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Abstract
Recent studies indicate that two clusters of single nucleotide polymorphisms in the neuronal sortilin-
related receptor gene (SORL1) are causally associated with late-onset Alzheimer's disease (AD). At
the cellular level, SORL1 is thought to be involved in intracellular trafficking of amyloid precursor
protein. When this gene is suppressed, toxic amyloid β production is increased, and high levels of
amyloid β are associated with a higher AD risk. Extending the cellular findings, gene expression
studies show that SORL1 is differentially expressed in AD patients compared with controls.
Furthermore, several genetic studies have identified allelic and haplotypic SORL1 variants associated
with late-onset AD, and these variants confer small to modest risk of AD. Taken together, the
evidence for SORL1 as a causative gene is compelling. However, putative variants have not yet been
identified. Further research is necessary to determine its utility as a diagnostic marker of AD or as a
target for new therapeutic approaches.

Introduction
The genetics of Alzheimer's disease (AD) have been explained by four susceptibility genes:
amyloid precursor protein (APP), presenilin 1 (PSEN1), presenilin 2 (PSEN2), and
apolipoprotein E (APOE) [1•,2•]. Recent reports have implicated the neuronal sortilin-related
receptor gene (SORL1, also known as SORLA and LR11) as a susceptibility gene for late-onset
AD [3,4•,5,6,7••,8•,9]. It is located on chromosome 11q23.2-q24.2 and encodes a 250-kD
membrane protein expressed in neurons of the central and peripheral nervous system [10]. It
is known to be involved in intracellular trafficking between the membrane and intracellular
organelles, interacting with APP in endosomes and the trans-Golgi network (TGN) in both in
vitro and in vivo experiments [11]. The current data suggest that underexpression of SORL1
leads to overexpression of amyloid β (Aβ), which has been associated with a higher risk of
developing AD [10,12]. In this article, we briefly discuss the molecular mechanism underlying
AD to explain how SORL1 may be involved in the disease process, review issues related to the
genetics of common disease, and evaluate and summarize the relation between SOLR1 and
AD.

Molecular Mechanisms Underlying AD
The understanding of the molecular mechanisms underlying AD began in the early 1980s with
the isolation of Aβ [13,14] and the identification of the amyloid precursor protein [15–18].
Subsequently, linkage analysis studies revealed that mutations in APP can cause either early-
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onset AD [19] or the Dutch-type hereditary cerebrovascular amyloidosis [20]. Furthermore,
missense mutations within or adjacent to the Aβ domain of APP [20] can initiate abnormalities
in APP processing and the accumulation of Aβ peptide, leading to AD [21–23]. In 1995,
additional mutations in PSEN1 and PSEN2 were identified [24–26]. Mutations in PSEN1 and
PSEN2 modify APP processing by producing excess Aβ42, which is toxic to neurons [27–
30]. In 1999, the β-site APP cleaving enzyme (BACE)—a transmembrane protease that governs
the first enzymatic step in APP processing—was isolated [31,32].

The amyloid pathway involves two enzymatic steps. In the first β-cleavage step, BACE cleaves
APP near the N terminus of the Aβ peptide. In the second β-cleavage step, the membrane-
bound C-terminal APP fragment is cleaved by β-secretase, a complex composed of
transmembrane proteins PSEN 1 and 2, nicastrin, APH1, TMP21, and PEN2 [33]. This
mechanism is sufficient to explain the Aβ accumulation observed in early-onset AD. However,
these molecular defects do not exist in late-onset AD, and thus cannot explain the accumulation
of Aβ40 and Aβ42 in this form of the disease. However, one can posit that defects in genes
involved in the trafficking mechanism for proteins can potentially cause excess accumulation
of proteins such as Aβ40 and Aβ42, which in turn facilitate neuronal degeneration.

During the past two decades, the TGN and the endosome were identified as the key organelles
organizing the complex movement of the transmembrane proteins via secretory and endocytic
pathways (Fig. 1). Important coat complexes initiating the transport of APP and BACE through
this sorting itinerary are the clathrin coat and the retromer [34,35,36•]. Clathrin coats are
involved in the endocytic pathway connecting the cell surface to the endosome and the pathway
connecting the TGN to the endosome [37]. The retromer is involved in the trafficking from the
endosome to the TGN. Through the retromer complex, SORL1 directly binds APP and
differentially regulates its sorting into endocytic or recycling pathways. In the absence of
SORL1, APP is released into late endosomal pathways, where it is subjected to both β-secretase
cleavage and γ-secretase cleavage, which eventually leads to Aβ production. Therefore, it is
hypothesized that genetic variants in SORL might influence Aβ processing.

Challenges Facing Gene Mapping in Late-Onset AD
Following the identification of three genes for familial forms of early-onset AD and APOE for
late-onset AD, progress on the identification of putative genetic variants has been limited.
Unlike Mendelian or single gene disorders, for which over 1800 genes have been characterized
[38], confirmed putative genes for common diseases are rare. Several reasons explain the
difficulties. AD is a multifactorial disorder influenced by multiple genetic and environmental
risk factors in which these factors interact to produce the phenotype (ie, gene-gene and gene-
environment interactions). Additional features complicating gene identification include
reduced penetrance (absence of clinical disease in individuals harboring a mutation/
polymorphism), phenotypic heterogeneity (definition of being affected can be so broad that it
is actually a collection of several diseases), and locus and allelic heterogeneity (disease in
different families or in different individuals within a family is caused by different genetic
variants). For these reasons, replication of the initial gene finding in common diseases is rarely
observed.

To overcome these challenges, an array of approaches is available to uncover genetic risk
factors in Mendelian and complex traits. Two complementary analytical methods, linkage
analysis and association analysis, are used to detect the specific genetic variants that are
involved in the disease process. Linkage analysis tests whether genetic markers cosegregate
with the disease within a family. The closer the genetic marker is to the disease locus, the fewer
the number of recombination events between the two loci. As a result, the disease will
cosegregate with the marker. However, genetic association analysis examines whether affected
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individuals share the same allele more often than expected. This observed deviation can come
from a deviation from the expected transmission probability of 50%, as in the family-based
association method, or from deviations from expected allele frequencies obtained from
unaffected controls, as in the case-control method. When the association between the disease
phenotype and a marker is statistically significant, one may conclude that the marker or adjacent
chromosome region may be associated with the disease. Recently, statistical methods have
evolved to employ linkage and association analysis jointly to enhance power [39,40]. These
advances in statistical methods, coupled with the availability of 500,000 to 1 million single
nucleotide polymorphisms (SNP) in microarray chips covering the human genome, have
enhanced our capability to interrogate candidate chromosomal regions [41].

Beyond the technological advances, investigators are studying endophenotypes to enhance
power to detect genes underlying common diseases [42•,43]. In general, an endophenotype (ie,
an intermediate phenotype) can better characterize the relation between the gene and the disease
locus because such a quantitative trait is in the biological pathway toward the disease. Because
endophenotypes are situated in the downstream of the biological pathway (ie, closer to the
genotype than to the phenotype), endophenotypes are presumably determined by fewer genes
and can serve to reduce heterogeneity, thereby reducing the complexity of genetic analysis.

Moreover, investigations of endophenotypes can identify genes with small effects because they
can assess the role of genetic factors on phenotypic variations using affected and unaffected
family members, providing greater statistical power than discrete disease status. For these
endophenotypes to be useful, they have to be reliably assessed, moderately to highly heritable,
and their relationship to the biological processes hypothesized to underlie disease must be
testable. Furthermore, coherent sets of multiple endophenotypes (eg, Aβ, memory, or structural
or functional brain imaging measures) can bring about an even deeper understanding of the
underlying biology.

Genetic Association Studies
Rogaeva et al. [7••] first reported the allelic and haplotypic associations between AD and
variants in SORL1. Subsequently, several studies supported the initial finding by showing that
genetic variants in SORL1 contribute toward AD [3,4•,5,6,8•,9], but a few studies did not
confirm the initial finding (Table 1). The original study included four different ethnic groups:
North American and European whites, Caribbean Hispanics, African Americans, and Israeli
Arabs. This investigation on more than 6000 individuals identified two different sets of
haplotypes: 1) SNPs in the 5’ end of the gene (SNPs 8−10; 120,873,131 bp to 120,886,175 bp)
among Caribbean Hispanics (family study), whites (case-control study), and Israeli Arabs
(case-control study); and 2) SNPs in the 3’ end of the gene (SNPs 22−25; 120,962,172 bp to
120,988,611 bp) among multiple white samples (family and case-control studies) and African
Americans (family study). Haplotype analysis strengthened statistical support further.
However, as observed in many common diseases, these candidate SNPs conferred a modestly
elevated risk of AD, ranging from an odds ratio of 1.4 to 2.2, and the allelic association was
not uniform across datasets. The authors strengthened their allelic association findings with
cell biology findings, which showed that suppression of SORL1 led to elevation of Aβ levels.
Three subsequent studies by the same group broadly supported one or both haplotypes or some
variations of the two: haplotype C-G-C at SNPs 8 to 10, or haplotype T-T-C at SNPs 23 to 25,
or both. Lee et al. [5] showed that the same set of SNPs at SNPs 23 to 25 were associated with
AD in whites residing in northern Manhattan. In a follow-up study, they confirmed the allelic
and haplotypic associations in autopsy-confirmed cases of white ethnicity for haplotype at
SNPs 8 to 10 and haplotype at SNPs 23 to 25 [4•].
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Six other groups examined the relation between SORL1 and AD or related traits in different
populations [3,8•,9,44–46]. Three replication studies [3,8•,9] supported the initial findings, but
the remaining three [44–46] showed either negative or weak results. Bettens et al. [3] directly
replicated SNPs 8 to 10 and showed support for SNPs 25 to 27 in 550 Belgian patients with
late-onset AD and 637 unaffected individuals. Tan et al. [9] examined 223 cases and 263
controls from a Han Chinese population to show that haplotype G-C-A at SNP 19−22−23 was
associated with AD (odds ratio of 1.4; 95% CI, 1.04−1.7), but none of the haplotypes in SNP
8 to SNP 10 were associated. Using the Framingham community-based family samples,
Seshadri et al. [8•] extended the existing studies of AD by examining cognitive performance
in healthy elderly individuals without dementia and stroke. The authors showed that SORL1
was significantly associated with abstract reasoning ability as measured by the Similarity test
(P = 3.2 × 10−6). This is a logical extension of earlier studies, because this approach is
particularly powerful in detecting genetic loci that contribute to small or modest changes in
cognitive functions at the preclinical stage.

The remaining three studies show little support. Webster et al. [46] used the clinical and autopsy
cases and controls compiled by Reiman et al. [47] at the Translational Genomics Research
Institute to examine SORL1. Based on 644 clinical and autopsy cases versus 422 controls, they
observed a weak association with four SNPs (nominal P values of 0.019−0.038) that are located
between SNP 8 and SNP 10 in the original paper, but they did not observe any association in
the haplotype in the 3’ end of the gene (SNPs 22−25). The authors concluded that there is weak
evidence for association. Interestingly, Meng et al. [6] evaluated SORL1 using the same dataset
but included a somewhat larger set of patients (n = 1408). They concluded that four SNPs
located between SNPs 20 and 25 in the original paper were associated with AD. The reason
for the difference in the findings between the two studies is likely to be due to the fact that
Meng et al. [6] included 342 additional samples.

Li et al. [44] observed no association with SORL1 in their two-stage genome-wide association
study. They first examined 753 cases and 736 controls in Canadian samples, and then further
examined the top 120 candidate SNPs using 418 cases and 249 controls from a United Kingdom
(UK) Medical Research Council dataset. They had 48 SNPs on SORL1 but did not observe any
association. However, as Rogaeva et al. [7••] reported, Li et al. [44] did observe a weak
association with two SNPs in SORCS1, a gene in the sortilin pathway. Based on their report,
however, it is unclear as to how many SNPs from the original paper were studied and how
dense the SNP coverage was. In a separate study, Li et al. [45] examined three sets of cases
and controls totaling approximately 2000 samples from either the UK or the United States.
Only a weak association was observed for two SNPs: rs2070045 (SNP 19; P = 0.035) and
rs2282649 (SNP 24; P = 0.022 for UK1 dataset). However, no association was observed for
previously reported haplotypes when all three datasets were combined. On a closer
examination, the two SNPs were weakly associated with AD in all datasets except for one UK
dataset (UK2). Moreover, the associations for different SNPs for the UK2 dataset differed from
those for the other two datasets (UK1 and WU), suggesting that there may be cryptic sampling
heterogeneity or that simply none of the SNPs are associated with AD in these datasets. It may
be of interest to examine these datasets while accounting for population stratification.

Although these allelic association studies support the association between AD and the
implicated alleles and haplotypes, only one study examined the role of SORL1 in cognitive
function. There has been no report of the relation between SORL1 and other neurodegenerative
disorders (eg, dementia with Lewy bodies or Parkinson's disease).
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Evidence for Genetic Involvement from Microarray Expression Studies
Gene expression profiling experiments measure the activity of thousands of genes at once,
creating a global picture of cellular function. These studies measure the relative activity of
thousands of mRNA transcripts, thereby providing a powerful tool for uncovering pathogenic
genes underlying common diseases. However, as with the genetic association studies,
molecular heterogeneity makes the matter of gene identification a bit more complicated,
because defects in different molecular pathways can produce the same disease phenotypes.
Consequently, it is difficult to identify one specific gene that underlies the phenotype of interest
among many differentially expressed genes. To differentiate signals from noises, some have
focused on the tissues most affected by the disease process. To this end, some researchers
employ brain imaging techniques to help identify regions of physiologic dysfunction [36•]. In
addition, they use unaffected regions within the same brain to reduce signal noises resulting
from interindividual differences.

The first clue about which type-I transmembrane proteins might be sorted by the neuronal
retromer came from studies exploring microarray data generated from human brain tissue
[36•,48]. Small et al. [36•,48] demonstrated that among a list of possible retromer cargo
molecules, SORL1 and BACE were the type-I transmembrane molecules whose expression
levels cross-correlated most strongly with levels of neuronal VPS35. VPS35 is the core
molecule of the retromer complex.

Scherzer et al. [49] compared the gene expression patterns of lymphocytes of AD patients
against age-, sex-, and ethnicity-matched controls and found that the fluency intensity ratio
(fold change) for sporadic AD patients was significantly higher (1.8-fold) than in controls. Six
genes (SORLA/LR11, IFNGR1, STAF50, Pleckstrin, Amylo-[1,4−1,6]-transglycosylase, and
Homo sapiens SNC73 mRNA) were differentially expressed in lymphoblasts of two
independent groups of patients with probable and autopsy-confirmed late-stage AD.
Immunohistochemistry of 13 AD and 7 control brains reconfirmed a reduction of SORL1
expression in histologically normal neurons in AD brains, including neurons in frontal cortex
and hippocampus, compared with control brains. One caveat of studies based on lymphoblasts,
rather than affected brain tissue, is that such studies cannot answer 1) whether the differential
expression of SORL1 in lymphoblasts and immunohistochemistry is in fact specific to AD; and
2) whether it is a cause or consequence of the disease. Thus, mRNA profiling of the
physiologically affected brain tissue against a control region over different stages of the disease
would be necessary to settle this question.

Interaction of SORL1 with Other Known Genetic Risk Factors
To date, only one study has explored whether known AD genes interact with SORL1 or not.
Dodson et al. [50] compared immunohistochemistry and immunoblotting of SORL1 in PS1/
APP transgenic and wild-type mice as well as in human frontal cortex of nondemented controls,
sporadic AD cases, and familial AD cases. In the PS1/APP transgenic mice model, SORL1
levels were not affected by genotype or accumulation of amyloid pathology. Consistent with
this finding, SORL1 immunostaining intensity in human frontal cortex was reduced in sporadic
AD cases, but similar between controls and familial AD cases. These findings suggest that the
effect of SORL1 is independent of PSEN1 and PSEN2 genotype. In addition, Rogaeva et al.
[7••] observed that two genes in the sortilin pathway, SORCS1 and SORSC2, were weakly
associated with AD. Naturally, further studies are needed to clarify these complex relations.

Role of SORL1 in Genetic Medicine
Several lines of evidence strongly support that SORL1 plays an important role in AD
pathogenesis. Theoretically, SORL1 can be developed as part of a genetic profiling tool for
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AD, and as a potential novel therapeutic target for treatment of late-onset AD. However, its
current utility in medicine is unclear. Several issues must be resolved before SORL1 can be
useful in clinical settings. First, to use SORL1 as a genetic risk–profiling tool, the precise
putative genetic variants for SORL1 have to be identified and, at the same time, additional risk
factor genes need to be known. For common late-onset AD, accurate overall risk can only be
estimated when we better understand the putative and protective genetic variants involved, as
well as how they interact among them. Without such information, the risk estimates will be
inaccurate and will cause a greater harm than good. Second, it is necessary to clarify the exact
mechanisms of intracellular transport and processing through which SORL1 acts on APP
protein trafficking. Identification of the mechanisms underlying APP sorting will help us to
understand the role of SORL1 in the amyloid cascade and could provide targets for effective
intervention. Finally, it is necessary to further characterize molecular pathways involving
SORL1. Only when these issues are better understood can the medical applications involving
SORL1 be devised.

Conclusions
We have shown that SORL1 is involved in Aβ production and that at least one of the two clusters
of SNP variants in SORL1 is associated with AD in many, but not all, cases. However, putative
variants have not yet been identified. Thus, deep sequencing is needed to identify the putative
variant(s). Once identified, it will be necessary to better characterize their impact on phenotypic
outcomes, including AD, as well as on endophenotypes (eg, Aβ, cognitive performance,
imaging data). Furthermore, it will be biologically insightful to examine the relations among
genes in the sortilin pathway. We are currently pursuing these possibilities.
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Figure 1.
Transmembrane sorting of sortilin-related receptor gene (SORL1) through the clathrin coats
(CC) and the retromer complex (RC). Aβ—amyloid β; APP—amyloid precursor protein;
BACE—β-site APP cleaving enzyme; PS—presenilin. (Adapted from Rogaeva et al. [7••].)
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