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Signal transduction underlies how living organisms detect and respond to stimuli. A goal of
synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense
environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK
protein components are typically comprised of multiple, relatively modular, and conserved
domains. Phosphate transfer between these components may exhibit considerable cross talk
between the otherwise apparently linear pathways, thereby establishing networks that integrate
multiple signals. We show that sequence conservation and cross talk can extend across kingdoms
and can be exploited to produce a synthetic plant signal transduction system. In response to HK
cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to
the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-
VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In
response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic
PlantPho promoter, and activates gene expression. These results show that conserved-signaling
components can be used across kingdoms and adapted to produce synthetic eukaryotic signal
transduction pathways.
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Introduction

Living organisms sense and respond to their environments
using an array of signal transduction systems. Better under-
standing of natural signaling, as well as ‘rewiring’ systems to
produce new biological functions and potential biotechnolo-
gical applications, are goals of synthetic biology. Bacteria,
fungi, and plants use histidine kinase (HK) or two-component
systems to sense environmental factors, such as the presence
of ligands, osmotic and oxidative conditions, or pathogenic
factors (Stock et al, 2000; Mizuno, 2005; Nemecek et al, 2006).
HK-based signal transduction systems exhibit relatively
modular architecture built from a limited number of protein
domains, with individual domains often conserved across
pathways and species (Koretke et al, 2000; Stock et al, 2000;
Ferreira and Kieber, 2005; Mizuno, 2005; Zhang and Shi,
2005). Information transfer in signal transduction systems
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may not be linear; components can exhibit cross talk to
establish networks that integrate multiple signals (Hass et al,
2004; Laub and Goulian, 2007). Modular components and the
cross talk between them are postulated to be crucial in the
evolution of complex signal transduction pathways (Aharoni
et al, 2005; Bhattacharyya et al, 2006). For example, new
connectivities are thought to have evolved through the
(re)arrangement of components in various combinations and
compositions (Aharoni et al, 2005; Bhattacharyya et al, 2006).

In bacteria, fungi, and plants, extracellular stimuli bring
about a conformational change in HK dimers located in an
‘input layer’ (Figure 1). This conformational change results in
autophosphorylation of a His residue in the HK cytoplasmic
domain. The resulting high-energy phosphate group serves as
a signal, and is transferred successively between His and Asp
residues among various protein components of a pathway. In
bacteria, simple systems are found, in which two proteins
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Comparison of HK signal transduction systems from plants and bacteria. Ligands bind to the extracellular domain of transmembrane HKs and activate a

cytoplasmic kinase domain. A phospho-relay (His — Asp in bacteria or His — Asp — His — Asp in plants) transmits the signal to DNA. Both systems can be defined as
perceiving an input stimulus (input layer), transmitting the signal (transmission layer), and bringing about a response (response layer), but use different numbers of
components. In simple bacterial systems (right panel), two proteins (HK and RRs) function in three layers. In plants (left panel), cytokinin responses involve multiple
components that are each encoded by multigene families in these three layers. AHK, arabidopsis histidine kinase; AHP, arabidopsis histidine phosphotransfer protein;
CK, cytokinin; HK, histidine kinase; H, histidine residue; D, aspartate residue; P, phosphate group; CRF, cytokinin response factor; ARR, Arabidopsis response regulator;

A, bacterial HK ligand.

are sufficient to sense stimuli and initiate transcriptional
responses. In this arrangement, a transmembrane HK phos-
phorylates an intracellular response regulator (RR) protein
that initiates gene transcription (Figure 1).

More complex, hybrid systems, which involve additional
components, are also found in bacteria and in plants. In hybrid
systems, the high-energy phosphate can cascade through three
or more proteins in a ‘transmission layer’ before reaching the
‘response layer’ (Figure 1). For example, in plants, cytokinin
sensing involves transmembrane HKs that first transfer a high-
energy phosphate group intra-molecularly from the autopho-
sphorylated His to an Asp residue (Figure 1) (Kakimoto, 2003;
Ferreira and Kieber, 2005). Subsequently, the phosphate group
is transmitted to a His residue on a separate protein, histidine
phosphotransferase (Hpt, or in Arabidopsis, AHPs). Phospho-
AHPs either directly translocate to the nucleus or signal to
cytoplasmically localized cytokinin response factors that also
translocate to the nucleus. In the nucleus, both pathways
result in transcriptional activation (Rashotte et al, 2006).

The added components and complexity used in hybrid
systems, such as plant cytokinin perception, are hypothesized
to enable greater ability to regulate input from stimuli,
compared with the simpler systems (Appleby et al, 1996).
However, the added complexity significantly complicates
rational design of synthetic signal transduction pathways.
Designing a synthetic signal transduction pathway in a
complex eukaryotic system presents two additional chal-
lenges. First, the various signal transduction components are
encoded by multigene families that are typically differentially
regulated (Mason et al, 2005; Hutchison et al, 2006). Second,
signals from environmental stimuli must be transferred not
only to a cell’s interior, but also from the cytoplasm to the
nucleus, providing means for sub-cellular regulation.
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HK-based-signaling components are highly modular and
conserved across different kingdoms (Koretke et al, 2000;
Stock et al, 2000; Santos and Shiozaki, 2001; Ferreira and
Kieber, 2005; Mizuno, 2005; Zhang and Shi, 2005). This high
degree of sequence conservation has allowed functional
assays to be developed for plant HKs and AHPs in bacteria
and yeast (Inoue et al, 2001; Yamada et al, 2001; Reiser et al,
2003). Conservation and modularity can be further seen in an
alignment of the receiver domain from the bacterial RRs, PhoB
and OmpR, with the receiver domains of multiple plant HK
components (Supplementary Figure S1). These plant compo-
nents function in different parts of the HK response, for
example membrane-localized HKs, and cytoplasmic and
nuclear-localized Arabidopsis RRs. This suggests that these
bacterial components might be able to interact with plant HK
components. We tested this hypothesis by heterologous
expression of PhoB and OmpR in Arabidopsis and found that
these proteins are sensitive to phosphate signals from
endogenous cytokinin-mediated HK-signaling components.
We further found that these bacterial proteins translocate to
the plant nucleus in response to this cytokinin signal. In
Escherichia coli, phosphorylation of PhoB results in a
conformational change in the protein that uncovers a DNA-
binding domain, which has high affinity for a specific DNA
sequence, the Pho box. Binding of phospho-PhoB to Pho boxes
results in gene transcription (Blanco et al, 2002; Bachhawat
et al, 2005). We exploited the cytokinin-dependent nuclear
translocation and phospho-dependent DNA binding of PhoB,
and added a eukaryotic transcriptional activation domain
to produce a signal-dependent eukaryotic transcriptional
response system. In response to an activated HK, PhoB-VP64
translocates to the nucleus, binds a synthetic PhoB-respon-
sive plant promoter, and activates transcription of the
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B-glucuronidase (GUS) reporter gene. These results show that
conserved-signaling components can be used across kingdoms
and adapted to provide key components of synthetic signal
transduction pathways in eukaryotes.

Results

Nuclear translocation of bacterial RRs

The requirement for nuclear translocation of a phosphorylated
carrier protein is a key difference between bacterial and plant
HK-based signal transduction systems (Figure 1). As the first
step in building a synthetic signal transduction pathway with a
reduced number of components, such as those found in
bacteria, we examined the cellular partition of bacterial
transmission layer components in response to activation of a
plant HK-signaling pathway. In plants, cytokinin binds to and
activates transmembrane HKs, initiating an intracellular
phospho-relay, in which transmission layer proteins (Hpts)
translocate to the nucleus (Hutchison et al, 2006). To assess
whether heterologously expressed RRs and Hpts respond to
cytokinin in a similar way, we constructed C-terminal GFP
fusions of the bacterial RRs: OmpR (Mizuno et al, 1982;
Wurtzel et al, 1982), PhoB (Makino et al, 1986, 1989), RcsB
(Chen et al, 2001), the putative Hpt YojN (Chen et al, 2001),
and the yeast Hpt Ypd1 (Posas et al, 1996). In transient assays,
we found that PhoB and OmpR appeared to show signal-
dependent nuclear translocation in plant cells, whereas the
responses of ResB, YojN, and Ypd1l were equivocal (data not
shown). We, therefore, focused our subsequent work on PhoB
and OmpR.

Transgenic Arabidopsis plants were generated that consti-
tutively expressed either PhoB-GFP or OmpR-GFP. Figure 2
shows epi-fluorescence images of PhoB-GFP in transgenic
plants in the presence or absence of exogenously added
cytokinin (for OmpR-GFP see Supplementary Figure S2).
Control plants containing GFP alone exhibited a diffuse
fluorescence pattern and showed no change in sub-cellular
localization in response to cytokinin (data not shown). Before
cytokinin addition, plants containing either PhoB-GFP or
OmpR-GFP have fluorescence that is diffused and uniform in
all tissues and within the cell’s cytoplasm and nucleus (Figure
2A and D; Supplementary Figure S2). After treatment with
cytokinin, GFP fluorescence from the PhoB-GFP fusion is
found in discrete punctate compartments (Figure 2B, C and E;
for OmpR-GFP see Supplementary Figure S2). This pattern of
cytokinin-dependent PhoB-GFP localization was observed in
all cells, tissues, and developmental stages examined (Figures
2 and 3). To determine whether these punctate compartments
correspond to nuclei, tissues were stained with the DNA dye
DAPI (4',6-diamidino-2-phenylindole) (Figures 2F-H, 3D and H).
Compartmentalized GFP fluorescence co-localizes with the DAPI
stain, indicating that PhoB-GFP translocates to the plant nucleus
or accumulates at the nuclear membrane. OmpR-GFP had a
similar, albeit weaker, response (Supplementary Figure S2).
Cytokinin-dependent nuclear translocation of PhoB-GFP is
observed with as little as 0.01 uM t-zeatin, although a more
consistent and widespread nuclear localization is seen with 1 and
10 uM t-zeatin (Supplementary Table 1). We also investigated the
time course for nuclear translocation of PhoB-GFP in root cells in
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Figure 2 Bacterial RR PhoB translocates to plant nuclei in root cells in
response to HK activation with exogenous cytokinin. (A, B) Cellular localization
of PhoB-GFP in roots of transgenic Arabidopsis plants. (A) Before cytokinin
treatment, PhoB-GFP fluorescence appears diffused and throughout the cells.
(B) After exogenous cytokinin treatment, the same root shows PhoB-GFP
accumulation in sub-cellular compartments. (C-H) Detail views of roots (D, G)
before and (C, E, F, H) after treatment with cytokinin showing that before
cytokinin is applied, GFP fluorescence is diffused; after cytokinin exposure,
the compartments in which PhoB-GFP accumulates (C, E) also stain with
DAPI (F, H), indicating that they are nuclei (arrowheads). —CK, tissue before
cytokinin treatment; + CK, tissue after cytokinin treatment; DAPI, tissues treated
with DAPI to stain DNA. Scale bars, 50 um in (A-C, F); scale bars, 10 um in
(D-E, G-H).
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Figure 3 PhoB also translocates to plant nuclei in leaf and crown cells in response to HK activation with exogenous cytokinin. (A—D) Localization of PhoB-GFP in
leaves. Leaf (A) before and (B) after exogenous cytokinin treatment. (C) Close-up view of leaf showing punctate PhoB-GFP. (D) DAPI staining of the same area showing
that the punctate compartments are nuclei. (E-H) PhoB-GFP localization in the Arabidopsis crown, a stem-like region. Crown (E) before and (F) after cytokinin
treatment. (G) Close-up view of (F) showing punctate GFP localization. (H) DAPI staining of area shown in (G), indicating that punctate GFP compartments are nuclei.
Arrowheads point to nuclei. — CK, tissues before cytokinin treatment; + CK same tissue after cytokinin treatment; DAPI, tissues treated with DAPI to stain DNA. Scale

bars, 50 um in (A, B, E, F); scale bars, 10 um in (C, D, G, H).

response to 1 uM t-zeatin. Some hint of nuclear translocation of
the fusion protein is seen at our first time point, 30 min. The
PhoB-GFP punctate pattern becomes more apparent after 1 and
2 h of incubation with cytokinin, whereas after 3 h, PhoB-GFP is
mostly localized to nuclei (Supplementary Figure S3).

Confocal study

To determine whether the bacterial RRs actually move into the
nucleus or accumulate at the nuclear membrane, we examined
the fluorescence patterns in more detail using a confocal
microscope. Without exogenous cytokinin treatment, fluores-
cence from PhoB-GFP is observed throughout all sub-cellular
regions in the root cells. Densely cytoplasmic vascular cells
show more intense fluorescence and some vaguely defined
nuclei before the controlled HK activation (Figure 4A). After
activation of endogenous HKs with cytokinin, Figure 4B-D
shows that PhoB-GFP accumulated in the nucleus (for OmpR-
GFP see Supplementary Figure S2). Nuclear accumulation was
observed in all cells (e.g., both vascular and non-vascular)
(Figure 4C), and sub-micron optical sections of the nucleus
show uniform distribution of GFP fluorescence throughout
(Figure 4D). These results indicate that the bacterial RRs enter
the nucleus. Quantification of the cytokinin-stimulated
changes in PhoB-GFP cellular localization (Supplementary
Table 2) showed approximately four-fold greater accumulation
of PhoB-GFP in nuclei of the root cortical cells after cytokinin
treatment. Root vascular cells exhibited some nuclear localiza-
tion before the exogenous cytokinin treatment (Figure 4A),
consistent with the fact that those cells have higher levels of
endogenous cytokinin than the adjacent cortical cells (Aloni
et al, 2005, 2006). Nevertheless, nuclei of vascular cells also
showed a quantitative (two-fold) increase in GFP fluorescence
after cytokinin treatment (Supplementary Table 2). In contrast
to PhoB-GFP, cytokinin-induced OmpR-GFP nuclear localiza-
tion was weaker. Cytokinin-treated nuclei of cortical cells
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expressing OmpR-GFP had 1.3-fold greater GFP fluorescence,
with a similar increase observed in vascular cells.

Diffusion cannot readily account for nuclear
translocation

As both bacterial RRs are small (27 kDa), their signal-
dependent nuclear translocation could result from diffusion
combined with an enhanced affinity for DNA. We tested the
contribution of each to the signal-dependent translocation.
Both PhoB and OmpR bind specific bacterial DNA sequences
in their phosphorylated form (Okamura et al, 2000; Blanco
et al, 2002); no sequences with significant homology to PhoB-
or OmpR-binding sites were identified in the Arabidopsis
genome (data not shown). To test whether the signal-
dependent movement involves diffusion, we constructed
larger fusion proteins by adding the GUS (Jefferson et al,
1987)-coding region to the C-terminal end of the individual
bacterial RR-GFP fusion proteins. The resulting proteins,
PhoB-GFP-GUS and OmpR-GFP-GUS, have predicted molecu-
lar masses of 122 and 123 kDa, respectively. Transgenic plants
that contained PhoB-GFP-GUS or OmpR-GFP-GUS show strong
expression of the GUS reporter, confirming that the fusions
produce functional protein (data not shown). We then
examined the cellular localization of GFP fluorescence from
PhoB-GFP-GUS in roots before and after cytokinin treatment to
determine whether the bacterial RR’s nuclear translocation
occurs by diffusion or by an active process (Figure 4E-H; for
OmpR-GFP see Supplementary Figure S2). PhoB-GFP-GUS
fusion proteins accumulate in punctate compartments after
cytokinin treatment (Figure 4F and G), although to a lesser
extent than the accumulation observed for PhoB-GFP (com-
pare Figures 2B with 4F). DAPI staining confirmed that the
compartments are nuclei (Figure 4H). We have also observed
nuclear translocation of PhoB-VP64-GFP (molecular weight
59kDa) in plants using input from a synthetic HK and
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Figure 4  Analysis of signal-dependent nuclear translocation of PhoB. (A-D) Confocal microscope images of PhoB-GFP protein in roots (A) before and (B-D) after
cytokinin treatment. (C) Detail view of the boxed area in (B) shows PhoB-GFP accumulation in nuclei. (D) Detail view of the area boxed in (C), showing a single nucleus
with PhoB-GFP accumulation throughout. (E-H) Cellular localization of PhoB-GFP-GUS fusion protein in roots of transgenic Arabidopsis plants (E) before and (F-H)
after cytokinin treatment showing compartmentalized accumulation. (G) Detail view of a root treated with cytokinin, showing compartments (arrowheads) that also stain
with (H) DAPI, indicating that they are nuclei (arrowheads). — CK, plants before cytokinin treatment; + CK, same plant tissue after cytokinin treatment; DAPI, same
tissues treated with DAPI to stain DNA. Scale bars, 50 um in (A, B, E, F); scale bars, 10 um in (C, D, G, H).

computationally re-designed receptors (Antunes et al, in
preparation). Taken together, these data show that the
bacterial RRs, PhoB and OmpR, translocate into plant nuclei
in a signal-dependent manner and that the movement is
unlikely to result from diffusion.

The canonical bacterial phospho-accepting
aspartate is required for efficient nuclear
translocation

In bacteria, the high-energy phosphate signal is transmitted
from a phosphorylated His on the HK to a conserved Asp
residue on the RR (Walthers et al, 2003). We tested whether
this conserved Asp in the bacterial RRs is required for signal-
dependent nuclear translocation in planta by constructing
alanine mutations of Asp53 in PhoB and Asp55 in OmpR.
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PhoBP**A-GFP and OmpRP>*A-GFP were separately introduced
into Arabidopsis plants. Figure 5 shows the response of
PhoBP>*~-GFP in roots of transgenic plants. Before exogenous
cytokinin treatment, PhoBP**A-GFP is, in general, diffused
throughout the root cells, with some GFP fluorescence seen in
some nuclei (Figure 5A). After treatment with exogenous
cytokinins, PhoBP>*~-GFP generally did not exhibit a uniform
pattern of nuclear localization (Figure 5B) that is typical for
plants containing PhoB-GFP (for OmpRP**A-GFP see Supple-
mentary Figure S2). We examined numerous roots from at
least 10 independent transgenic lines and found that in the
presence of an exogenous cytokinin signal, PhoB"**A-GFP
shows highly variable nuclear translocation that appears
sporadic in non-vascular cells (Figure 5C-F), not at all in
leaves and mature roots, and variable in the plant crown. In
root vascular tissues, PhoBP***-GFP is in nuclei to some extent
before cytokinin treatment and appears to increase after
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Figure 5 Cellular localization of mutagenized PhoBP***-GFP in roots of transgenic Arabidopsis plants. (A) Fluorescence from PhoBPS*A-GFP is diffused in an
untreated root. (B) The same root showing PhoBP%*A-GFP localization after cytokinin treatment. (C, D) Detailed view of a root showing that nuclear localization of
PhoBP53A.GFP is variable and sporadic (arrowheads point to nuclei). (E, F) Detail view of another root showing that PhoBP***-GFP accumulates at the base of cortical
cells (arrows). Some nuclear localization of PhoBP***-GFP can be seen in the root vascular tissue (arrowheads). —CK; tissues before cytokinin treatment; -+ CK same
tissue after cytokinin treatment; DAPI, tissues treated with DAPI to stain DNA. Scale bars, 50 um in (A, B); scale bars, 10 um in (C-F).

treatment with cytokinin. This pattern mirrors the nuclear
accumulation observed for intact PhoB-GFP (see Discussion).
For OmpR-GFP, signal-dependent nuclear translocation of the
OmpRP**A.GFP mutant was not observed in non-vascular cells
and tissues (Supplementary Figure S2). In vascular tissues,
some nuclear localization was seen, but the reduced fluores-
cence made signal-dependent responses difficult to discern
(Supplementary Figure S2). These results indicate that the
phospho-accepting Asp used in bacteria is required for strong,
efficient nuclear localization of PhoB and OmpR in non-
vascular plant cells and tissues.

Building key components of a synthetic eukaryotic
signal transduction system

Eukaryotic adaptation of PhoB

In bacterial cells, phosphorylation of PhoB causes a protein
conformational change that results in removal of the N-
terminal receiver domain repression over the C-terminal
effector domain (Okamura et al, 2000; Bachhawat et al,
2005). The 99 amino-acid effector domain binds to a 22-bp Pho
box, organized into two 11-bp repeats (Blanco et al, 2002), and
functions as a transcriptional activator. If these phosphoryla-
tion-dependent conformational changes and DNA-binding
properties are conserved, PhoB could serve as a starting point
to build a synthetic plant signal transduction network using
conserved, heterologous components. The PhoB effector
domain activates transcription by recruiting the RNA Poly-
merase 70 factor in bacteria (Okamura et al, 2000). This
transcriptional activation mechanism is unlikely to work in
eukaryotes. We, therefore, engineered PhoB to function as a
eukaryotic transcriptional activator by retaining the DNA-
binding domain and fusing four copies of the eukaryotic
transcription activator VP16 (Triezenberg et al, 1988) to the
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C-terminus of PhoB. Plant expression of the PhoB-VP64 fusion
protein was directed by the strong, constitutive FMV promoter
(Sanger et al, 1990).

Design of a synthetic PhoB-responsive promoter
PhoB-regulated genes in bacteria have multiple Pho boxes in
their promoter regions (Blanco et al, 2002). Eukaryotic
promoters typically also have multiple-binding sites for
transcription factors. Hence, we designed a synthetic PlantPho
promoter (Figure 6A) using four copies of the Pho box (Blanco
et al, 2002) upstream of a minimal plant promoter (—46
CaMV35S). BLAST searches of the Pho box, as well as the
synthetic PlantPho promoter sequence, against the Arabidop-
sis genome (The Arabidopsis Information Resource,
www.tair.org) showed no homologous genomic sequences
and, therefore, the PlantPho promoter is unlikely to be
recognized by endogenous plant transcription factors.

We tested whether activation of the PlantPho promoter
requires PhoB-VP64, the signal transmission/transcriptional
activation protein, by producing transgenic lines containing
only PlantPho::GUS. GUS activity measured before and after
treatments with exogenous cytokinin to activate endogenous
HK components showed no significant differences in GUS
activity with or without exogenous cytokinin (t-test, n=36,
t=2.73, P=0.92) (Supplementary Figure S4). Therefore, the
PlantPho promoter does not respond to cytokinin in the
absence of PhoB-VP64.

Function of the synthetic PhoB-VP64 — PlantPho
system in plants

Homozygous transgenic Arabidopsis lines containing both
elements of the synthetic signal transduction system (PhoB-
VP64 and PlantPho promoter) were tested for response to HK

© 2009 EMBO and Macmillan Publishers Limited
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Figure 6 Design and function of the synthetic eukaryotic signal transduction system. (A) Diagram of PlantPho promoter, showing four Pho boxes fused to a minimal
plant promoter, the —46 region of the CaMV:35S promoter, with the nucleotide sequence of one Pho box indicated below. (B) Average GUS activity (nmoles 4-MU mg
protein h~") in transgenic plants, containing the PlantPho system as a function of cytokinin (t-zeatin) concentration. Error bars indicate + one standard error. (C) Linear
increase in GUS activity (nmoles 4-MUmg~" proteinh~") with t-zeatin concentration. 4-MU, 4-methylumbeliiferone.

activation with exogenous cytokinin (t-zeatin). Cytokinin-
dependent GUS induction was observed in transgenic plants
with the synthetic components (Figure 6B). Moreover, the
response is dose dependent with more cytokinin producing
increased GUS activity. The response did, however, show
significant variability. To confirm that the observed induction
correlates with the cytokinin signal, we statistically analyzed
our data with linear regression. A highly significant relation-
ship was observed between cytokinin dose and GUS activity
(n=119, F=37.99, P=1.02 x10~%, R*=0.24) (Figure 6C). In
addition, other cytokinins that activate the HK signal pathway,
such as kinetin and BAP (Yamada et al, 2001; Spichal et al,
2004), also activate the PlantPho promoter, producing GUS
induction levels similar to those obtained with t-zeatin
(Supplementary Figure S5).

To determine whether transcriptional activation depends on
phospho-relay through PhoB, transgenic Arabidopsis plants
were constructed containing PlantPho:: GUS and PhoB-VP64, in
which the phospho-accepting Asp53 was mutated to alanine.
Eight independent transgenic lines were analyzed for cytokinin-
dependent activation of the PlantPho promoter (Supplementary
Figure S6). Five of the eight lines showed no difference in GUS
activity with or without exposure to exogenous cytokinin. Three
independent transgenic lines showed variable patterns of
induction and/or repression in progeny from the individual
lines. Statistical analyses of the eight transgenic lines indicate
that the PhoBP**# mutation largely prevents cytokinin-induced
GUS activity (Supplementary Table 3).

Discussion

Synthetic signal transduction systems will allow us to better
understand the behavior of endogenous systems and produce
new types of biological sensing and responses. Earlier work
toward this end used modular components from endogenous
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signal transduction systems to change the input-output
connectivity in yeast cells (Zarrinpar et al, 2003; Dueber
et al, 2004), and rational changes in protein specificity were
used to rewire a bacterial two-component signal transduction
system (Skerker et al, 2008). In higher organisms, the
complexity of signal transduction processes presents a
considerable challenge to design synthetic systems. The signal
transduction process can be viewed as three connected
functional layers: input — transmission —response (Figure 1).
However, eukaryotic signal transduction systems are not
linear; each layer has multiple proteins that are themselves
often composed of multiple functional domains and typically
encoded by multigene families.

As these complex signal transduction systems are thought to
have arisen from new combinations of protein domains
(Bhattacharyya et al, 2006), we tested whether conserved
modular domains from highly evolved bacterial systems could
retain functionality in a eukaryotic system. The requirement for
nuclear translocation of a phosphorylated carrier protein is a
key difference between bacteria and plant HK signal transduc-
tion systems. We discovered that PhoB-GFP and OmpR-GFP can
translocate to the plant cell nucleus in response to a cytokinin-
induced HK signal. We used this discovery, detailed knowledge
about phospho-PhoB’s affinity for DNA, and known DNA-
binding sites to re-design the bacterial RR for eukaryotic
function. A eukaryotic transcriptional activator was added to
the C-terminal end of PhoB and a signal-receptive transcrip-
tional promoter designed for plant function. The synthetic
PhoB-VP64 — PlantPho:: GUS system responded to cytokinin-
mediated HK activation and expressed the GUS reporter.

The signal-dependent nuclear translocation of bacterial RR
seems remarkable because bacteria do not have a nuclear
compartment. To our knowledge, this is the first example in
plants of proteins from non-pathogenic bacteria showing
signal-dependent nuclear translocation. Although some Avr
proteins from plant pathogenic bacteria localize to plant cell

Molecular Systems Biology 2009 7



Components of synthetic signaling in plants
MS Antunes et a/

nuclei, these proteins have been shown to contain nuclear
localization signal (NLS) sequences (Kjemtrup et al, 2000).
The effector domain of PhoB contains an arginine-lysine-rich
region that may act as a cryptic NLS with phosphorylation-
dependent ‘uncovering’ of the DNA-binding domain. How-
ever, mutations in this region did not alter the cellular partition
of PhoB-GFP in the presence or absence of cytokinin (data not
shown). Therefore, PhoB does not appear to have a canonical
NLS sequence. Although a complete mechanistic interpreta-
tion for this signal-dependent nuclear translocation phenom-
enon awaits further experimentation, our work reveals aspects
about the process. PhoB-GFP and OmpR-GFP fusions accu-
mulate in the nucleus in a signal-dependent manner not
consistent with diffusion. Although it may not be possible to
establish an absolute size limit, small proteins <20-40kDa
are capable of nuclear diffusion, whereas larger proteins
require transport through selectivity filters provided by
phenylalanine-glycine (FG) repeats in proteins of the nuclear
pore complex (Sun et al, 2008). Our bacterial RR-GFP fusions
are ~55kDa, suggesting that they cannot diffuse into the
nucleus. In addition, after cytokinin treatment, we observed
nuclear accumulation. As the Arabidopsis genome has no
homology to PhoB’s DNA-binding sequence, the signal-
dependent nuclear accumulation cannot be explained by
diffusion combined with DNA affinity. Collectively, these data
suggest that some type(s) of transport mechanism(s) is
involved (Figure 4E-H; Supplementary Figure S2).

In non-vascular cells, the nuclear translocation largely
required the signal-receptive Asp residue for both PhoB and
OmpR (Figures 2 and 5; Supplementary Figure S2), implying
that some aspect of the phospho-protein is required for efficient
nuclear transport. One possibility is suggested from the
conformation change that PhoB undergoes with phosphoryla-
tion in bacteria (Ellison and McCleary, 2000; Bachhawat et al,
2005). If this or a similar conformation change takes place in
planta, the receiver domain of PhoB becomes more exposed. As
PhoB’s receiver domain has homology to plant receiver
domains, plant machinery could recognize and transport the
phosphorylated PhoB to the nucleus. In response to exogenous
cytokinins, cortical cells showed variable and sporadic nuclear
localization of the mutant PhoB°**~GFP, and vascular cells
accumulated PhoBP**AGFP to some extent (Figure 5C-F).
These observations suggest that there could be various
inefficient means by which PhoB is translocated to the nucleus,
or that PhoB can be phosphorylated at other residues in plants.

In bacteria, PhoB is known to undergo a conformational
change with phosphorylation that significantly increases
affinity of this protein for its target DNA sequence, the Pho
box (Blanco et al, 2002; Bachhawat et al, 2005). We engineered
our eukaryotic PhoB-responsive promoter with four Pho boxes
located upstream of a minimal transcriptional promoter (—46
CaMV35S) (Benfey et al, 1989). We chose four PhoB-binding
sites based on other plant-inducible transcription systems that
use prokaryotic DNA-binding proteins (Padidam, 2003; Moore
et al, 2006). Experimentally determining the optimal number
of Pho boxes in the PlantPho promoter may lead to an
improved PlantPho system.

By combining PhoB-VP64 with the PlantPho promoter, we
constructed a synthetic eukaryotic signal transduction system
(PlantPho system). Activation of endogenous plant HKs with
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increasing concentrations of the cytokinin ¢-zeatin resulted in a
near linear increase in GUS activity (Figure 6B and C). The
PlantPho system showed high un-induced GUS levels with
variability at each cytokinin level tested (Figure 6B and C).
This may result from activation of the synthetic system by
endogenous cytokinin along with accumulation of the highly
stable GUS in the 2-week-old plants assayed. Also, because
vascular tissues are highly sensitive to cytokinin (Moritz and
Sundberg, 1996; Brugiere et al, 2003; Aloni et al, 2005;
Hutchison et al, 2006; Kuroha et al, 2006; Mahonen et al,
2006), and entire plants were assayed, the vascular tissues
could have high GUS levels even without induction. Consistent
with this hypothesis, we observed that both PhoB-GFP and
OmpR-GFP accumulated in the nucleus of vascular cells before
exogenous cytokinin application (Figure 4; Supplementary
Figure S2). As vascular cells already have some nuclear-
localized PhoB before cytokinin application, a signal-dependent
increase would be difficult to see in these cells. Our system
depends on promiscuous cross talk (Supplementary Figure S7)
and does not create a privileged signal transduction system, in
which one input produces one specific response. As such, in
addition to endogenous cytokinins, cross talk from other plant
HK systems, such as ethylene (Grefen and Harter, 2004), could
also contribute to the high background in GUS activity.

Here, we show that synthetic eukaryotic systems can be
produced by using conserved components from prokaryotic
systems, taking advantage of the cross talk from conserved
bacterial HK systems. Remarkably, this heterologous cross talk
is so highly conserved that plant two-component signal
transduction components can function in bacteria (Suzuki
et al, 2001; Spichal et al, 2004; Romanov et al, 2005) and
bacterial components in plants (this study). It is tempting to
speculate that cross talk coupled with horizontal gene transfer
is a conserved mechanism by which new signal transduction
systems evolve. In this model, nascent systems are initially
promiscuous and later become more specialized, not unlike
the theory of new enzyme function (Kraut et al, 2003). On one
hand, the ability to establish new connectivities from bacteria
in a higher eukaryote is remarkable. It will be interesting to
determine whether such adaptation of other conserved signal
transduction components and/or components from other
highly evolved systems can function in other eukaryotic
systems. The Pho system itself would likely function in yeast,
which has conserved HK components, whereas mammalian
cells may require a better understanding of the nuclear
translocation process. On the other hand, it is also equally
clear that the system is far from optimal. The possibility of
experimentally controlling signal transduction systems pro-
vides a useful tool for plant and other biological studies, as it
provides a means to control input and response. This
approach, along with a simple readout system (Antunes
et al, 2006), may also allow us to develop plant sentinels that
can detect chemical threats and pollutants (Looger et al, 2003).

Materials and methods

DNA constructs

GFP fusion constructs including the mutated PhoB”*A-GFP and
OmpRP>*A.GFP fusions were assembled in the binary vector pCB302-3
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(Xiang et al, 1999). The PlantPho system (FMV::PhoB-VP64 and
PlantPho:: GUS) was assembled in the pCAMBIA2300 binary vector.
Oligonucleotide primers were synthesized by IDT (Coralville, IA). GFP
fusions were initially made in a modified psmGFP vector (TAIR CD3-
326). The 5 end of smGFP was modified using primers (5'-TCTC
GGATCCAAGGAGATATACATATGAGT-3" and 5-ATTCGAGCTCTTATTT
GTATAGTTCATC-3') to introduce an Ndel site (underlined). This site
was used to make C-terminal smGFP fusions. All PCR reactions were
performed using a High Fidelity polymerase (Roche Diagnostics,
Indianapolis, IN). The resulting product was used to replace the
original smGFP gene in psmGFP. A lower primer removed the stop
codon from PhoB and added a six amino-acid (2 x Gly-Gly-Ser) repeat
linker. Primer set: upper, 5-TAGAGGATCCATGGCGAGACGTATTC
TGGT-3' and lower, 5'-TTTACTCATATGAGATCCTCCAGATCCTCCAAA
GCGGGT-3'. The resulting PhoB product was fused to the modified
smGFP. OmpR-GFP fusions were prepared using a similar cloning
strategy as described above for PhoB-GFP. For plant transformation,
the GFP fusions were cloned downstream of a CaMV35S promoter in
the binary vector pCB302-3.

To assemble the synthetic signal transduction component, we made
a translational fusion of PhoB-coding region to four copies of the
transcriptional activator VP16, producing PhoB-VP64. The Nos
terminator sequence was added and the resulting PhoB-VP64-nos
fragment was sub-cloned into pCAMBIA2300 containing the FMV
promoter. The synthetic PlantPho promoter (Figure 6A) was synthe-
sized by BlueHeron Biotechnology (Bothell, WA) and fused to a GUS
gene and Nos terminator in pBluescript. PlantPho:: GUS-nos was then
sub-cloned into p2300-FMV::Pho-VP64-nos. A transcription block
(Padidam and Cao, 2001) was placed between the two genes to
prevent read through.

Site-directed mutagenesis

Asp residues at position 53 in PhoB and position 55 in OmpR were
mutagenized to Ala using the QuikChange site-directed mutagenesis
kit (Stratagene, La Jolla, CA).

Plant materials and transformation

Arabidopsis thaliana, ecotype Columbia (Col-0), grown under a 16-h
light/8-h dark cycle, 25 + 2°C, photon density flux of ~100 uEm*s
was used for experiments. Plants were transformed with Agrobacter-
ium GV3011 harboring the plasmids described above following
standard procedures (Clough and Bent, 1998). The T, seeds were
sterilized and plated on MS media supplemented with 50 mgl '
kanamycin sulfate (Sigma-Aldrich, St. Louis, MO) for selection of the
pCAMBIA 2300 T-DNA, or 5 mgl*1 Glufosinate ammonium (BASTA)
(Crescent Chemical Islandia, NY) for selection of the pCB302-3 T-DNA.

Fluorometric GUS assays

Fourteen-day-old plants or plant tissue containing the T-DNAs
described above were incubated for 16 h in water (control), or water
and t-zeatin. Total protein extraction and fluorometric measurements
of GUS activity were performed on a DynaQuant 200 fluorometer
(Hoefer Inc, San Francisco, CA), according to the methods described
earlier (Gallagher, 1992). The 4-methylumbelliferone (4-MU) was used
as a standard. GUS activity was normalized to the total protein content
of samples and expressed as nmoles 4-MUmg ' proteinh~'. Total
protein content of samples was measured with the Bradford reagent
(Bio-Rad Laboratories, Hercules, CA).

Statistical analyses

Statistical analyses were performed using JMP software, v. 6.0.3 (SAS
Institute, Cary, NC). A t-test was used to analyze GUS activity resulting
from induction of the PlantPho promoter alone. For the linear
regression, the dependent variable was the log (measured GUS activity
(nmoles 4-MU mg " proteinh™')), and the independent variable was
log (t-zeatin concentrations + 1) treated as a fixed effect. We used a
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log-log transformation to meet the assumption of normally distributed
residuals and added one to the cytokinin concentrations to account for
zero values. All the assumptions of parametric statistics were tested
and met after transformation. For statistical analysis of the mutant
PhoBP>** PlantPho system, because data were not normally distrib-
uted, non-parametric tests were used. Wilcoxon signed-rank tests were
used to determine whether the difference between GUS activity in
induced and non-induced tissues (paired data) were significantly
different from zero. Bonferroni correction was used to account for
potentially spurious significant results as a result of multiple tests of
the T,-lines.

Observation of GFP expression

Nuclear translocation of the GFP-tagged proteins (and GFP control)
was observed either under a Nikon Diaphot fluorescence microscope,
or a Carl Zeiss LSM 510 META confocal microscope, as described by
Morey et al, 2009. Tissues were also stained with 1ngpl™ DAPI
(Sigma-Aldrich, St Louis, MO) for 10 min.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (Www.nature.com/msb).
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