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Abstract

Objective—To identify putative genetic loci related to the risk of late-onset Alzheimer disease
(LOAD).
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Design—Linkage analysis and family-based and case-control association analyses from a
genomewide scan using approximately 6000 single-nucleotide polymorphic markers at an average
intermarker distance of 0.65 cM.

Setting—The National Institute on Aging Genetics Initiative for Late-Onset Alzheimer's Disease
(NIA-LOAD) was created to expand the resources for studies to identify additional genes
contributing to the risk for LOAD.

Participants—We investigated 1902 individuals from 328 families with LOAD and 236 unrelated
control subjects.

Main Outcome Measures—Clinical diagnosis of LOAD.

Results—The strongest overall finding was at chromosome 19q13.32, confirming the effect of the
apolipoprotein E gene on LOAD risk in the family-based and case-control analyses. However, single-
nucleotide polymorphisms at the following loci were also statistically significant in 1 or more of the
analyses performed: 7p22.2, 7p21.3, and 16921 in the linkage analyses; 17921.31 and 22¢q11.21 in
the family-based association analysis; and 7g31.1 and 22q12.3 in the case-control analysis. Positive
associations at 7g31.1 and 20g13.33 were also significant in the meta-analysis results in a publicly
available database.

Conclusions—Several additional loci may harbor genetic variants associated with LOAD. This
data set provides a wealth of phenotypic and genotypic information for use as a resource in discovery
and confirmatory research.

ALTHOUGH THE APOLIPOPROtein E &4 allele (APOE €4) (OMIM 107741) is the most
conS|stentIy replicated genetic variant influencing the risk of Iate onset Alzhelmer disease
(LOAD) it explains only 20% of the attributable genetic risk.2 Daw et al3 reported that there
may be 4 additional genes influencing LOAD risk. Although a number of susceptibility genes
have been reported (http://www.alzgene.org/), the number of genes that have been replicated
across multiple studies remains small. Whereas somegenes (eg, sortilin-related receptor 1
[SORLl]4 and angiotensin-converting enzyme [ACE]®) are strongly supported by several
studies across multiple ethnic groups, other genes need further evaluation (eg, low- densny
lipoprotein receptor-related protein 6 [LRP6] GRB-2-associated binding protein [GABZ]
and cholesterol 25-hydroxylase [CH25H] ).

In early 2007, 968 association studies of 398 candidate genes were complled by AlzGene
(http:/lwww.alzgene.org/), but most have not been replicated. Ertekin- Taner? has described
several reasons for the lack of replication, but progress in identifying and confirming genetic
variants related to LOAD may also be limited because of the paucity of data sets and samples
available to the scientific community. In 2002, the National Institute on Aging (NIA) launched
the NIA Genetics Initiative for Late-Onset Alzheimer's Disease (NIA-LOAD) to expand
resources needed to identify the remaining genes contributing to the risk for LOAD. The NIA-
LOAD Family Study, a major component of the initiative, has as its goals to identify and recruit
families with 2 or more affected siblings with LOAD and unrelated, nondemented control
subjects similar in age and ethnic background. The clinical data, DNA, genotyping results, and
preliminary analyses will be made available to investigators worldwide. Herein we describe
the families and the results of linkage, family-based association, and case-control analyses
from a genomewide scan using approximately 6000 single-nucleotide polymorphic (SNP)
markers.
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METHODS

SUBJECTS AND SETTING

Recruitment took place throughout the United States at 18 participating AD centers (ADCs),
each of which had received approval by their institutional review board. A collaborative effort
by each ADC, the NIA, the Alzheimer's Disease Education and Referral Center, and the
Alzheimer's Association led to national media coverage, which facilitated recruitment. A toll-
free number at the National Cell Repository for Alzheimer's Disease (http://ncrad.iu.edu) was
made available. When qualifying families contacted the National Cell Repository, research
staff referred the family to the geographically closest participating ADC for evaluation.

RECRUITMENT

The recruitment criteria included a family with multiple members affected with LOAD that
could provide clinical information and a biological sample for DNA extraction. The proband
had to have a diagnosis of definite or probable LOADLO with onset after 60 years of age and
a full sibling with definite, probable, or possible LOAD with onset after 60 years of age. A
third biologically related family member was required, who could have been a first-, second-,
or third-degree relative of the affected sibling pairs and 60 years or older if unaffected or 50
years or older if diagnosed as having LOAD or mild cognitive impairment.11 Unaffected
persons were required to have had documented cognitive testing and clinical examination
results to verify the clinical designation.

CLINICAL ASSESSMENT

A minimal data set included demographic variables, diagnosis, age at onset, method of
diagnosis, Clinical Dementia Rating Scale score,12 and the presence of other relevant health
problems. Each ADC was required to use standard research criteria for the diagnosis of LOAD.
Participants with advanced disease or those living in a remote location who could not
complete a detailed in-person evaluation contributed blood samples, and the site investigator
conducted a detailed review of medical records to document the presence or absence of LOAD.

The age at onset for patients with LOAD was the age at which the family first observed memory
problems, but, if this information was not available, the age at first examination was used. For
controls, we used their age at the time of their examination confirming the absence of dementia.
For 137 deceased family members who had undergone a postmortem brain evaluation,
neuropathologic results were used to document the diagnosis. The clinical diagnosis of LOAD
agreed with the autopsy diagnosis for 95% of the case patients who had both diagnoses.

FAMILY RELATIONSHIP AND HARDY-WEINBERG EQUILIBRIUM CHECKS

Before SNP genotyping, we verified the reported family relationships using 9 microsatellite
markers (7 autosome markers and 1 X and 1 Y chromosome marker). Subsequently, we used
3 sets of more than 570 SNPs by selecting every 10th SNP to evaluate relationships among
family members with the Pedigree Relationship Statistical Test.13.14 Based on the results, we
corrected family relationships in 40 families (detailed information is available from the authors
upon request), and we excluded individuals who were not biologically related to any family
(n=3 individuals). Four families were excluded because problems with reported relationships
could not be resolved adequately, and we excluded 1 family with a presenilin 1 gene
(PSEN1) mutation. We then checked for inconsistencies in mendelian transmission using
PedCheck1® and corrected them. We considered erroneous genotypes from these individuals
as missing.

We assessed Hardy-Weinberg equilibrium using the Haploview software
(h'[tp://www.broad.mit.edu/mpg/haploview/)16 and excluded SNPs that deviated from Hardy-
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Weinberg equilibrium with a P value of less than .001. To identify regions with high linkage
disequilibrium (LD) we computed pairwise LD coefficients and created 95% confidence
bounds on D’ to define SNP pairs in strong LD.17 For multipoint linkage analysis, we used 1
SNP from each haplotype block to ensure that the D’ between adjacent markers remained low;
as a result, we dropped 255 SNPs that were in strong LD with adjacent SNPs.

GENOTYPING

Single-nucleotide polymorphisms were genotyped at the Center for Inherited Disease Research
using a marker panel (Illumina Linkage-1Vb Marker Panel; http://www.cidr.jhmi.edu). From
this panel, 5954 SNP markers were originally genotyped. After eliminating SNP genotypes
with uncertain calls, excess missing data, or mendelian errors, a total of 5616 SNPs were
available for statistical analysis at an intermarker distance of 0.65 cM (519 kilobase [kb]); the
average marker heterozygosity was 0.43. Missing data rate among the released genotype data
was 0.21% (32 581 of 15 450 676 total genotypes).

Genotyping of APOE polymorphisms (based on SNPs rs7412 and rs429358) was performed
at PreventionGenetics (http://www.preventiongenetics.com). Genotyping was performed in
array tape using allele-specific polymerase chain reaction analysis with universal molecular
beacons. The DNA sequencing of positive control DNA samples was completed to ensure
correct assignment of alleles.

STATISTICAL ANALYSIS

Unless stated otherwise, analyses were conducted using the following definitions of LOAD
based on standard research criteria: (1) broad, which included definite, probable, or possible
LOAD and (2) narrow, which included as affected only those individuals who met criteria for
definite or probable LOAD. We classified the affection status of family members with other
forms of dementia or with mild cognitive impairment as unknown for the purposes of genetic
analyses. For the linkage and family-based analyses using the narrow definition, we also
classified patients with possible LOAD as unknown.

LINKAGE ANALYSIS

Single-point and multipoint nonparametric linkage analyses based on the algorithm of Kong
and Cox18 were implemented using a multipoint engine for rapid likelihood inference
(MERLIN),19'20 and we calculated nonparametric logarithm of odds (LOD) scores based on
an established algorithm.21 We computed allele frequencies using all genotyped subjects.
Given the important role of APOE &4 in LOAD, we performed a conditional linkage analysis
to test for a 2-locus model in which a polymorphism or variant at a given locus has an influence
on LOAD only in the presence of the APOE &4 allele.

FAMILY-BASED AND CASE-CONTROL ASSOCIATIONS

We conducted single-point family-based association test (FBAT) analysis as implemented in
version 1.7.3 of the FBAT software.22:23 We tested the hypothesis of no linkage and no
association under an additive model, rather than the hypothesis of no association in the presence
of linkage, because the primary goal of the analysis was to identify a novel candidate region
rather than to fine map previously identified loci from the linkage analysis. We estimated allele
frequencies for FBAT using parental genotype data, which we estimated from the offspring
genotype database using the expectation-maximization algorithm. We also used the FBAT
software to confirm the relation between APOE and LOAD. For the case-control data set, we
first performed the 2 test to assess the allelic association between LOAD and SNPs.

Arch Neurol. Author manuscript; available in PMC 2009 June 10.
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For the case-control analysis, we selected 1 affected individual from each family with definite
or probable LOAD. The unrelated, unaffected individuals served as controls. For the case-
control analysis, we used the y2 test to assess the allelic association between LOAD and SNPs.
We assessed population stratification using the Structure program, version 2.2
(http://pritch.bsd.uchicago.edu/structure.html),24'25 by using 103 unlinked SNPs to measure
population substructure. We chose 103 SNPs that were present in both the Illumina-1Vb linkage
panel and the HapMap data set (http://www.hapmap.org). This was necessary because the
present study participants were predominantly white and we lacked genotype data for nonwhite
subjects. Thus we used the genotype data from the NIA-LOAD samples for white subjects and
used the genotype data from the HapMap data set for nonwhite subjects. The allele frequencies
for white subjects with LOAD in the NIA-LOAD data set were similar to those for white
subjects in the HapMap data set. The results from the Structure analysis were used in an
association analysis implemented in the STRAT program, version 1.0.2425

To determine the consistency of our findings, we examined allelic associations in an
independent, publicly available data set from the Translational Genomics Research Institute
(TGen) that included 859 patients and 552 controls, for a total of 1411 individuals
(http://www.tgen.org/neurogenomics/data).7 We restricted our evaluation of the TGen data to
SNPs that were only significant in the case-control analysis discussed in the “Results” section
at P<.005. However, the TGen data set was genotyped using a microarray platform (Affymetrix
platform; Affymetrix, Inc, Santa Clara, California) that included approximately 500 000 SNPs.
Because SNPs were not identical, we included 5 SNPs on either side of the candidate SNP
location derived from the current analysis. Imputation was not possible owing to the sparse
genotyping in the NIA-LOAD families. Single-point allelic association was performed using
Haploview software.16 Haplotype analysis was not performed.

CHARACTERISTICS OF THE FAMILY DATA SET

The linkage and association analyses were restricted to 328 white families (1902 individuals)
because more than 90% of the cohort were of European or North American ancestry (Table
1). The mean (SD) age at onset of symptoms for affected individuals was 73.9 (7.5) years, and
the mean (SD) age at diagnosis was 77.2 (7.5) years. Of the 1902 individuals, 40.8% were
affected and 45.9% were considered unaffected. The remaining 13.3% had other forms of
dementia or mild cognitive impairment. All data, including pedigree structure, affection status,
and genotype data used in the analysis, are available at the Web site at the NIA Genetics of
Alzheimer Disease Data Storage Site (http://www.niageneticsdata.org).

For the case-control analysis, we studied 328 patients and 236 unrelated controls. The mean
age at onset of dementia was 73.3 (range, 60—92) years, and the mean age of the last evaluation
for controls was 78.1 (range, 60—99) years. Women constituted 61.9% of the participating
family members and 58.5% of the controls. The APOE &4 allele was present in 43.1% of the
cases and 9.5% of the controls.

SINGLE-POINT LINKAGE ANALYSIS

Using the broad definition of LOAD, 15 SNPs had LOD scores exceeding 2, including the
following 2 SNPs with LOD scores of greater than 3: rs798485 (7p22.2; LOD score, 3.77) and
rs1482258 (16g21; LOD score, 3.32) (Table 2). The SNP rs1482258 and 3 adjacent markers
within a 6-cM region showed strong support for linkage with LOD scores exceeding 2. In
addition, rs719423 (7p21.3) showed evidence of suggestive linkage (LOD score, 2.89). At
19913.32, SNP rs2341000 similarly showed a strong support for linkage (LOD score, 2.49),
most likely due to its proximity to APOE. Three markers with evidence of suggestive linkage,
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rs2036256 (6g22.31), rs720974 (9p21.3), and rs1537626 (10p14), have been previously
reported as statistically significant in other studies (http://www.alzgene.org).

Using the narrow definition, the following 3 SNPs achieved LOD scores of 3.0 or greater:
rs719423 at 7p21.3 (7.28 cM from rs798485 at 7p22.2), rs735144 at 16913 (4.25 cM from
rs1482258 at 16q21), and rs1482258 at 16¢21. For the 3 most significant SNPs under the broad
definition, LOD scores for rs1482258 at 16g21 and rs719423 at 7p21.3 increased under the
narrow definition, whereas the LOD score for rs798485 at 7p22.2 decreased slightly. At or
near 16g21 within a 27-cM region, a total of 9 SNPs had LOD scores exceeding 2.

MULTIPOINT LINKAGE ANALYSIS

Using the broad definition, the strongest evidence of linkage in the multipoint analysis was for
2 SNPs near APOE at 19913.31-2 (LOD scores, 3.10 and 3.19) (Figure 1A). In fact, 23 SNPs
within a 14.8-cM region near APOE had LOD scores greater than 2.0 in the region extending
from 19g13.12 to 19q13.32. Three additional SNP clusters at chromosomes 7p22.1, 8p21.3,
and 18q12.2 also had LOD scores of 2.0 or greater. The LOD scores decreased slightly using
the narrow definition of LOAD in the multipoint analysis for the SNPs clustering at 19q13.31
—32 (Figure 1B). Findings for 7 SNPs near 7p22.1-3, 2 SNPs at 8p21.3, and 4 SNPs in a 1.5-
cM region around 1621 remained suggestive of linkage.

FAMILY-BASED ASSOCIATION

Using the broad definition, 6 SNPs showed association with LOAD, with P values of less than .
001 (range, .000063 to <.000968). The SNP rs174345 at 22q11.21 showed the strongest
association (P = .000063). Of interest, rs744281 proximal to 17921.31 was also strongly
associated with LOAD, a marker near the gene encoding tau at 17g21.1. The SNPs at 2p14,
3013.31, 8p21.3, and 11p14.3 were also associated with LOAD. Under the narrow definition,
9 SNPs had P values of less than .001 (range, .000174 to <.000815). At 8p21.3, SNP rs4427168
showed the most significant association with LOAD (P=.000174). This SNP, along with
rs174345 at 22q11.21, was associated with LOAD under both disease definitions. These
associations are illustrated in Figure 2.

CASE-CONTROL ASSOCIATION ANALYSIS

In addition to the 2 coding SNPs for APOE, the most significant association was observed with
rs762883 at 22g12.3 (P=.000069) (Table 3). We found that other loci showed evidence of
association (defined as —log [P]>2.5) included SNPs at 1p34.3, 1941, 2p21, 2924.3, 3g26.1,
7921.3, 7931.1, 8923.3, 11924.3, 14q13.1, 15g15.1, 20913.33, and 22g12.3. All SNPs that
were significant in the x2 analysis remained significant in the STRAT analysis.z""25

Using the TGen LOAD data set,” we found concordance with allelic associations at P<.05 for
3 SNPs that were significant in this case-control analysis (results available from the authors
upon request). Single-nucleotide polymorphism A-2236481 (rs41377151) (located 10.9 kb
away from rs7412, 1 of the coding SNPs for APOE) was significantly associated with LOAD
(P=3.29x10736) in the TGen data set. In addition, SNP A-1968867 (rs6027452) on
chromosome 20 (located 4.5 kb away from the candidate SNP rs1381100 [20g13.33; P =.04])
and SNP A-4212589 (rs728273) on chromosome 7 (located 14.2 kb away from rs43077
[7931.1; P=.047]) were also associated with LOAD in the TGen data set. The candidate SNPs
identified from the TGen study were in strong LD with those from the NIA-LOAD study (D’
range, 0.97-1.00). (Details are available from the authors upon request.)
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APOE ANALYSIS AND APOE CONDITIONAL LINKAGE AND FBAT ANALYSES

The FBAT analysis indicated that the 2 SNPs within APOE designating the ¢4 allele were
significantly associated with Alzheimer disease (Z=8.68; P=1.98 x 10718; data not shown), as
did the case-control analysis (x2=150.46; P=1.4 x 10734). In the APOE conditional linkage
analysis, many loci that were significant in the unadjusted analysis remained significant;
however, some loci were significant only in the presence of the APOE ¢4 allele. Five SNPs
within a 5-cMregion surrounding APOE provided LOD scores ranging from 3.06 to 4.84.
Outside the APOE region, rs1482258 (located at 16¢21), rs798485 (7p22.3), and rs985942
(8g12.1) had LOD scores suggestive of linkage. Some SNPs were found to be significant in
the APOE &4 conditional linkage analysis only, including rs2034222 (located at 5p; 31.31cM),
rs1349710 (6q; 144.87 cM), rs189811 (7q; 185.95 cM), and rs337663 (12q; 101.97cM);
19g13.32 showed the strongest multipoint LOD score (11.5). (Additional figures are available
from the authors upon request.)

COMMENT

Using the NIA-LOAD family data set, we identified loci that may contain genetic variants
related to the risk of LOAD. Not surprisingly, the APOE locus was identified and remains the
most consistently replicated genetic risk factor for LOAD. Multiple candidate loci were
identified from linkage and association analyses, but the results obtained from the family-based
linkage and association analyses shared little overlap with the results from the case-control
analysis (Table 4). The sample size for the case-control set provided 68% power to detect an
allelic association at a significance level of .001, assuming an allele frequency of 0.3, risk ratio
of 1.5, and genotyping error of 0.1%. Thus, it is possible that reduced power was a factor
contributing to the observed differences.

Linkage analysis tests the cosegregation of the disease and genetic markers within families,
without reference to a specific allele, and this method is powerful in diseases that conform to
mendelian inheritance. In contrast, association analysis determines the excess transmission of
a specific allele to affected individuals within families or cooccurrence of the specific allele
among cases compared with unrelated individuals without disease.27 Itis possible to observe
an allelic association in the absence of linkage when the allele frequency is high. Without dense
SNP coverage, it is possible to miss allelic associations, even in the presence of Ilnkage Gene
identification for common diseases is difficult when a single method is applled 8-30. ; thus, it
is optimal to apply linkage as well as association analyses when the data are avallable.

There continues to be support for linkage for LOAD at 6p, 9q, 10q, 12p, and 19q, but |t has
been extraordinarily difficult to identify the specific genes at each locus (see Kamboh3 for
review). Moreover, there is little concordance between case-control and family-based linkage
or association studies suggesting clinical and genetic heterogeneity. For example, variants in
the alpha-2-macroglobulin gene (A2M); catenin alpha 3 gene (CTNNA3); plasminogen
activator, urokinase gene (PLAU); insulin-degrading enzyme gene (IDE); glutathione S-
transferase omega 1 and 2 genes (GSTO1 and GSTO2); and glyceraldehyde-3-phosphate
dehydrogenase gene (GAPDH) have been identified in family-based or case-control studies
but lack consistent replication. Loci in a broad region of 12p11 to l2q13 may contain genetic
variants for LOAD, including GAPDH32 and LRPS6 at 12p13. 31,8 but both remain
unconfirmed. In addition, several other genetic variants surrounding a locus at 10g24 have
been related to LOAD.33-36 Linkage to LOAD and plasma amyloid {3 at 10924 were reported.
37-39 j et al4041 found support for an assomatlon with GSTO1 and GSTO?2 at 10g25.1 with
LOAD, but neither finding has been confirmed,#2 and a new variant in the ribosomal protein
S3A gene (RPS3A, located at 4931.3) has been reported 3 The locus on 9p21-22 has also
eluded identification, but an association between LOAD and variants in the ubiquilin 1 gene
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(UBQLNZ1) at 9922 have been described#4:45 and confirmed in at least one study.46 However,
other studies do not support this finding.47v48

Putative loci in our report overlap with some of those compiled by Bertram and
colleagues49 (http://www.alzgene.org), but many will remain unconfirmed. For independent
confirmation without performing additional genotyping, we compared the findings from the
publicly available LOAD data set from TGen against the findings from the present study. We
found similar associations proximal to 7931.1 and 20q13.33 in the NIA-LOAD data set.
Second, we investigated candidate genes associated with LOAD using SNPs that were near or
within these genes. As recommended, markers from previously implicated regions were treated
differently from markers for which there was no prior evidence of an association.20 We
investigated 18 such candidates and found that at least 1 SNP at 12p13.2 (LRP6), 11923.3
(SORL1), 17¢923.2 (ACE), and 14924.2 (PSEN1) was modestly associated with AD, with P
values ranging from .004 to more than .05 (Table 5). Although none of these findings would
survive a conservative correction for multiple testing, this exercise demonstrates the
consistency in our findings and the value of this well-characterized data set for discovery or
confirmation of genetic variants predisposing to LOAD.
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Figure 1.

Multipoint logarithm of odds (LOD) scores for late-onset Alzheimer disease (LOAD). A,
Multipoint LOD scores for a broad definition of LOAD (ie, definite, probable, and possible).
Results for all 22 chromosomes are shown on a single graph. Single-nucleotide polymorphisms
(SNPs) near the gene for apolipoprotein E (APOE) at 19913.31-2 had the highest LOD scores.
Additional SNP clusters at 7p22.1, 8p21.3, 6921, and 18q12.2 also had LOD scores of 2.0 or
greater in 1 of the analyses. B, Multipoint LOD scores for a narrow definition of LOAD (ie,
definite and probable). Results for all 22 chromosomes are shown on a single graph.
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Figure 2.

Family-based association test (FBAT) analysis using broad (ie, definite, probable, and
possible) and narrow (ie, definite and probable) definitions of late-onset Alzheimer disease
(LOAD). The —logo(P) represents logarithm-transformed P values for the Z scores from the
FBAT analysis. The single-nucleotide polymorphisms (SNPs) at 22q11.21 showed the
strongest association (P=.000063). An SNP proximal to 17g21.31 was also strongly associated
with LOAD, a marker near the gene encoding tau at 17g21.1. Under the narrow definition, 9
SNPs had P values less than .001. At 8p21.3, SNP rs4427168 showed the most significant
association with LOAD (P=.000174). This SNP and rs174345 at 22q11.21 were associated
with LOAD under both disease definitions.
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Characteristics of Families With LOAD Included in the Genomewide Scan

Page 13

Family-Based Analyses

Individuals or Families (n=1902
Individuals or 328 Families)

Alzheimer disease, No. (%)b or No.
Broad definition® 776 (40.8)
Narrow definitiond 665 (34.9)
Unaffected 873 (45.9)
Unknown 253 (13.3)
Mean (SD) age at onset, y© 73.9 (7.5)
Mean (SD) No. of patients per family 2.4 (0.68)

%Affected persons per family, No. (%)

>5 6(1.8)
16 (4.9)

3 69 (21)

2 237 (72.3)
Women, No. (%) 1183 (62.2)°
APOE allele frequency, %

&4 30.9

€3 65.5

€2 35

Case-Control Analyses

Patients? (n=328)

320
319
NA
NA
733(7.1)
NA

NA
NA
NA
NA

203 (61.9)

43.1
53.7
3.2

Controls (n=236)

NA
NA
237
NA
78.1(9.1)
NA

NA
NA
NA
NA

138 (58.5)

9.5
80.7
9.8

Abbreviations: APOE, apolipoprotein E gene; LOAD, late-onset Alzheimer disease; NA, not applicable.

a . . . . .
One patient from each family was chosen as the case for the case-control analysis. In most instances, this was the proband.

bBased on a total of 1902 individuals.

clncludes possible, probable, and definite LOAD.

dFor linkage analyses including the narrow definition of affected (ie, probable and definite LOAD), individuals with possible LOAD were reclassified as

unknown.
e -
For the case-control data set, age at the last evaluation is presented.

fBased on a total of 328 families.
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