference se-

quence is available.

Methods

Overview
A de Bruijn graph data structure, as first proposed by Pevzner et al.
(2001) and subsequently refined by Chaisson and Pevzner (2008),

Table 4. Comparison of assemblies of E. coli K12 MG1655 short read data

Assembler
Contigs $100

bp
Mean size

(bp) N50 (bp)
Largest

contig (bp)
Genome

coverage (%)
Number of incorrect contigs

(mean size, bp)

ABySS 233 20,258 45,362 173,852 99.44 13 (33,252)
Velvet 286 15,910 54,359 164,194 98.81 9 (52,356)
EULER-SR 216 21,074 57,497 174,041 99.76 26 (37,863)
SSAKE 931 4906 11,450 50,668 99.99 38 (5881)
Edena 680 6687 16,430 67,082 99.08 6 (13,270)

For each assembly, only contigs $100 bp in length were considered. Genome coverage is based on alignments with at least 95% identity to the reference
genome (see Methods).

Figure 1. Distribution of insertion and deletion sizes, up to 1000 bp,
plotted using a logarithmic scale. There is a pronounced deletion peak
around 320 bp, which corresponds to the Alu family of retrotransposons.

Simpson et al.
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and Zerbino and Birney (2008), is used as the basis of our assem-
bler. A de Bruijn graph is a directed graph that compactly repre-
sents a homogeneous overlap between sequences. The de Bruijn
graph is constructed by creating a vertex for every sequence of
length k (referred to as a k-mer) in the data set and joining vertices
with an edge when they overlap by k-1 bases. The assembly pro-
cess can then be seen as merging nodes of the graph when they
are unambiguously connected. Prior to the concatenation of
nodes however, the graph must be cleaned of vertices and edges
created by sequencing errors. We have developed a similar process
to EULER-SR (Chaisson and Pevzner 2008), Velvet (Zerbino and
Birney 2008), and Edena (Hernandez et al. 2008) to handle read
errors. First, short ‘‘dead-end’’ branches are removed by the algo-
rithm. More complex errors that form small, divergent bubbles in
the graph are then removed and recorded in a subsequent step. We
iterate over these two error removal steps to correct read errors that
are in close proximity. We have parallelized these processes to al-
low our assembler to efficiently scale with genome size.

Distributed de Bruijn graph

At the core of the assembly algorithm is our unique representation
of a de Bruijn graph. In this representation, adjacent sequences
need not be physically located on the same computer, allowing us
to distribute the sequences over a cluster of computer nodes. To
distribute the de Bruijn graph over a network of computers we
need to address two issues. First, the location of a given k-mer must
be deterministically and efficiently computable from the sequence
of the k-mer. Second, the adjacency information between k-mers
must be stored in a manner that is independent of the actual lo-
cation of the k-mer.

The location of each k-mer is computed with a simple hash-
ing function. A numerical value {0, 1, 2, 3} is assigned to bases {A,
C, G, T} to calculate the base-4 representation of a given k-mer. A
hash value is then computed from this numerical value. We apply
the same procedure on the reverse complement of the sequence,
and combine the two values by the XOR operation on their bit
representations. This value, modulus the number of nodes, K, is
the index used to assign the k-mer to one of the nodes. Since the
XOR operation is commutative, the assignment is invariant under
reverse complementation. To take advantage of this distributed
representation, it is desirable to evenly distribute the set of all
possible k-mers over the number of available nodes, to the extent
possible by the hash function used.

To store the adjacency information between k-mers we have
developed a compact representation of the edges. A single k-mer,
or vertex, can have up to eight edges—one for every possible one-
base extension, {A, C, G, T}, in either direction. This information
can be efficiently stored in 8 bits per k-mer, where one bit repre-
sents the presence or absence of each edge. The adjacent k-mers are
easily generated from this information and their cluster locations
can be deterministically computed by the method described
above.

Implementation

ABySS is implemented in C++ and uses the MPI (Message Passing
Interface) protocol for communication between nodes. For the
internal hash tables, the Google sparse hash library (http://code.
google.com/p/google-sparsehash/) is used. Sequences are hashed
using the function developed by B. Jenkins (http://burtleburtle.
net/bob/c/lookup3.c). The latency and bandwidth of the cluster
network can have a significant impact on the performance of
a parallel application and require special consideration. To miti-
gate the latency of the communications link, a nonblocking

communications model is used. Each communications message is
given a unique identifier. The sending process does not wait for an
immediate response, but rather saves the current state of the op-
eration, keyed by the message ID, and continues to process other
operations. When a response is received for a particular message,
the saved state information is retrieved by using the message ID
and the original task continues. This system allows many simul-
taneous operations on each cluster node, effectively hiding the
latency of the network link. As the messages passed between
cluster nodes tend to be very short, the messages are collected into
larger, 1 kB packets to minimize the impact of communication
overhead.

Assembly algorithm

The assembly is performed in two major steps. First, without using
the paired-end information, contigs are extended until either they
cannot be unambiguously extended or come to a blunt end due to
a lack of coverage. In the second step the paired-end information is
used to resolve ambiguities and merge contigs.

Building the graph

The data are first loaded into the distributed de Bruijn graph,
during which any sequences with unknown bases (‘‘N’’ or ‘‘.’’ for
the Illumina reads) are discarded. Each input sequence l-mer is
broken into (l � k + 1) overlapping k-mers by sliding a window of
length k along the input sequence. The cluster node index of the
k-mer is computed and the k-mer is assigned to this node for
storage in a hash table. As a given sequence and its reverse com-
plement are considered to be equivalent, a sequence is not added
to the hash table if the reverse complement of the sequence is
already present.

Once the k-mers have been loaded into the distributed de
Bruijn graph, the adjacency of the k-mers is computed. For each
k-mer in the sequence collection a message is sent to its eight
possible neighbors. If the neighbor exists there must be a k-1
overlap with the originating k-mer and the adjacency information
is set accordingly.

Read errors

Before merging vertices into contigs, the graph must be cleaned of
vertices and edges created by sequencing errors. The most preva-
lent structure caused by sequencing errors is a ‘‘dead-end’’ branch,
formed by reads that are a mixture of correct and incorrect k-mers.
The correct k-mers of a read connect the incorrect k-mers of the
read to the canonical portion of the graph. As incorrect sequences
are likely to be unique and most will not have an extension, one
end of the branch will terminate with no extension (see Supple-
mental Fig. 3). To eliminate these structures, branches that contain
a dead-end are identified, traced backward until a point of ambi-
guity is reached, and if the branch is shorter than a threshold
length, it is removed from the graph. This process is applied iter-
atively, increasing the threshold length at each step to remove
longer branches that were uncovered by the removal of shorter
branches. The branch removal algorithm is sensitive to the choice
of the k-mer parameter. If the k-mer parameter is too high, the
sequence graph will be broken in many places and it will be dif-
ficult to determine if a dead-end branch arises from a read error or
from a lack of k-mer coverage. In the latter case, a correct sequence
may be removed from the graph resulting in shorter contigs. For
further information regarding the choice of the k-mer parameter,
see the Supplemental material.
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In rare cases, coincident read errors can cause a false branch
that is joined on both sides to the canonical portion of the de
Bruijn graph. These cases appear in the graph as a path divergence
at a single location that converges after k nodes (referred to as
a bubble; see Supplemental Fig. 4). This structure also occurs as
a result of single nucleotide differences representing allelic varia-
tion in a diploid genome or nearly perfect duplicated sequences.
By removing such bubbles, contigs can be unambiguously ex-
tended further. To remove the bubbles, each point of divergence is
found in the graph. Each path from the point of divergence is
traced forward looking for the paths to join after n nodes, where
k # n # 2k. If the paths join, the path with lower read coverage
is removed and all the paths are stored in a log file.

Bubbles in the sequence graph can also form from highly
similar repetitive regions in the genome. In these cases the bubble
removal algorithm will simplify the repeat to a single sequence.
This effect can be seen in the perfect simulation where ;5% of
contigs contained mismatched bases resulting from over-
simplification of the graph. As the removed path is stored in a log
file, it is possible to recover this information after the assembly is
complete.

Vertex merging

The final step in the first phase of the assembly is to merge vertices
linked by unambiguous edges. To do this, ambiguous edges are
removed from the graph, and the vertices are then merged by the
remaining unambiguous edges, creating the initial contigs.

Contig merging using paired-end information

The second phase of the assembly uses the paired-end in-
formation, if available, to resolve ambiguities between contigs.
The paired-end information is used to identify contigs that can be
linked together. The reads are aligned to the initial contigs to
create a set of linked contigs, which is filtered to remove erroneous
links caused by mispaired or misaligned reads. Two contigs are
considered to be linked if at least p pairs (by default p = 5) join the
contigs. For each contig Ci, the set of contigs Pi is generated from
the list of contigs that are paired to Ci. A graph search is then
performed to look for a single unique path (a sequence of contigs)
from Ci through the de Bruijn graph, that visits each contig in Pi.
As the de Bruijn graph can be extremely dense in repetitive areas,
we use a heuristic rule to limit the number of vertices visited in the
search and hence keep an upper limit on the computational cost
to perform this search. Prior to the search, we infer a distance
between Ci and each contig in Pi using a maximum likelihood
estimator based on the read pairs aligned to the contigs (see Sup-
plemental material). By constraining the search by these distance
estimates, we can cull entire branches of the search tree when it
can no longer yield a valid solution. This process is repeated for
each contig Ci and the final step stitches together the consistent
paths to generate the contigs of the final assembly.

Assembly analysis

For all data sets, only contigs $100 bp in length were evaluated.
Contigs aligning to the reference genome with fewer than five
consecutive base mismatches at the termini and at least 95%
identity are considered to be correct, except in the case where an
alignment contains a gap greater than 50 kb.

The contigs from the simulated data set were aligned to the
reference human genome (NCBI Build 36.1). Contigs assembled
from experimental data were initially screened for Epstein-Barr
virus (EBV) genomic sequences, which were used to establish the

NA18507 cell line, using a BLASTN (Zhang et al. 2000) search
against a local database consisting of two EBV strains (GenBank
accession nos. AJ507799 and DQ279927) (Deininger et al. 1982;
Dolan et al. 2006). The remaining contigs were then aligned to the
human reference genome (NCBI Build 36.1) using Exonerate 2.0.0
(Slater and Birney 2005). These contigs were also aligned to HuRef
(Levy et al. 2007) and the chimpanzee genome (Chimpanzee Se-
quencing and Analysis Consortium 2005) (sequence downloaded
from UCSC; http://hgdownload.cse.ucsc.edu/downloads.html#
chimp panTro2 assembly). Contigs that did not align to the ref-
erence human genome were aligned to the Celera assembly
(Venter et al. 2001). The Celera assembly is composed of DNA
sequences from five individuals, primarily from J.C. Venter (Levy
et al. 2007). Although HuRef is an improvement of the Celera
genome in terms of the number of sequence gaps and bases as-
sembled overall (Levy et al. 2007), HuRef represents a single in-
dividual and thus we are still able to identify contigs that align to
the Celera assembly and not HuRef. The NCBI Blast server has
additional unassigned sequences from Celera. The contigs were
aligned by BLAST using ‘‘blastcl3’’ (ftp://ftp.ncbi.nlm.nih.gov/
blast/executables/LATEST/), a BLAST client.

The UCSC ‘‘liftOver’’ tool (Karolchik et al. 2008) was used to
map the human coordinates of partially or poorly aligning contigs
to orthologous regions in the chimp genome (McConkey 2004). If
a contig aligns full length or near full length to the chimpanzee
genome, and the converted coordinates of the alignment to the
human genome were found to map within this orthologous re-
gion, the contig was considered to contain a sequence insertion
site. Where the span of the alignment to chimpanzee was >20 bp
longer than the alignment to the human reference genome (true
for 246 contigs) we were able to identify the location of the in-
sertion site. This was determined from the human genome
alignment by taking the coordinate proximal to the unaligned
novel sequence. For 858 contigs, the difference in the span of the
alignments between human and chimp is #20 bp, and for 96
contigs we were unable to determine the precise insertion point
due to difficulty in converting alignment coordinates between the
human reference and the chimpanzee reference.

Structural variation

Insertions and deletions were identified from alignment of the
assembled contigs to the human reference genome (NCBI Build
36.1). Only contigs considered correct (as outlined in Assembly
Analysis above) were used. Insertions and deletions were identified
by parsing gapped Exonerate alignments. In some cases, Exonerate
alignments are split into two alignments when an alignment gap
is flanked by the exact sequence at either end. These broken
alignments were ‘‘stitched’’ together to form a single alignment
with a large gap, allowing us to identify contigs with large inser-
tions or deletions.

Escherichia coli K12 assembly and analysis

E. coli K12 substrain MG1655 Illumina reads were downloaded
from the NCBI short read archive (accession no. SRX000429) and
assembled with ABySS, Velvet, SSAKE, EULER-SR, and Edena. For
each assembler, the assembly parameters were tuned to provide
the highest value of N50. The version number for each assembler,
and the parameters used in the assembly, are given in the Sup-
plemental material. The contigs from the assemblies were aligned
to the E. coli K12 MG1655 reference genome (RefSeq accession no.
NC_000913). The criteria stated above in Assembly Analysis were
used to evaluate the contigs from various assemblers and classify
a contig as correct. Since rearrangements are not expected, contigs
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with broken alignments were not considered to be correct in this
case. Genomic coverage was calculated from full-length, partial,
and broken alignments with at least 95% identity to the reference
genome. Contigs that aligned with less than 95% identity were
considered to be incorrect.

Additional methods

Further details of the assembly algorithm and analysis can be
found in the Supplemental material.

Software availability

Software binaries and instructions are available at http://www.
bcgsc.ca/platform/bioinfo/software/abyss.
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