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No single experimental method can discover all connections in the interactome. A computational approach can help by
integrating data from multiple, often unrelated, proteomics and genomics pipelines. Reconstructing global networks of
functional coupling (FC) faces the challenges of scale and heterogeneity—how to efficiently integrate huge amounts of
diverse data from multiple organisms, yet ensuring high accuracy. We developed FunCoup, an optimized Bayesian
framework, to resolve these issues. Because interactomes comprise functional coupling of many types, FunCoup annotates
network edges with confidence scores in support of different kinds of interactions: physical interaction, protein complex
member, metabolic, or signaling link. This capability boosted overall accuracy. On the whole, the constructed framework
was comprehensively tested to optimize the overall confidence and ensure seamless, automated incorporation of new data
sets of heterogeneous types. Using over 50 data sets in seven organisms and extensively transferring information between
orthologs, FunCoup predicted global networks in eight eukaryotes. For the Ciona intestinalis network, only orthologous
information was used, and it recovered a significant number of experimental facts. FunCoup predictions were validated
on independent cancer mutation data. We show how FunCoup can be used for discovering candidate members of the
Parkinson and Alzheimer pathways. Cross-species pathway conservation analysis provided further support to these
observations.

[Supplemental material is available online at www.genome.org. FunCoup is freely available for download and query at
http://funcoup.sbc.su.se.]

The high-throughput functional analysis of genes and proteins is

producing vast data resources that, if integrated into interaction

networks, will be key to unraveling the function of all genes in an

organism (Sonnhammer 2005). While no single data set provides

enough confidence and coverage, much experimental evidence

from, e.g., protein–protein interactions (PPIs) and mRNA coex-

pression (MEX) have been integrated into interaction networks in

such organisms as Saccharomyces cerevisiae, Caenorhabditis elegans,

and Homo sapiens (Jansen et al. 2003; Troyanskaya et al. 2003;

Bader et al. 2004; Lee et al. 2004; Li et al. 2004; Beyer et al. 2007).

Srinivasan et al. (2006) also used sequence-derived interaction

evidence such as correlated evolution/inheritance and chromo-

somal colocation to integrate interaction networks in 11 microbes.

However, as of today, using data from one organism alone is

insufficient to reconstruct its interaction networks completely. It

is possible to expand the data pool by transferring functional in-

formation between species via homologs (Hahn et al. 2005; von

Mering et al. 2005) or orthologs (Matthews et al. 2001; Rhodes

et al. 2005; Hulsen et al. 2006; Zhong and Sternberg 2006).

Furthermore, functional coupling (FC) between two proteins

can have several guises: direct physical interaction (PI), protein

complex members (CM), links in metabolic pathways (ML), or

links in regulatory/signaling pathways (SL).

The data integration is thus multidimensional—using mul-

tiple evidence types from multiple species for predicting multiple

classes of links. This puts high demands on the process, in terms

of both computation and automatic parameter optimization for

each new data set. It is thus necessary to develop a universal, fast,

and sustainable methodology in order to discover functional

connections in many eukaryotic organisms at the global scale.

To achieve this, we adopted the naı̈ve Bayesian network

framework (NBN) and advanced many procedures for super-

vised NBN training in order to make it optimally suited for data

integration in FC network reconstruction. The innovations

concerned significance testing, continuous score discretization,

orthologous evidence usage, and phylogenetic profiling. A major

challenge was to efficiently use data not originally produced for

FC discovery. Particular attention was given to data transfer be-

tween species via orthologs—the best way to enrich sparse data

sources (Rhodes et al. 2005; Hulsen et al. 2006).

These advancements allowed us to efficiently reconstruct

comprehensive FC networks for eight of the most important

eukaryotes: human, mouse, rat, fly, worm, yeast, Arabidopsis

thaliana, and Ciona intestinalis. For these species, they are the

largest reconstructed interactomes to date. For C. intestinalis, we

managed to reconstruct a network in absence of any own large-

scale data sets, by transferring such information from coupled

orthologs only. We here present both the method and the result-

ing FunCoup database for discovery and analysis of FC in gene

networks. To demonstrate the usefulness of network analysis in

FunCoup, we applied it to discover new candidate members of

important pathways, including those for Alzheimer’s (AD) and

Parkinson’s (PD) diseases.

Results

Data integration

The flow of the data integration process in FunCoup is outlined in

Figure 1. To infer FC between gene pairs, we collected large-scale

data of a number of different types: MEX, phylogenetic profile

similarity (PHP), PPI, subcellular colocalization (SCL), protein
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coexpression (PEX), shared transcription factor binding (TFB), co-

miRNA regulation by shared miRNA targeting (MIR), and domain

associations (DOM).

The following types of data are most abundantly available for

human and the most important eukaryotic model organisms: Mus

musculus (mouse), Rattus norvegicus (rat), Drosophila melanogaster

(fly), C. elegans (worm), S. cerevisiae (yeast), and A. thaliana

(Arabidopsis). In total, 51 data sets were collected for these spe-

cies (see Fig. 1, Supplemental Table 1) (http://FunCoup.sbc.su.se/

statistics_1.1.html). To avoid direct data redundancy, we made

sure that the same piece of experimental information would never

appear in different sets.

For each data type, we either adopted,

optimized, or invented a metric to reflect

the support for FC between gene pairs

(Supplemental Methods). Examples of

such metrics are the Pearson correlation

coefficient (used for MEX), weighted

mutual information (SCL), and a new

probabilistic score accounting for multi-

ple experimental reports of the same

interaction (PPI). This score extracts ad-

ditional FC evidence from so-called prey–

prey interactions (i.e., pairs of proteins

coupled indirectly via the bait), which

significantly augmented available raw

PPI input (Supplemental Table 6). We

constructed a novel phylogenetic profile

metric based on ortholog conservation in

eukaryotes, which has not been done

successfully before (Snitkin et al. 2006).

We compiled FC class–specific gold

standard training sets (TSs) of protein–

protein pairs known to belong to the re-

spective kind of coupling. In preliminary

training/prediction tests, we successfully

predicted links of respective classes by

integrating input data of the same collec-

tion. However, contribution to the pre-

diction of FC classes differed across input

sets. For example, mRNA coexpression

usually delivered more information on

CM, and experimentally reported inter-

actions were usually more important for

SL than ML. (see Fig. 3, below).

The NBN was trained using TS of

four FC classes and input data sets from

seven organisms (Fig. 1). First, our novel

discretization algorithm split each con-

tinuous metric’s range into optimally

defined bins for each combination of

species, input data set, and TS. Then, the

TS was used to assign probabilistic scores

(likelihood ratios) to each bin. They were

calculated by dividing the evidence oc-

currence in the positive TS with its

background frequency. We predicted FC

for every gene pair within a species by

summing up the log likelihood ratios of

their input data. This summary score, or

final Bayesian score (FBS), reflects the

overall chance of being functionally

coupled. However to render the coupling score intuitively clear,

we converted it to a probabilistic confidence value, pfc, ranging

from 0 to 1 (Methods).

Each TS produced a separate prediction model. These dedi-

cated models enabled overall accuracy improvement (Supple-

mental Table 2) and helped to reveal the nature of a predicted

link. Supplemental Figure 9 shows that the predicted class agrees

well with the GO functional annotation (Gene Ontology Con-

sortium 2000). Figure 2 illustrates how FunCoup integrates mul-

tiple evidences, and how this leads to substantially increased

confidence in the FC. Expectedly, the classes were not mu-

tually exclusive. For example, protein kinases often produced

Figure 1. Outline of the FunCoup network reconstruction process. Amounts of input data and sizes
of training sets are shown for each species in FunCoup version 1.0. Input data are as follows: MEX,
mRNA coexpression; PHP, phylogenetic profile similarity; PPI, protein–protein interactions; SCL, sub-
cellular colocalization; TFB, shared transcription factor binding; PEX, protein coexpression: MIR, miRNA
targeting of transcripts; and DOM, domain associations. Training sets are as follows: ML, links between
proteins from the same metabolic pathways; SL, links between proteins from the same signaling
pathways; PI, experimentally observed protein–protein interactions; and CM, pairs of protein-members
of the same complex. The Bayesian framework processes the input data using the training sets. The
input datapoints are converted into raw interaction scores, which are grouped into discrete regions.
Each such bin is assigned an FC score using the training sets. The ‘‘cards’’ illustrate the results of this
process, showing the raw interaction score along the horizontal axis. For each training set, or functional
class, the resulting bins are shown as colored rectangles: (green) positive evidence of FC; (white) either
close to neutral or insignificant; (red) negative evidence of FC. Finally, the FC scores are calculated for all
possible gene pairs in each species. For brevity, the predicted links of different functional classes have
been combined into one network per species.
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high scores for both PI and SL links. We did not aim at a unique

classification and stored all scores above FBS = 3, which consti-

tuted overall ;1% of the processed gene–gene pairs (This fraction

varies per species and functional class and can be derived from the

detailed online statistics page under ‘‘Release notes’’ at http://

FunCoup.sbc.su.se).

How much evidence was contributed from other species and

from different input data types? As shown in Figure 3, mouse,

human, and yeast were most influential. Strikingly, without

exception the majority of the evidence came from other

species, indicating the great value of transferring FC data between

organisms. Even counting the links’ unique origin (according to

the criteria in Supplemental Table 7), more links came from

other species than from the same in all cases but yeast. Among

the input data types, mRNA coexpression played a dominat-

ing role, followed by phylogenetic profiles, PPI, and subcellular

localization.

Optimizing NBN performance

To find the optimal combination of parameters and procedures

and to make the framework universally applicable, the impact of

the introduced features was tested statistically. As the influence of

algorithmic details was often data set, species, and FC class spe-

cific, we only accepted modifications that significantly improved

the overall performance. This was verified under holdout cross-

validation in ANOVA experimental designs, always examining

three to five species and usually two FC classes.

A problem with classical Bayesian predictors is the lack of

a significance criterion, which can lead to nonzero likelihood ra-

tios even in the absence of significant support by the data. We

devised a simple significance test to ensure that this does not

happen, which noticeably increased the performance (Supple-

mental Methods).

The NBN receives the input data in a discrete form, which is

very practical if the likelihood of FC is irregularly distributed over

the evidence data (Supplemental Fig. 1). To optimally discretize

Figure 2. Example of predicting functional coupling (FC) by Fun-
Coup’s naı̈ve Bayesian network. To evaluate the cumulative likelihood of
the link CDC2–KPNB1, evidence (only nine shown) from a number of
species were available. The metrics computed from each evidence were
scored by the four models of FC and summed up to a total likelihood
value, the final Bayesian score (FBS). In this example, a physical protein
interaction (FC-PI) is more likely than membership in the same protein
complex (FC-CM), a metabolic (FC-ML), or a signaling (FC-SL) link. The
web interface to the database of predictions (http://FunCoup.sbc.su.se)
displays likelihoods of the FC classes as four colored lines with FBS
values transformed into the pfc confidence scores. This coupling was sup-
ported by many evidences from several species (top). The strongest came
from the IntAct database that reported two experiments (Thelemann
et al. 2005; Koch et al. 2007) where CDC2 and KPNB1 were mentioned
as preys interacting with the same bait (in parallel with 219 and 68
other proteins, respectively). On its own, this is rather weak and would
only yield pfc = 0.35 to prove a physical interaction (FBS = 6.3). However,
combined with other evidence such as coexpression in human
and mouse, the score was substantially strengthened (FBS = 11.2; pfc =
0.98). Note that the website can also display the coupling in terms
of the individual evidence or species contributions. (MEX) mRNA
expression; (SLC) subcellular localization; (PPI) known protein–protein
interaction; (PLC) Pearson’s linear correlation coefficient; (WMI)
weighted mutual information score; and PPI score. See Supplemental
Methods.

Figure 3. Relative evidence contribution to FunCoup networks viewed
by input data type (A) or species (B). For each evidence category in each
species and FC class, we calculated the sum of its contributions to the final
Bayesian score (FBS) over the whole predicted network, i.e., the set of
links with FBS > 3. Then, these sums were normalized by dividing with the
sum of FBS scores over the same set. Note that no input data from Ciona
was used. Data-type legends as in Figure 1.

Global networks of functional coupling
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continuous data, we developed a new dynamic algorithm that is

substantially superior to the flat binning (Supplemental Fig. 2). We

defined optimal bin borders by comparing the frequencies of

positive versus background examples in different score regions.

This follows the approach of Butterworth et al. (2004) but avoids

a laborious preliminary adjustment of parameters.

One of the most important contributions to infer FC came

from orthologs in other species. We used orthologs defined by

Inparanoid (Berglund et al. 2007), which has been shown to be

most accurate for identifying functional counterparts (Hulsen

et al. 2006). Nonetheless, the transfer can be done in many ways

in case of multiple co-orthologs (inparalogs) stemming from

species-specific gene duplication, which is commonplace in

eukaryotes. As shown in Figure 4, the FC may evolve in different

ways after the duplication. On one extreme, the interaction is

limited to single inparalogs, while on the other extreme, all

inparalogs may interact. By benchmarking alternative methods for

using orthologs, we found that the best results are achieved by

treating all alternative inparalog pairs from the same cluster

equally and by using the best FC score among them (Supplemental

Fig. 3). In other words, interactions are generally not considered

specific to one gene copy after a duplication. However, after

integrating all available FC data, from the same (or a closely re-

lated) species, a particular gene pair may receive much higher

confidence.

Independent validation tests

We developed and tested FunCoup under hold-out cross-

validation (Supplemental Methods). However, the procedure

employed data from the same sources for both training and test-

ing, and thus might have involved higher order train/test de-

pendencies. Looking for an independent proof of the predicted

link’s validity, we selected published research articles where

investigators presented local, relatively compact subnetworks re-

lated to signaling or regulatory processes.

It was of great interest to reconstruct gene networks in

organisms that themselves lack interaction data. FunCoup was

particularly well suited to this task because of the integrated

transfer of FC via orthologs. To demonstrate this ability, we gen-

erated a network in C. intestinalis, for which no large proteo-

mics or genomics data set is yet available. As a positive TS, we

used pathway members inferred via orthology. The input data

came from the seven eukaryotes listed above, and the resulting

Ciona network contained 38,445 links with a confidence

pfc > 0.5, connecting 2683 genes. To validate the predicted

Ciona network, we compared it to the ‘‘regulatory blueprint for a

chordate embryo’’ (Imai et al. 2006). This is a set of 226 ex-

perimentally established functional links (mostly regulatory) be-

tween 80 genes in the ascidian embryo, referred to as the ‘‘RBP’’

network.

We expected to only recover a small fraction of RBP be-

cause regulatory links are indirect and very hard to find, and

FunCoup was not specifically trained to find such links. Despite

this, FunCoup recovered 22 (at pfc > 0.05) of the maximum

achievable 116 RBP links between the 54 RBP genes in the

reconstructed FunCoup network. The true discovery rate (TDR)

was actually much higher than 5% (Supplemental materials). In

total, the 54 RBP genes were interconnected by 180 links, which is

significantly higher (P0 < 10�8) than expected by chance (39.5

links are expected for 54 randomly chosen genes in the recon-

structed network).

FunCoup also identified many novel links to Ciona RBP. At

pfc > 0.5, 350 new genes were coupled to RBP, and 30 of these

had >30% of the evidence from both vertebrates and inverte-

brates, representing an evolutionarily well-supported set of novel

Figure 4. Scenarios for interaction inheritance. (A) Interacting genes A
and B in an ancestral species are duplicated into two and three genes in
species 1, while B is duplicated into two genes in species 2. These du-
plicated genes are clusters of inparalogs in relation to the other species,
meaning that they are co-orthologous to the corresponding A and B
genes in that species. When transferring functional coupling (arrow
marked FC) between orthologs, one can consider the interaction either to
be valid for all inparalogs in a cluster, or to be specific for a particular
inparalog pair (e.g., the seed orthologs, i.e., the two most similar ones,
dotted arrows). The transfer of interaction information thus can either be
done from an arbitrary inparalog in a cluster, which maximizes the cov-
erage, or only be transferred between, e.g., seed orthologs. Bench-
marking showed that transferring the best interaction in a set of
inparalogs to all inparalogs in the other species yields the best results
(Supplemental Material). (B) Real example of this situation: An interaction
in fly ptc–babo (Shyamala and Bhat 2002) can either be considered to be
valid for all six pairs of mouse inparalogs {Ptch1, Ptch2} vs. {Tgfbr1, Acvr1b,
Acvr1c} or to be specific for a particular inparalog pair. Seed orthologs in
this case are ptc/Ptch1 and babo/Tgfbr1. The two fly genes are connected
with solid arrows; the others are mouse genes. The arrow denotes the
known protein–protein interaction between ptc and babo. The leaves of
the gene trees present protein domain architectures.
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genes in this pathway. Functions in this group included G

proteins, GPCRs, protein kinases, phosphatases, etc., i.e., signaling

proteins. Most of the novel genes were coupled to c-Jun (MAPK10),

emphasizing its importance during embryonic development

(Supplemental Fig. 4A).

The relatively low FunCoup sensitivity to RBP links emphasizes

the elusive nature of the regulatory links related to embryonic de-

velopment. In fact, they are equally hard to find in the better studied

eukaryotes. For comparison, we took a set of ‘‘core transcriptional

circuitry in human embryonic stem cells’’ (Boyer et al. 2005). It

yielded a similar ratio: FunCoup recovered seven out of 82 regula-

tory links shown in the study (Supplemental Fig. 4B). Hence for this

context, links predicted in Ciona had competitive confidence.

As a contrast, sensitivity of the FunCoup predictor to cancer-

related pathways turned out to be very high. Such circuits are based

on PPIs and complexes produced by GTPases, kinases, and DNA

binding/processing proteins, and FunCoup abounded in re-

spective input data. As a test set, we considered a map of three

critical signaling pathways in the development of glioblastoma

released by The Cancer Genome Atlas Research Network (2008).

Figure 5 in that article depicted mutationally vulnerable segments

of RTK/RAS/PI(3)K, p53, and RB pathways. Querying FunCoup

with the listed genes retrieved 29 links from this map and only

missed seven (Supplemental Fig. 4C). Twenty-five more FunCoup

links between the mapped genes were not drawn by the TCGARN

investigators but may be true novel links relevant to either cancer

or normal biology. In total, FunCoup predicted as many as 896

links (pfc > 0.5) between the pathway members and other, not

mapped, genes.

We also wanted to validate FunCoup on a raw, independently

chosen, set of functionally related genes, in order to exclude any

possibility of overlap between the test set and FunCoup evidence.

For this purpose, we retrieved 145 somatic mutation lists, each

derived for an individual patient tumor sample of glioblastoma

multiforme from The Cancer Genome Atlas (TCGA). The muta-

tions were found and experimentally validated (genotype arrays,

PCR amplification, etc.) and made public according to TCGA

protocols (http://tcga.cancer.gov/about/index.asp). A gene list

from one tumor will generally contain two kinds of mutations:

drivers and passengers. The former drive the tumor toward ma-

lignancy, while the latter passively accumulate mutations due to

impaired DNA repair (Ding et al. 2008). One a priori expects the

driver genes to be functionally coupled to each other in a given

tumor, and passengers to not be. The nine sufficiently large (10 or

more genes) mutation lists were analyzed in FunCoup to examine

the connectivity. Six of these lists were significantly (P0 < 10�3)

enriched with internal connections compared to random net-

works. Thus, using completely raw and uncurated data sets,

relationships predicted by FunCoup were validated in a majority

of somatic mutation cases. Details are described in Supplemental

material, as well as an example network generated from a somatic

mutation list. Investigating subnetworks of patient mutation sets

with the help of FunCoup can be an important step toward in-

dividualized cancer treatment.

Apart from the successful validation on an orthogonal data

set, the test also confirmed that our formal pfc score was a very

conservative, lower-bound estimate of the TDR, i.e., the fraction

of true facts among the predictions. In reality, it was probably

much higher, e.g., in the TCGA-02-0114-01A-01W subnetwork

TDR = 0.51 at pfc > 0.02 and TDR = 0.59 at pfc > 0.25. Respec-

tively in the Ciona RBP case, TDR exceeded 0.20 at pfc > 0.05

(Supplemental materials).

Website

We created a web resource with networks for eight eukaryotic

species, from yeast to human: http://FunCoup.sbc.su.se. Large (up

to genome-wide) sets of interaction predictions are available for

download in CytoScape-compatible (Shannon et al. 2003) or XML

format. However, the user is typically interested in smaller sub-

networks around a set of query genes.

The user can control the subnetwork retrieval and thus its

information content. The evidence base can be limited to partic-

ular species or data types (e.g., ‘‘mammalian’’ or ‘‘coexpression’’

only). The query’s neighborhood can be specified by subnetwork

size, confidence threshold, network radius, and neighbor-search

algorithm.

The subnetwork is shown with a specially designed Java

applet jSquid (Klammer et al. 2008) that allows flexible user-

controlled rendering of the network graph, including node

grouping by pathway, organelle, or connectivity. Nodes are given

a shape and color according to functional categories. The results

are also shown as a table where the support from each evidence

data type or species is listed for each link. This decomposition of

link support is also possible in the network graph, whereby each

category is shown as a distinctly colored line. Each category can be

individually enabled/disabled, and the user can switch between

viewing evidence data type, evidence species, and predicted FC

class. Moreover, a subnetwork may be retrieved using only evi-

dence of particular types or species, e.g., simulating a pure PPI

network or a pure yeast network.

It is possible to add predefined gene groups from particular

functional categories (GO), diseases (OMIM), or pathways (KEGG)

to highlight a network context of interest. A multispecies view,

retrieved via orthologs, provides across-species network compar-

isons (Fig. 5).

Cross-species network analysis using FunCoup

We used FunCoup to investigate the protein network around

genes known to cause AD. Starting with human presenilin1 and

presenilin2 as queries, we asked for the subnetworks of func-

tionally coupled genes in human, mouse, and fly (Fig. 5A). The

subnetworks in the three species were strikingly similar, sharing

many of the known gamma-secretase associated proteins. In all

three species, we detected two genes that to our knowledge

have not previously been associated to AD. These were BET1

(SWISS-PROT O15155) and LFNG (SWISS-PROT Q8NES3). BET1

is a SNARE protein involved in the docking endoplasmic reticu-

lum vesicles with Golgi (Zhang et al. 1997), and LFNG is glucos-

aminyltransferase found in the Golgi membrane (Haines and

Irvine 2003). The FC between BET1, LFNG, and AD-related genes

is supported by data from all three species and by the fact

that gamma-secretase is also known to associate with Golgi.

The most prominent evidence data types linking BET1 and

LFNG were SCL and PPI, while no interaction class was clearly

favored.

FunCoup augmented our knowledge of PD. We started from

22 genes reported by Cooper et al. (2006) to be modifiers of alpha-

synuclein toxicity in a yeast model for PD. We queried FunCoup

for human genes that were coupled to both the PD pathway

(KEGG05020) and to orthologs of the yeast modifiers, and ana-

lyzed the corresponding human and yeast subnetworks (Fig. 5B).

This revealed 12 human genes that have not previously been as-

sociated with PD to our knowledge. Their functions include

vesicle trafficking, ubiquitination, and toxic substance removal,

Global networks of functional coupling
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all compatible with a role in the PD pathway. An example is the

metalloprotease YME1L1, whose best coupling (pfc = 0.97) is to

RAB1A, ortholog to one of the strongest yeast alpha-synuclein

modifiers, YPT1. Most of the evidence for this relationship comes

from mRNA coexpression in mouse. Interestingly, YME1L1 has

been reported to interact with presenilin (Pellegrini et al. 2001),

supporting a commonality between the

processes that lead to PD and AD (Suh

and Checler 2002).

Another example from Figure 5B is

the heat shock protein HSPA8. It had

many strong couplings to the subnetwork

(nine with pfc > 0.8). One of the strongest

( pfc = 0.99) is to PARK7, mostly inferred

from human mRNA coexpression. Fur-

ther support came from the fact that its

links to YME1L1 and ACTB were con-

served in yeast. We noted that RAB7A

(also known as RAB7), RAB11A, and

RAB11B were strongly coupled to the PD

pathway, even though the Cooper screen

only found evidence in the yeast model

for RAB1A and RAB1B. Yet the yeast

model may not capture all connections.

The five RAB genes were strongly inter-

connected in FunCoup; remarkably, they

all shared transcription factors targeting

their fly and plant orthologs.

Discussion
We have presented FunCoup, a general

method for integrating heterogeneous

data in order to reconstruct networks of

FC between genes. FunCoup introduces

prediction of multiple functional classes

in parallel, which boosts accuracy and

helps annotating of the nature of the

predicted interactions. Another crucial

feature of FunCoup is integration of in-

dividually weak pieces of evidence and

converting them into substantially high

confidence (Fig. 2).

The novel methods for adaptive

data discretization and likelihood score

assignment were indispensable for dif-

ferential FC class prediction from the

same data and enabled high performance

of the FC class-specific predictors (Sup-

plemental Fig. 9). The ability to make

different quantitative conclusions from

the same data was accumulated piecewise

from small differences between discrete

bins and their likelihood values (Fig. 1,

‘‘Bayesian framework’’). Often, different

TSs suggested different signs of log like-

lihood ratio; e.g., a negative correlation

of mRNA expression might have de-

livered positive evidence of SL but nega-

tive evidence of ML.

Negative evidence can indeed be

informative, e.g., protein localization in

different compartments (strongly negative), or uncorrelated ex-

pression (weakly negative). Systematic accounting for both posi-

tive and negative evidence is thus of great value for FunCoup.

Orthologous data, i.e., FC between orthologs of a given

gene pair, were treated as any other data source. This way, the

FC score of orthologous data depended on its performance on

Figure 5. (Legend on next page)
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the TSs in the target species. Despite reports of low conserva-

tion of PPIs between species (Mika and Rost 2006), we found

that the overlap nowadays is often substantial. For instance,

between the yeast IntAct set and the human high-confidence

TS, 431 of the 723 shared orthologous pairs have been observed

to interact in both species (including 363 with a higher PPI score,

i.e., >0.5).

Input data sets of eight major types were used to generate

comprehensive networks in eight eukaryotic species. Throughout

the framework, we have followed the principle of automatic pa-

rameter tuning to optimize the predictive power of each data

source. It is important for FunCoup as an ongoing project that

evidence is transferred between organisms to predict FC with

minimal human intervention yet ensuring high coverage and

quality. In principle, any kind of data can be accepted, continuous

or discrete, with either original or FunCoup-calculated pairwise

metrics. New data sources, TSs, and species can be easily added, as

their relevance to FC is estimated automatically.

How much can more data improve FunCoup’s performance?

We measured the accuracy as a function of adding model organ-

isms and data sources to the system in a random order for five

species and four evidence types. After addition of about 30 evi-

dence sources, not much improvement was seen (Supplemental

Fig. 5). In the yeast—an organism without close relatives in Fun-

Coup but with much own data––other species’ data sets had

a lower impact. Thus, the current data collection provides an

amount of information close to practical maximum. Of course,

new high-throughput platforms that cover significantly more

genes or entirely novel data types may breach the ‘‘ceiling’’ and

enable even higher accuracy.

Potentially, evidence from different sources, given the same

likelihood score, could differ in ‘‘quality.’’ We attempted to dis-

cover any potential bias and found that the ‘‘evidence quality’’ was

uniform across data types and species and was independent of

evidence magnitude (Supplemental Table 5). This analysis showed

that data of different types, or from different species, could be

added up in any proportion, yet the only factor that mattered

was the value of log likelihood ratio—in full agreement with the

NBN assumptions. Whether the main evidence came from a single

species, or was spread among two or more, did not matter as well.

Hence, for currently available genomics/proteomics data, the

Bayesian framework based on summing up likelihood ratio scores

is robust and practically unbiased. In other words, the FunCoup

data integration was overall correct and efficient on the hetero-

geneous, sparse, and noisy data landscape. We show that the

networks generated by FunCoup are scale-free (Barabasi and

Albert 1999) even at the lowest confidence level, which agrees

with the properties of so far known biological networks (Supple-

mental Fig. 11).

How different is FunCoup from STRING (von Mering et al.

2007)? The databases are built with different methodologies and

only partly the same input data. An important difference is the

treatment of orthologous data. To predict FC in species X with

evidence EM from a model species M, STRING evaluates likelihood

P(FC|EM) against training data in the same species M. In other

words, EM predicts FC in any other species with the same score,

although corrected for sequence dissimilarity. Thus, EM is trans-

ferred irrespective of its relevance to FC in X. On the contrary,

FunCoup already at the training stage finds orthologs of M in X

and evaluates P(FCX|EM) against TSs in X.

In terms of input data, STRING relies heavily on annotated

resources such as comembership in KEGG pathways. FunCoup

does not use curated data from, e.g., GO or KEGG as evidence

of FC, as we do not think that such knowledge should be re-

evaluated by the predictor, and chose to only use it for training

data sets and as add-on links shown on the website. Conversely,

six out of eight major FunCoup data types (PEX, MIR, TFB, DOM,

SCL, and the ortholog-based eukaryotic PHP) are not used in

STRING. Thus, both input data and their evaluation into scores

differ between STRING and FunCoup. The Spearman rank corre-

lation between scores of links found in both STRING and Fun-

Coup was 0.19. The highest-ranking links in both resources often

do not agree (10%–20% overlap). However, the most confident

FunCoup predictions are usually (e.g., close to 70% in the human

interactome) found, at some confidence, in STRING.

FunCoup represents an efficient large-scale multispecies

reconstruction of global gene networks from genomics and

proteomics data. As we illustrated with examples, the future

modus operandi of gene function discovery is to first search

a gene network resource such as FunCoup with genes of inter-

est. This will expand the set of new genes predicted to be func-

tionally coupled, which becomes a manageable subset of genes

to investigate experimentally for their role in the studied pro-

cess. By making the networks available via a powerful and user-

friendly website we enable biologists to accelerate discovery of

gene function.

Methods
The choice of statistical tool for in-
tegrating heterogeneous data depends on
many factors. From a wide range of pos-
sible approaches, such as discriminant
or regression analyses, support vector
machines, or neural networks (Hutten-
hower and Troyanskaya 2006; Qi et al.
2006), we chose the NBN because it, (1)
tolerates missing values well; (2) has been
successfully applied to genome-wide data
integration (e.g., Troyanskaya et al. 2003;
Lee et al. 2004; Rhodes et al. 2005) and
has been formally justified as optimal
under certain assumptions (Zhang 2004),
which hold in our case (Supplemental
Methods); and (3) gives straightforward

Figure 5. Comparative network analysis in FunCoup. (A) Subnetworks in human (middle), mouse
(top), and fly (left) were generated by submitting human presenilin 1 and 2 (PSEN1 and PSEN2) to
FunCoup, asking for one step of network expansion keeping the 20 strongest links with P > 0.5, and
inclusion of orthologous subnetworks in mouse and fly. At the lower right are two newly predicted
interactors of the gamma secretase complex, BET1 and LFNG. On the right, the color legend for the links
is shown in terms of evidence type. Species are indicated by gene symbol prefixes: has, human; mmu,
mouse; and dme, fly. Supplemental Figure 8 presents alternative views by species source or predicted
class. The jSquid XML source to this figure is available as supplementary file psen_lfng_bet.xml. (B)
Using FunCoup to identify novel candidate genes in Parkinson’s disease. We here employ orthologous
networks in human (left) and yeast (right, squares). Novel candidates were extracted by looking for
human genes that were coupled both to known PD genes and to orthologs of yeast alpha-synuclein
toxicity modifiers. This resulted in 12 novel candidate PD genes (red circles). PD and alpha-synuclein
toxicity modifier genes not connected to these 12 genes were omitted from the network for clarity.
Edge categories are shown in the figure. Node categories are as follows: (yellow) known human PD
genes from the pathway KEGG05020 (triangles) and their yeast orthologs (squares); (blue) yeast
modifiers of a-synuclein toxicity (squares) and their human orthologs (circles); (red) 12 novel human PD
candidate genes (circles) and their yeast orthologs (squares); and larger shapes labeled ‘‘collapsed,’’
grouped genes—inparalogs, except for UBE2 that represents four ubiquitin-conjugating enzymes with
similar molecular function. For details on how the subnetwork was generated, see Supplemental
Methods; for a large scale prospective of the presented subinteractome, see Supplemental Figure 10.
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and interpretable scores, which makes it attractive to both de-
veloper and end user.

Potential drawbacks of NBNs include addition of redundant
evidences and assignment of scores that are statistically in-
significant due to few data points. The redundancy problem, i.e.,
violation of the requirement of independence between input
data sets, is, however, not an issue for classification accuracy using
diverse and sparse data (Zhang 2004). To ensure confident as-
signment of scores, we applied a statistical test (Supplemental
Methods).

Training and input data sets

NBNs require training data sets with positive and negative exam-
ples, and the quality of these very much determine the resulting
performance. We compiled the positive, gold standard sets of the
four FC classes of interest (FC-PI, FC-ML, FC-SL, and FC-CM) from
IntAct (Kerrien et al. 2007), HPRD (Mishra et al. 2006), BIND
(Bader et al. 2003), KEGG (Kanehisa et al. 2002), and UniProt
(Boutet et al. 2007). For each class, a set of filtering criteria (Sup-
plemental Table 4) was applied to the raw data sets to extract
highly confident FCs.

In our case, the negative TS is very difficult to obtain, as one
cannot experimentally disprove an interaction. Several inves-
tigators have attempted to produce negative TSs by, e.g., selecting
proteins from different subcellular localizations (Jansen et al.
2003; Rhodes et al. 2005), membership in different pathways (Li
et al. 2004), or mismatching expression. However, none of these
criteria guarantees the absence of interaction, and they may in-
troduce a bias in the probabilistic space. Therefore, we used Bayes’
rule in such a way that it employs the background evidence
probability rather than using a negative set. The difference is ac-
tually small because only about 0.001 of the total gene pairs are
expected to be functionally coupled (assuming 2 3 105 inter-
actions of 2 3 108 possible in the human genome). A big advan-
tage with our approach is that the background reference sample
can always be made sufficiently large, which makes the training
less vulnerable to errors from small sample size.

The input data may come as pairs of proteins/genes with
a binary or continuous score (PPI, TFB, MIR), individual protein/
gene profiles (MEX, PEX, SCL), or annotation features for protein/
domain profiles (PHP, DOM). For all types, pairwise metrics were
calculated as described in Supplementary Methods. This is done
first with data from the same organism. Then the other organisms
are searched for orthologs, and if these are found for both genes,
orthologous data from other species are treated at separate input
data types. All homologous gene pairs were removed from the
training data sets.

Naı̈ve Bayesian network

The NBN is trained as follows. First, the discretization algorithm
finds the bins in each metric’s range that produce the highest
contrast in respect of FC (Supplemental Methods). In our frame-
work, we analyzed the set e of evidence features Ei 2 e to estimate
the integrated support for FC given all nonempty evidences.
Starting with an individual evidence, Ei, that falls in the bin j, the
probability that a particular gene pair is functionally coupled is
defined by Bayes’ rule

PðFC jEijÞ=
PðFCÞPðEij j FCÞ

PðEijÞ
: ð1Þ

The probabilities corresponding to four different FC classes are
here collapsed into one FC for brevity.

It is not possible to determine P(FC) exactly, but since this is
constant, we may leave it out. Thus, without losing predictive

efficiency, we integrate over all evidences by summing the loga-
rithms of the remaining ratio in order to obtain a simplified clas-
sifier called FBS:

FBSðeÞ= +
jej

i = 1

log
PðEij j FCÞ

PðEijÞ
; ð2Þ

where P(Eij | FC) is estimated from occurrence of Eij in the positive
TS. The background probabilities P(E) were estimated from the
general population of gene pairs. Only couplings with FBS > 3
were kept.

When summing log likelihood ratios to an FBS, there is
a potential danger that the particular combination of evidence
types could lead to overestimation of the FBS due to redundancy.
Using general regression models, we examined this effect by
measuring how prediction accuracy depended on, in addition to
FBS, evidence combinations of factors. The results invariably
showed that FBS alone was the only significant predictor (Sup-
plemental Table 5). In other words, the accuracy depended only
on the absolute value of FBS and was independent of the evidence
configuration, such as the number of distinct supporting evi-
dences. One explanation for this robustness could be that we are
treating negative evidence equal to positive evidence.

FBS is convenient to store and analyze evidence compo-
nents. Some components may be negative despite an overall
positive FBS. However, the FBS score does not have strict bounds
and is not intuitively interpretable. We therefore used an ap-
proximation of an alternative form of Bayes’ theorem (MacKay
2003) that gives an intuitive and user-friendly FunCoup confi-
dence score between 0 and 1:

pfcðeÞ=
PðFCÞ

Qjej

i = 1

PðEij j FCÞ

PðFCÞ
Qjej

i = 1

PðEij j FCÞ +
Qjej

i = 1

PðEijÞ
: ð3Þ

pfc is a probability estimate that the pair is functionally coupled,
similar to P used in the method of Green and Karp (2004). P(FC),
the prior probability that ‘‘two random proteins are functionally
coupled,’’ is unknown. However, some expert estimates have been
given by, e.g., Grigoriev (2003) and Rhodes et al. (2005), and we
conservatively set P(FC) to 10�3. Note that pfc is in the interval
0. . .1 and monotonic with respect to P(FC). Another approxima-

tion we made was
Qjej

i =1

PðEijÞ instead of Pð:FCÞ
Qjej

i =1

PðEijj:FCÞ. This

numerically close substitution made the estimate even more
conservative. We use pfc as a confidence value in the FunCoup
database.

Discretization

The discretization algorithm that we developed for FunCoup is
similar to the one by Butterworth et al. (2004), but because it is
based on the Pearson x2-statistic rather than the conditional en-
tropy, it does not require setting a parameter (power index =

1.8. . .2.2) as an additional step. With a x2-score, it tests all pro-
spective cutpoints, i.e., ones where (1) sample counts are suffi-
cient, (2) x2 values are significant (P0 < 0.001), and (3) the class
label swaps between the positive and background FC.

The maximally scored point splits the metric range in two
initial bins. Further partitions are iteratively sought while any
prospective points remain. We tested the method against the
default quantile-based partitioning and found the novel method
significantly superior (Supplemental Fig. 2). The algorithm usually
stops at five to 10 bins, and we introduced a practically justified
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limit of 10 bins. When data deliver little information on FC, fewer
bins are created. No splits means that positive and background
labels cannot be separated significantly, and that the data set is not
useful. The advantage of this procedure is that it is insensitive to
a metric’s distribution shape and the position of local optima
(Supplemental Methods).

Significance testing

Each evidence category (bin) was subjected to a x2 test based on
the observed positive and background frequencies, and was dis-
carded if P0 > 0.001 (Supplemental Methods).

Phylogenetic profiles

For most data sets, a continuous score, or metric, was derived that
reflects the strength of the FC (Supplemental Methods). However,
for phylogenetic profiles, we chose a different strategy. Here, each
gene pair was classified into a discrete category describing its
phylogenetic signature. For instance, the signature ‘‘mammals_
insects_fungi’’ may characterize human genes that both have
Inparanoid orthologs in mouse and/or rat, fly, and yeast but not in
other species. Each signature is treated as a discrete evidence ‘‘bin’’
during training. We benchmarked this method against a number
of earlier proposed metrics, as well as against several novel
potentially useful metrics, and found it superior (Supplemental
Fig. 6).

Estimating performance

To measure the predictor performance, we used the common re-
ceiver operating characteristic (ROC) curves. They map sensitivity
(correctly classified fraction of the positive test set, TP/[TP + FN]) to
specificity (effectively represented as ‘‘predicted non-FC’’ fraction
of the background reference set, [TN + FP]/[TN + FP + TP + FN]) at
varying cutoffs. To estimate hundreds of ROC curves in the
course of testing, the area under curve (AUC) was used to measure
the overall performance, as its convexity reflects the quality of the
predictor. The tests were performed in regions of practical impor-
tance, i.e., when the predicted interactome reasonably compact.
To ensure this, we used a cutoff such that the fraction of pre-
dictions was fixed to e.g., 1% or 4% of the total N(N � 1)/2 pairs
between N proteins (Supplemental Fig. 7).

Statistical tests of NBN configuration

We analyzed the framework configuration parameters such as
‘‘maximal number of bins in discretization,’’ ‘‘way to use ortholog
information,’’ ‘‘choice of a coexpression metric,’’ etc., for magni-
tude and significance under ANOVA general linear models (Stat-
Soft, Inc., STATISTICA (data analysis software system), version 7.1,
www.statsoft.com). All accepted NBN modifications were signifi-
cantly efficient (P0 < 0.01). The improvements were quantified in
terms of AUC. For example, introducing likelihood value check
by confidence augmented AUC by 12% in the specificity region
96%–100% compared with the default configuration, i.e., ‘‘using
any non-zero likelihoods.’’ The effects of single factors and their
interactions are shown in Supplemental Figure 2. Complete bal-
anced orthogonal ANOVA designs assured that all combinations
were systematically tested. Replicates, necessary to estimate the
within-combination variance, were obtained from multiple
(3. . .10) holdout bootstraps. For each bootstrap, we randomly
split the positive set and the random instance of the general
population in two equal parts: one for training and the other
retained for validation.

Deriving pathway members in an uncharacterized organism

At the time we generated the C. intestinalis network (December
2007), this organism was not yet present in the KEGG ortholog
table. Hence, unlike the other organisms, we did not have a set of
organism-specific pathway members to create a TS. We found
putative Ciona pathway members in a way similar to the KEGG
inference by orthology (Bono et al. 1998). Our method employs
multispecies clusters of orthologs available from the Multi-
Paranoid database (Alexeyenko et al. 2006). In each ortholog
cluster, we assigned EC numbers to Ciona proteins considering the
KEGG assignments to human, fly, and worm cluster members
(Supplemental Methods).
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