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The Lum–Chandler–Weeks theory of hydrophobicity [Lum, K.,
Chandler, D. & Weeks, J. D. (1999) J. Phys. Chem. 103, 4570–4577]
is applied to treat the temperature dependence of hydrophobic
solvation in water. The application illustrates how the temperature
dependence for hydrophobic surfaces extending less than 1 nm
differs significantly from that for surfaces extending more than 1
nm. The latter is the result of water depletion, a collective effect,
that appears at length scales of 1 nm and larger. Because of the
contrasting behaviors at small and large length scales, hydropho-
bicity by itself can explain the variable behavior of entropies of
protein folding.

A t least since the first observations concerning the signifi-
cance of oil–water demixing or hydrophobic interactions in

structural biology (1, 2), the temperature dependence of these
interactions has been a source of speculation and puzzlement
(3–8). For example, Kauzmann (1) noted the curious difference
in sign between the entropy for hydrating alkane chains of
modest length and that for hydrating extended hydrophobic
surfaces. The former is negative in cold water (9), as Kauzmann
predicted from the entropy change for disrupting small micelles.
The latter is positive, as Kauzmann concluded from the tem-
perature dependence of oil–water surface tension. Furthermore,
the entropy of solvating a small hydrophobic species changes
sign as temperature is increased (9), whereas the entropy of
solvation for an extended oily surface, as manifested in the
oil–water surface tension, is positive for both cold and warm
liquid water (10).

In this paper, we show that the recently developed theory of
Lum, Chandler, and Weeks (LCW) (11) is consistent with these
varied behaviors. The theory is then used to analyze the concept
of entropy convergence in protein folding—the idea that the
hydrophobic entropy change on folding vanishes at a universal
temperature, T* (3). This idea has been used for the modeling
of hydrophobic contributions to the thermodynamics of protein
unfolding (4–8). An important recent theoretical step showed
how entropy convergence does follow from the molecular theory
of small hydrophobic species (12). By extending this work to
describe the alternative behaviors for hydrating small and large
species, our results show that entropy convergence is not to be
expected universally and that observed deviations from conver-
gence can be understood in terms of hydrophobic solvation
thermodynamics.

Structural differences between the solvation of small hydro-
phobic species and extended hydrophobic surfaces have been
understood qualitatively at least since Stillinger’s 1973 paper
(13). The hydrogen bond network of water near an alkane
molecule of modest length, for example, is not distorted signif-
icantly by the solute. Hydrogen bonds between neighboring
water molecules can remain intact, even when these molecules
make contact with small hydrophobic solutes. Hydrogen bonds
simply go around the solute. There is an entropic cost to the free
energy of solvation, because the presence of the small hydro-
phobic species limits the configuration space available for hy-
drogen bonding. This cost is small per water molecule in

comparison with the energetic cost incurred by breaking a
hydrogen bond. In contrast, the solvation of extended hydro-
phobic surfaces has a disruptive effect on water structure. Close
proximity of water is energetically unfavorable, because it is
impossible to maintain a hydrogen bond network adjacent to an
extended surface. As a result, water density is depleted near the
surface. This depletion is a collective effect akin to a drying
transition induced by the hydrophobic surface. Because of it,
there is a large energetic contribution to the free energy of
hydration of extended surfaces, as manifested in the surface
tension of a water interface.

The LCW analysis (11) is the first theory to put these
arguments into a generally applicable quantitative framework.
The theory is relevant in the current context, because the
crossover from the small to large length scale regimes occurs for
surfaces extending roughly a nanometer—the characteristic
length scale of protein structure. The precise crossover length
depends on thermodynamic state and the shape of the hydro-
phobic surface. Figs. 1 and 2 illustrate this variation as we have
computed it from LCW theory for ideal spherical hydrophobic
solutes—bubbles—of several different sphere radii in water at
several different temperatures.

Implementation of LCW theory requires prior knowledge of
the equation of state, the surface tension, and the radial distri-
bution function of pure water. In our calculations, we have used
the simple parameterization of the equation of state suggested
in ref. 11, based on the isothermal compressibility, and the
energy density of pure water. The entries to Table 1 list the
values of the prescribed parameters. The radial distribution
function is taken from the x-ray scattering measurements of it (14).

Fig. 1 shows consistent length scale behavior of the excess
chemical potential for all temperatures studied. This behavior
explains why a ‘‘microscopic’’ surface tension determined from
the solubility of hydrocarbons in water could be smaller than the
‘‘macroscopic’’ surface tension measured for liquid hydrocar-
bon–water interfaces (15). The plateau values in Fig. 1 are close
to the corresponding macroscopic surface tensions.

In the small length scale regime, Dm is roughly proportional to
the volume, as is evident from Fig. 1 for the case of spherical
ideal hydrophobes. As a result, for a fixed temperature, one can
identify a single length, r, close to the van der Waals radius of
water, where Dmy4p(R 2 r)2 is roughly a constant for solute radii
R . 3.3 Å. This representation has been suggested by Ashbaugh
et al. (16). Complicating this apparent simplification, however, is
the fact that the nontrivial temperature dependence of Dm must
be manifested in a temperature dependence of r.
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A more useful observation is that the proportionality for
volume remains valid for any reasonable molecular shape of
small ideal hydrophobes. This fact, noticed by Ben-Naim and
Mazo (28, 29), is explained and used to interpret transfer free
energies successfully in the analysis of Pratt and Chandler (17).
The dependence of transfer free energies on the length of small
hydrocarbons is often described in terms of free energies per
surface area. For such molecules, both volume and surface area
are linear functions of chain length.

In the large length scale regime, it seems from Fig. 1 that another
simplifying invariance holds. Here, solvation energies are propor-
tional to surface area, independent of the precise shape of the
extended ideal hydrophobic surface. Exploiting both the scaling
with volume at small length scales and surface area at large length
scales may lead to a simple yet accurate theory of hydrophobic
solvation for biomolecules of arbitrary shape. Pursuance of this
possibility, however, is beyond the scope of this paper.

Fig. 2 shows that the chemical potential decreases monoton-
ically with temperature for solutes with radii R . 10 Å, following
the dependence of the liquid–vapor surface tension of water. For
smaller solutes, the temperature dependence is nonmonotonic,
and the chemical potential has a maximum that moves to lower
temperature as the size of the solute increases. If the statistics of
the density fluctuations required to form a solute-sized cavity are

Gaussian and the variance of the statistics are temperature
independent (the case for water because of its low isothermal
compressibility), it can be shown (12) that the chemical potential
will have a maximum close to the maximum of Tn2, where n is
the number density of bulk water at ambient conditions. This
maximum occurs near 400 K for water. Gaussian statistics do
characterize density fluctuations over small length scales (18),
and the assumption of such statistics is the basis of successful and
closely related theories of hydration of small hydrophobic species
(17–19). In the limit of small solutes, LCW theory reduces to this
Gaussian model as well. On the other hand, Gaussian statistics
are not expected for the density fluctuations required to form
large solute-sized cavities (20). Indeed, as anticipated by Still-
inger (13) and predicted as well by LCW theory (11), the
disrupted water structure adjacent to such a cavity exhibits a
depletion layer with a liquid–vapor interface. The maximum in
the chemical potential moves to lower temperatures with in-
creasing size of the solute and eventually disappears as the
temperature dependence approaches behavior close to that of
the liquid–vapor surface tension. Small shifts of the maximum
to lower temperature with increasing solute size have been
noted previously for the small solutes neon, argon, methane,
and xenon (12). Larger shifts toward lower temperature occur
for solutes large enough to promote water depletion. Further,
we see from Fig. 2 that for R . 10 Å, the entropy change of
solvation, DS 5 2(DmyT)p, no longer passes through zero.
Rather it is positive for all liquid temperatures and roughly
temperature independent.

With these results in mind, let us now consider the entropy
changes of protein unfolding. For a variety of globular proteins
(4, 21), it has been found that this entropy change per amino acid
residue converges to a common value when extrapolated to a
temperature of approximately 385 K. Noting that this conver-
gence temperature is close to the temperature at which the
entropy change of solvation of a number of hydrocarbon liquids
extrapolate to zero, Baldwin (3) proposed that T* is the tem-
perature at which the contribution to the entropy change from
the solvation of hydrophobic residues buried in the folded
protein is zero. The residual entropy is assumed to be due to
other factors such as configurational entropy and solvation of
polar groups (4–8). Experimental studies of other small solutes
such as n-alkanes (9), n-alcohols (9), and cyclic dipeptides (22)

Fig. 1. Excess chemical potential, Dm, per exposed surface area for hard
spheres of radius R, calculated by using the LCW theory (11), for temperatures
of 277, 298, 323, 348, 373, and 423 K (the plateau decreases with increasing
temperature).

Fig. 2. Excess chemical potential per solute volume as a function of temper-
ature (T in Kelvin) for spherical bubbles of different radii (R) as indicated.

Table 1. Parameters used in LCW theory (11) calculations at
various temperatures†

T, K a, (kJzcm3/mol2)‡ b, (cm3/mol)§ l, Å¶

277 211 14.5 4.3
298 229 14.6 3.8
323 246 14.6 3.4
348 260 14.7 3.2
373 270 14.8 3.1
423 285 14.9 2.9

†Based on measured energy density, 2anl
2, isothermal compressibility, kT, and

surface tension, g, of pure liquid water (10).
‡Bulk energy density for the uniform liquid is 2anl

2, where nl is the homoge-
neous number density of liquid water.

§Molecular volume parameter,

b 5 1ynl 1 ÎkBTkTy(1ynl 1 2kTnla).

¶Length scale characterizing fluctuations in attractive interactions,

l 5 gYE
ng

nl

dnÎ2a[w(n) 2 w(nl)],

where w(n) is the free energy density of a fluid of number density n.
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also show convergence of entropies of solution at '385 K, not
far from the convergence temperature of 400 K predicted from
theory for small ideal hydrophobic species (12).

In contrast, the most recent and extensive experimental study
of entropies of protein unfolding finds no evidence of a conver-
gence temperature for the entropy of unfolding (23). The
proteins in all of these studies are single-domain globular
proteins that unfold reversibly under heat denaturation. Several
possible reasons for the scatter in the experimental data have
been suggested, such as the effect of long-range interactions like
electrostatics and differences in the extent of exposure to water
of components in the denatured protein. We argue, however,
that contributions from hydrophobic effects, usually assumed to
show convergence, are themselves sufficient to produce the
observed scatter. Indeed, LCW theory provides a means for
interpreting why only some classes of proteins may exhibit a
convergence temperature and why this temperature will gener-
ally be lower than the small molecule value of 400 K.

For simplicity, we assume a folded protein is a compact, spherical
structure, whereas the unfolded protein is a chain in which all of the
hydrophobic residues have roughly the same size. With this simpli-
fication, all of the information needed for the analysis is graphed in
Fig. 2. Specifically, we conceive of protein folding as pictured in Fig.
3 and thereby write the change in the hydrophobic contributions to
the entropy of unfolding per amino acid residue as

DSunfyN 5 DSr 2 DSpyN. [1]

Here, N refers to the number of residues, DSr denotes the
hydrophobic entropy of solvation of a residue, and DSp stands for
the hydrophobic entropy of solvation of the folded protein. If we
were to assume that hydrophobic effects do not contribute to
hydration of the folded protein, the second term in Eq. 1, DSpyN,
could be omitted from the analysis (3). However, typically about
50% of the exposed surface of globular proteins is classified as
nonpolar, the other 50% being polar or charged (24). DSpyN
might therefore be significant. To estimate its size, we can
consider the thermodynamics of solvation of the folded protein
as a two-step process, in which a protein-sized cavity is first
created and then the attractive protein-solvent interactions are
turned on. To the extent that this second step is primarily
enthalpic, DSp should be well estimated by the entropy to solvate
the cavity in the absence of protein-solvent attractions. This

estimate coincides with the hydrophobic entropy change to
create the protein-sized cavity.

This two-step analysis of hydrophobic solvation was used to
good effect by Pratt and Chandler (17). A recent simulation
study of small alkanes in water supports this approach, showing
that the effects of attractive solute–solvent interactions are
mainly enthalpic and result in only small entropy changes (25).
In this view, it is not that the average solvent density is unaffected
by turning on polar interactions but that the amount of config-
urational space available to the solvating water molecules is not
altered significantly. As such, the particular distribution and
proportion of hydrophilic and hydrophobic patches on the
protein surface should not affect DSp.

Experimentally measured molecular volumes for amino acids in
solution vary between 72 and 240 Å3 (26), volumes that correspond
to solute radii of 2.6–3.9 Å (assuming spheres), with an average
radius of 3.3 Å and a standard deviation of 0.3 Å. For this size, we
see from Fig. 2 that DSr increases with temperature and passes
through zero. In addition, for radii within one standard deviation of
the average, there is an approximate convergence in DSr near zero,
as noted before this report in ref. 12. This result also explains the
experimentally observed entropy convergence for solvation of small
hydrophobic solutes (also noted in ref. 12).

For a large number of globular proteins, the volume of the
protein divided by its molecular weight is '0.75 cm3zg21 (24).
Assuming this value for the proteins studied in ref. 23, the
volumes for these proteins vary between 7,000 and 50,000 Å3,
volumes that correspond to radii (R) between 12 and 23 Å.
Assuming 120 g as the average residue weight, these radii
correspond to n 5 48 and 340, respectively. For these radii, we
see from Fig. 2 that DSpyN will be positive and, to a good
approximation, independent of temperature. Furthermore, from
Fig. 1 we see that DSp will be roughly proportional to surface area
and thus scale with R2, such that DSpyN will scale as R21/3. To
the extent that DSr shows no dispersion in going from one protein
to another, the range of values for DSunfyN is the same as that
for DSpyN. Applying LCW theory at T 5 385 K, we find that

@DSpyN#R512 Å 2 @DSpyN#R523 Å < 12 Jzmol21zK21. [2]

This variation is close to the experimentally measured range of the
difference in DSunfyN, which is 15 Jzmol21zK21 at this same tem-
perature (23). Therefore, DSpyN does seem to be significant and
sufficient to explain the observed scatter in DSunfyN.

The temperature at which the hydrophobic contributions to
the entropy of unfolding is zero, T*, is where the curves DSr and
DSpyN intersect. From the above considerations, T* will de-
crease as the size of the protein increases. Therefore, considering
the variation in protein volume, one may not expect to observe
a convergence temperature for the entropy of unfolding for all
proteins.

Another reason concerns the idealized picture of a fully
unfolded chain as essentially identical independent hydrophobic
amino acid residues. This picture neglects clumping or clustering
of residues. Such clustering does occur (27) and in effect
produces hydrophobic units of various sizes. In that case, the
typical value of DSr will shift such that DSr 5 0 will occur at a
lower temperature, as indicated by the shift in the extremum in
Fig. 2. Hence, greater residue cluster size dispersion will reduce
the possible value of T* further.
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