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Abstract Protein tyrosine phosphatases (PTPs) are central
players in many different cellular processes and their
aberrant activity is associated with multiple human pathol-
ogies. In this review, we present current knowledge on the
PTPRR subfamily of classical PTPs that is expressed in
neuronal cells and comprises receptor-type (PTPBR7, PTP-
SL) as well as cytosolic (PTPPBSγ-37, PTPPBSγ-42)
isoforms. The two receptor-type isoforms PTPBR7 and
PTP-SL both localize in late endosomes and the Golgi area.
PTPBR7, however, is additionally localized at the cell
surface and on early endosomes. During cerebellar matura-
tion, PTPBR7 expression in developing Purkinje cells ceases
and is replaced by PTP-SL expression in the mature Purkinje
cells. All PTPRR isoforms contain a kinase interacting motif
that makes them mitogen-activated protein kinase phospha-
tases. The distinct subcellular localization of the different
PTPRR isoforms may reflect differential roles in growth-
factor-induced MAPK-mediated retrograde signaling cas-
cades. Studies in PTPRR-deficient mice established that
PTPRR isoforms are physiological regulators of MAPK
phosphorylation levels. Surprisingly, PTPRR-deficient mice

display defects in motor coordination and balancing skills,
while cerebellar morphological abnormalities, which are
often encountered in ataxic mouse models, are absent. This is
reminiscent of the phenotype observed in a handful of mouse
mutants that have alterations in cerebellar calcium ion
homeostasis. Elucidation of the molecular mechanisms by
which PTPRR deficiency imposes impairment of cerebellar
neurons and motor coordination may provide candidate
molecules for hereditary cerebellar ataxias that still await
identification of the corresponding disease genes.
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Introduction

Reversible tyrosine phosphorylation is a powerful mecha-
nism to regulate protein-mediated processes that steer the
proliferation, differentiation and functioning of cells and the
development, homeostasis and functioning of multicellular
organisms. Protein tyrosine phosphatases (PTPs) and
protein tyrosine kinases are the enzyme classes that are
instrumental in controlling the spatial and temporal ratio of
tyrosine-phosphorylated and non-phosphorylated targets
and thus coordinately regulate cellular responses to intra-
and extracellular cues. Tyrosine phosphatases can be
roughly divided into two distinct groups: the truly phos-
photyrosine-specific PTPs on the one hand and the dual-
specificity phosphatases (DSPs) on the other [1, 2]. DSPs
can dephosphorylate phosphoserine and phosphothreonine
in addition to phosphotyrosine residues, and some are also
active against phospholipids [3]. The classical, phosphotyr-
osine-specific PTPs consist of a subgroup that possesses a
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transmembrane domain, a receptor-like extracellular region
and one or two catalytic PTP domains and a second
subgroup that is non-transmembrane and mostly cytoplas-
mic in location [4]. The non-transmembrane PTPs and
DSPs all contain a single catalytic PTP domain. This ~250-
residue-long PTP domain is highly conserved and contains
an essential cysteine residue within its active site that is
used in a cyteinyl-phosphate enzyme intermediate during
dephosphorylation [5].

How PTP activity is regulated is still subject of intense
investigation, but mechanisms include alternative mRNA
splicing, modulation of steady state levels, posttranslational
modification (including phosphorylation), dimerization and/
or subcellular confinement [6]. With regard to the physio-
logical functions of individual PTPs, also much more work
needs to be done. Many studies at the cellular level are
hampered by the very low endogenous expression levels of
PTPs and their firm catalytic activity that is some log orders
of magnitude over that of kinases. In combination, this may
cause overexpression artifacts in transfected cell-based
readouts, and thus, it should come as no surprise that most
information on PTP functioning resulted from studies of
mammalian pathologies or via exploitation of genetically
modified animal models [4]. In this paper, we will review
the current knowledge on the neuronal, phosphotyrosine-
specific PTP isoforms that are encoded by the gene Ptprr in
mouse and PTPRR in man. This gene and its products may
be of particular relevance to cerebellar function, as rodent
postnatal cerebellar Purkinje cells express a unique PTPRR
isoform (PTP-SL) and Ptprr knockout mice display an
ataxia phenotype. We will focus on the ways that confine
and regulate PTPRR enzymatic activity, most notably the
distinct subcellular locations displayed by the various
isoforms, and will elaborate on the motor coordination
defect displayed by PTPRR-deficient mice.

Protein Tyrosine Phosphatase Receptor-Type R
Isoforms

PTPRR gene orthologues are present in many vertebrates
and homologous genes can still be found in distant species
like Drosophila (Table 1) [7–10]. Interestingly, like in

human and rat, the mouse Ptprr gene gives rise to multiple
neuronal PTPRR protein isoforms [11, 12]. Four different
transcripts (represented by PTPBR7, PTP-SL, PTPPBSγ+,
and PTPPBSγ− cDNAs) have been identified [7, 13, 14]
that result from the differential use of three distinct
transcription start sites [12, 15] and the alternative inclusion
of a 117-nucleotide sequence stretch in the unique 5′ UTR
of the shortest mRNA (PTPPBSγ [7]. In situ hybridization
studies, Northern blot experiments, and reverse transcrip-
tion polymerase chain reaction (RT-PCR) analyses have
gathered RNA expression data for these individual tran-
scripts. PTPBR7 messengers are expressed during early
embryogenesis in spinal ganglia and Purkinje cells (PCs).
PTP-SL transcripts are not present during prenatal devel-
opment, but postnatally, PTP-SL transcripts replace the
decreasing PTPBR7 levels in PCs [15]. PTPBR7 expres-
sion persists in all other brain regions after birth. Trace
amounts of PTP-SL messengers are present in midbrain,
brainstem, and cortex, but firm expression is exclusively in
adult cerebellar PCs (Fig. 1a). Intriguingly, this cell-specific
expression pattern is fully conserved in rat [8, 9]. Mouse
PTPPBSγ variants are expressed at extremely low levels
throughout the brain. In fact, they represent the only Ptprr
transcripts that have been detected in non-neuronal tissues;
trace amounts have been detected in the gastrointestinal
tract and in developing cartilage [7, 12]. Unfortunately,
most cell lines in culture do not express PTPRR-encoding
transcripts. Thus far, only in the rat neuroendocrine PC12
cells has a Ptprr-derived transcript, the one that encodes the
receptor-type protein isoform PCPTP1, been detected [9, 16].

The different Ptprr transcripts give rise to multiple
PTPRR protein isoforms (Fig. 1b). Mutagenesis studies
revealed exactly which AUG start codons are being used in
the various Ptprr mRNAs [12]. Intriguingly, the second as
well as the third start site in the two types of PTPPBSγ
mRNAs are preferred by the ribosomes, generating iso-
forms PTPPBSγ-42 and PTPPBSγ-37 with sizes of 42 and
37 kDa, respectively. PTPBR7 and PTP-SL are 72 and
60 kDa in size, respectively. PTPBR7 is a classical type I
transmembrane protein: its functional signal-peptide is
cleaved of in the endoplasmic reticulum (ER) and a
hydrophobic segment further on in the protein functions
as transmembrane anchor. The PTP-SL isoform contains

Table 1 PTPRR nomenclature
in various species Species Homo sapiens Mus musculus Rattus norvegicus Drosophila melanogaster

Gene PTPRR Ptprr Ptprr PTP-ER
(position) 12q15 10A2 7q22 2(57F)
Protein isoforms PTPPBSα PTPBR7 PCPTP1 –

PTPPBSβ PTP-SL PCPTP1-Ce –
PTPPBSγ PTPPBSγ42 – PTP-ER
– PTPPBSγ37 – –
PTPPBSδ – – –
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two hydrophobic regions in the N-terminal part, which led
originally to the prediction that it also would be a type I
transmembrane protein [13]. However, subsequent studies
revealed that PTP-SL is lacking a functional signal peptide
and thus may be a membrane-associated protein [15]. Only
recently, the use of a selective cell permeabilization method
in combination with dedicated antisera directed against
PTPRR domains allowed the determination of PTP-SL’s
exact membrane topology to be a type III transmembrane
protein [17]. The two smallest isoforms, PTPPBSγ-42 and
PTPPBSγ-37, are located in the cytosol. Interestingly, the
two receptor-type isoforms, PTPBR7 and PTP-SL, form
homo- and heteromeric complexes, whereas the cytosolic
species PTPPBSγ-42 and PTPPBSγ-37 cannot. Further-
more, in line with data for a number of other RPTPs, the
enzymatic activity of PTPRR monomers towards an
artificial substrate decreased significantly upon multimeri-
zation [17]. This opens up the possibility that the activity of
the receptor-type PTPRR isoforms can be modulated
through ligand binding. Ligand hunting strategies using

tagged PTPBR7 ectodomain fusion proteins [18] may serve
in the identification of such molecules.

PTPRR Can Bind and Inactivate Mitogen-Activated
Protein Kinases

Growth factor binding induces dimerization of their
receptor tyrosine kinase (RTK), which results in increased
kinase activity and the generation of phosphotyrosine sites
on the RTK cytosolic portion that serve as docking sites for
interacting proteins [19, 20]. The consequent recruitment,
assembly, and phosphorylation of these downstream sig-
naling complexes, in turn, switches on many different
signaling pathways, including the intensively studied
mitogen-activated protein kinase (MAPK) cascades [20].
MAPK pathways are organized into three layers of
consecutive acting kinases that through the dual kinase
specificity of MAPK-kinases lead to the phosphorylation of
two regulatory residues (pT-X-pY) in MAPKs, serine/

Fig. 1. PTPRR isoforms are expressed in the brain and interact with
MAPKs. a PTPRR mRNA levels in adult mouse brain. A sagittal
section demonstrating high transcript levels in the hippocampal area
and most notably cerebellar Purkinje cells, extracted from the Allen
Brain Atlas [72]. b Schematic representation of the different mouse
PTPRR protein isoforms. Protein names and lengths, in amino acid
residue numbers (aa), are on the left. SP signal peptide, HR
hydrophobic region, TM transmembrane region, KIM kinase interact-

ing motif, PTP protein tyrosine phosphatase domain. c MAPK
localization in the cytoplasm and into the nucleus depends on the
balance between growth factor activation and KIM-containing PTP
inhibition. Activated PKAwill prevent the PTPRR–MAPK association
by phosphorylation of the KIM domain [34]. RTK receptor tyrosine
kinase, MAPKKK MAPKK kinase, MAPKK MAPK kinase, MAPK
mitogen-activated protein kinase
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threonine kinases that continuously shuttle between the
nucleus and the cytoplasm (Fig. 1c). Once activated by dual
phosphorylation, MAPKs can phosphorylate a wide range
of cytosolic and nuclear substrates [21, 22]. Termination of
MAPK signaling thus can be achieved, in principle, by
phosphatases that are either serine/threonine-specific (PP
phosphatases), tyrosine-specific (classical PTPs), or of the
dual-specificity type (DSPs) [23–25]. The subcellular local-
ization and activity of such MAPK phosphatases is highly
relevant for proper spatiotemporal control of MAPK activity
and thus a key determinant of the final cellular response
triggered by ligand-induced activation of RTKs [26, 27].

In the human genome, a subset of 11 DSP genes encode
phosphatases that are especially suited to bind, dephos-
phorylate, and thus inactivate MAPKs, and these are
generally referred to as MKPs (acronym for MAP kinase
phosphatases) [28]. An additional three genes encode
classical, tyrosine-specific PTPs capable of binding and
inactivating MAPK family members, among which PTPRR
[29]. Both the dual-specific MKPs and the tyrosine-specific
MAPK phosphatases (MAPK-PTPs) have in common the
presence of a 16-amino acid kinase interaction motif
(KIM), located just N-terminal of the phosphatase domain,
which is required for the association with MAPKs. All the
PTPRR isoforms contain such a KIM (Fig. 1b) which in
part determines the binding specificity towards the various
MAPKs [30, 31]. Association specificity is also influenced
by a small sequence that is located in between the KIM and
the PTP domain [32]. As a substrate, the MAPK-PTPs
prefer ERK1/2/5 and p38 over JNK [31–33]. Intriguingly,
overexpression of MAPK-PTPs demonstrated that they not
only are able to inactivate MAPKs but that their binding
also prevents the translocation of the MAPKs into the
nucleus [31, 34, 35]. Furthermore, upon binding to activated
MAPKs, the MAPK-PTP itself first becomes phosphorylat-
ed by the MAPK (on a threonine residue just outside the
KIM domain) before it can dephosphorylate the protein
[30]. Importantly, the interaction between the two proteins is
regulated by protein kinase A (PKA). Phosphorylation of a
conserved serine residue within the KIM domain, which can
be reversed by PP1 [36, 37], abolishes the binding and
subsequent dephosphorylation of MAPKs and results in the
release of MAPKs to the nucleus [34, 38]. This PKA-
mediated regulatory principles also hold for most of the
dual-specificity MKPs that contain a KIM-like domain [28].

Distinct Subcellular Localization for Receptor-Type
PTPRR Isoforms

The PTPRR receptor-type isoforms PTPBR7 and PTP-SL
share a commonmembrane topology [17] and both localize at
the trans-Golgi network and on endocytic vesicles [15, 39].

However, PTPBR7 is found at the cell surface, whereas
PTP-SL is not. Since detailed knowledge on their subcel-
lular localization bears relevance for retrograde signaling
cascades by endocytosed growth factor receptors, PTPBR7
and PTP-SL decorated vesicles were classified to different
stages of the endocytic pathway (see Electronic Supple-
mentary Material). Endogenous expression of PTPRR
proteins in either primary neurons (Electronic Supplemen-
tary Material Fig. S1) or PC12 cells [40] is very low but
reflects the localization pattern observed in transfected cells
[39]. Fluorescent Dextran uptake experiments with mouse
Neuro-2a cells transiently expressing EGFP-tagged
PTPBR7 (Electronic Supplementary Material Fig. S2) or
PTP-SL (Electronic Supplementary Material Fig. S3) cor-
roborated that PTPBR7 and PTP-SL are present on endo-
somes [39]. Electron microscopic monitoring of timed 5-nm
bovine serum albumin gold uptake established that PTP-SL
locates predominantly to late endosomes, whereas PTPBR7
is also present at the plasma membrane and endosomes
from earlier stages (Electronic Supplementary Material
Fig. S4). Co-transfection of Neuro-2a cells with PTPBR7
and PTP-SL expression plasmids confirmed that PTPBR7
and PTP-SL both are present on late endosomal vesicles
(Fig. 2). It should be noted, however, that it is unlikely that
co-localization of the two isoforms will actually occur in
vivo since PTPBR7 transcripts are detectable throughout
the developing and adult brain, but in PCs, in fact, PTP-SL
transcripts take over during maturation [15]. Single-positive
PTPBR7 vesicles are particularly found in the vicinity of
the plasma membrane, reminiscent of the early endocytic
compartment in which PTP-SL is sparse (Fig. 2a–c).
Analysis of the dynamics of the vesicles harboring
receptor-type PTPRR isoforms, by time-lapse fluorescence
microscopy of PTPBR7-EGFP and PTP-SL-EGFP proteins
in living cells, revealed both anterograde and retrograde
movement (Electronic Supplementary Material Fig. S5)
with an average speed that did not differ significantly
between PTPBR7 and PTP-SL positive vesicles. The
PTPRR positive vesicle trafficking patterns are reminiscent
of movement along microtubule tracks (Electronic Supple-
mentary Material Fig. S6). Together, these findings dem-
onstrate that PTPBR7 is present on vesicles throughout the
endocytic pathway from the plasma membrane to the Golgi
apparatus. In contrast, PTP-SL is only present on vesicles
participating in the later stages of endocytosis, close to the
trans-Golgi network, indicative of differential functions of
these PTPRR isoforms within the endocytic pathway.

Towards the Function of PTPRR Protein Isoforms

It could be that the PTPRR isoforms PTPBR7 and PTP-SL
are merely cargo proteins that for example need to be
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delivered to lysosomes for degradation. In line with this, all
PTPRR isoforms are short-lived proteins with half-lives
varying from 3 to 5 h [11]. However, PTPRR proteins do
not co-localize with lysosomal marker proteins [39] and
both anterograde and retrograde movements for PTPRR-
positive vesicles are observed (Electronic Supplementary
Material Fig. S5), whereas cargo proteins are expected to
travel unidirectional and to accumulate at locations within
the cell. This leaves two other options, namely that these
phosphatases make part of the endocytic transport machin-
ery itself and/or are involved in localized signaling events.

Accurate packaging of cargo and (coated) vesicle
formation and membrane fusion in vivo requires tight
regulation for which phosphorylation is indeed one of the
mechanisms [41]. For example, EGF-induced tyrosine
phosphorylation of the β2-subunit of the adapter protein
complex AP-2 turned out to be important in regulating
EGFR protein turnover [42]. Likewise, the activity of PTP-
MEG2 (PTPN9) on secretory vesicle membranes is re-
quired to locally bind and dephosphorylate NSF and
promote secretory vesicle fusion [43]. PTPRR interacted
with the β4-subunit of the AP-4 complex in a yeast two-
hybrid system and co-localized with AP-4 at the Golgi
apparatus and on endosomes in neuronal cells [39],
suggesting a role in AP-4-mediated vesicle sorting. In line
with this, co-expression of PTP-SL and β4-adaptin in
Neuro-2a cells led to a displacement of PTP-SL from
vesicles and the Golgi apparatus and a redistribution
throughout the cytoplasm [39].

The alternative option would be a role for PTPRR in
spatiotemporal control of growth factor signaling involving

receptor internalization [44]. For example, after ligand
binding and autophosphorylation at the plasma membrane,
the EGF tyrosine kinase receptor is internalized and
subsequently dephosphorylated by PTP1B that resides at
the ER membrane, eventually resulting in receptor silencing
(signal termination) and RTK breakdown in lysosomes
[45]. Localized signaling has also been demonstrated for
the MAPK scaffold Sef that resides on the Golgi apparatus;
it binds ERK—thus blocking nuclear translocation—with-
out inhibiting its activity in the cytoplasm [46]. In view of
their KIM domain-mediated association with MAPKs,
resulting in MAPK inactivation and prevention of nuclear
translocation [30, 31, 33], a comparable role for PTPRR
isoforms may be expected. Most of these studies, however,
involved (ectopic) overexpression of PTPRR isoforms. The
endogenous expression of PTPRR in PC12 cells [16], a
paradigm model for the study of spatial and temporal
control of MAPK signaling [26, 27], allowed assessment of
the impact of PTPRR on MAPK activity under more
physiological conditions. Modulation of PTPRR activity in
these cells, however, had no effect on the temporal profile
of EGF- and NGF-induced ERK1/2 activity [40]. Since in
PC12 cells the two other MAPK-PTPs are not expressed,
this finding suggests that rather the dual-specificity MKPs
serve as key MAPK regulators.

Biological Activities of Human PTPRR Proteins

Information on putative roles of PTPRR isoforms in health
and disease is limited. The human PTPRR gene has been

Fig. 2. PTPBR7 as well as
PTP-SL localize in late endo-
cytic vesicles. Neuro-2a cells
were co-transfected with pPTP-
SL-EGFP and pSG8/PTPBR7-
FL-VSV. EGFP fluorescence of
PTP-SL-EGFP was recorded di-
rectly (b, e) and PTPBR7 pro-
teins were visualized
immunohistochemically using
the P5D4 antibody against the
VSV tag (a, d). Yellow color in
c indicates overlap of PTP-SL-
EGFP (green) and PTPBR7
(red) signals. After 20 min of
Alexa-633-labeled Dextran up-
take, triple-labeled vesicles that
are positive for PTPBR7 (d),
PTP-SL (e), and Dextran (f) can
be detected (arrows), corrobo-
rating that PTPBR7 and PTP-SL
co-localize at vesicles of the late
endosomal compartment. Bar
indicates 10 μm
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excluded as a candidate for a type 2 diabetes locus on
chromosome 12q15 [47], but appeared implicated in the
pathogenesis of inv(12)-type leukemia [48]. Exon 4 of the
TEL gene was found fused to exon 7 of the PTPRR gene,
resulting in a TEL/PTPRR chimeric gene. This fusion gene
generates ten different transcripts of which only one
encodes a chimeric product consisting of the TEL tran-
scriptional repressor fused to a large part of the PTPRR
phosphatase domain. This TEL-PTPRR fusion protein,
however, lacks catalytic activity, indicating that it is most
likely through interference with the functioning of wild-
type TEL that this chimera causes leukemia [48]. Another
study addressed a potential role for the cytosolic PTPPBSγ
isoforms in cartilage formation [49]. Using an embryonic
mandibular explant culture model system and antisense
oligodeoxynucleotides, evidence was provided that
PTPPBSγ may regulate chondroblast proliferation in early
skeletal development.

The advent of microarray expression analyses has
generated both confusing and surprising data on the PTPRR
gene. While analyzing the impact of CIITA, a master
transcriptional regulator of MHC class II genes, on global
mRNA levels, it was noted that PTPRR transcripts are
down-regulated upon overexpression of this transcription
factor in a human B cell line and in IFN-γ-induced
fibroblasts [50]. Subsequent assessment of the role of
CIITA in repressing PTPRR expression using CIITA
overexpressing and knockout mice, however, demonstrated
that significant PTPRR expression is restricted to the brain
and that its transcript levels are not influenced by CIITA
[51]. In line with this, no derepression of gene Ptprr was
observed in B cells or fibroblasts from CIITA-deficient
mice. Another microarray-based study reported PTPRR
expression in endometrial tissue and real-time RT-PCR data
showed that median gene expression for PTPRR increased
47-fold from the proliferative to the secretory phase in the
menstrual cycle [52]. A further 2.4-fold up-regulation was
noted in the endometrium of women with endometriosis
compared to controls, which led the authors to speculate
that PTPRR overexpression may be a predisposing factor in
the etiology of endometriosis by preventing normal
differentiation of endometrial cellular function [52]. And
finally, gene expression profiling of postmortem orbito-
frontal cortex in violent suicide victims revealed that
PTPRR expression is 1.5-fold higher in suicide tissue as
compared to control samples [53]. This raised interest
because also significantly decreased levels of MAPK1
and MAPK3 and increased amounts of MAP kinase
phosphatase 2 (MKP2) have been detected in the
prefrontal cortex and hippocampus of depressed suicide
subjects [54]. Whether and how these alterations in the
cerebral signaling circuitry might be part of the pathophys-

iology of suicidal behavior will of course require much
more study.

PTPRR-Deficient Mice Display Motor Coordination
Defects

As an alternative approach to gain insights in the
physiological role of PTPRR isoforms, PTPRR-deficient
mice have been generated [55]. Knockout animals appeared
healthy and were fertile, and inheritance of the mutant allele
followed Mendelian rules. The high expression levels of
PTPRR isoforms in the hippocampal area and especially in
the cerebellar Purkinje cells led to the assessment of mouse
basic behavior and locomotion. Nocturnal activity of
PTPRR-deficient mice was significantly reduced as com-
pared to wild-type control mice. In addition, PTPRR-
deficient mice displayed significant defects in their fine
motor coordination and balance skills that are reminiscent
of a mild ataxia [55]. Since MAPK signaling pathways are
implicated in various neuropathological states [56] and
PTPRR can interact with several MAPKs, it should
perhaps not come as a surprise that ERK1/2 phosphory-
lation levels were indeed found to be significantly elevated
in PTPRR-deficient brains. However, brain morphology,
Purkinje cell number, or dendritic branching was not
affected [55].

The majority of ataxia mouse models display histolog-
ical phenomena (i.e., loss of cerebellar granule cells or PCs)
that explain cerebellar dysfunction [57]. Only a few mouse
models exist that display ataxic behavior in combination
with normal cerebellar morphology. These include juncto-
philin 3 [58], carbonic anhydrase-related protein VIII
(Car8) [59], calbindin [60], and calretinin [61] knockout
animals. Collectively, these models point to alterations in
Ca2+ homeostasis related to Purkinje cell physiology as
causative for the ataxia. Junctophilins contribute to the
formation of junctional membrane complexes, by spanning
the endoplasmic/sarcoplasmic reticulum membrane and
interacting with the plasma membrane, that function as
structural platforms for Ca2+-mediated crosstalk between
cell surface and intracellular channels. Car8 has no carbonic
anhydrase enzymatic activity but was identified as a
binding protein for the IP3 receptor expressed in cerebellar
PCs [62]. Thus, it is conceivable that Car8 plays a role in
fine-tuning of the intracellular calcium level in the PC
dendrites to optimize parallel fiber innervation and proper
synaptic formation and/or maintenance in the cerebellum.
Calbindin and calretinin both are calcium-binding proteins
that turned out to be crucial in the shaping of intraneuronal
Ca2+ fluxes like PC firings. In the cerebellar cortex of alert
mice, calbindin or calretinin deficiency resulted in high-
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frequency oscillations that emerged from interplay between
synchronized PC assemblies and coupled interneurons in
the cerebellar molecular layer [61].

Calcium, Phosphorylation, and Motor Coordination

Also the work on human disorders demonstrates that
aberrant cerebellar Ca2+ signaling may result in cerebellar
ataxia. For example episodic ataxia 2 (EA2) and spinocer-
ebellar ataxia type 6 (SCA6) result from mutations in the
pore-forming subunit of P/Q-type voltage-gated Ca2+

channels [57, 63, 64]. EA2 manifests as an episodic, fully
reversible ataxia that only after decades may lead to
persistent ataxia and mild cerebellar degeneration. Several
other ataxia syndromes are directly linked to alterations in
the neuronal phosphoproteome [63, 64] that ultimately may
have bearing for cell membrane receptors and ion channels
[65, 66]. In SCA12, for example, a repeat expansion in the
regulatory subunit PR55/Bβ alters phosphatase PP2A
expression and, consequently, the phosphorylation status
of target proteins (includingMAPKs). And SCA14mutations
create a PKCγ superkinase that, in response to Ca2+ influx,
readily phosphorylates brain glutamate receptors [65]. Thus,
some SCA mutations apparently alter the phospho-status of
neuronal Ca2+ channels and receptors and change their
membrane localization, activity, and hence functioning in
synaptic connectivity and plasticity [67]. The notion that
MAPK signaling is a key process in synaptic plasticity [68]

and that aberrant ERK1/2 activity has been noted in several
neuropathologies [56, 69] nicely merges with the above.

Continued excessive stimulation of Ca2+-permeable gluta-
mate receptors or voltage-dependent Ca2+ channels (VDCCs)
is expected to result in neuronal excitotoxicity. The chronic
Ca2+ overshoot and concomitant inappropriate activation of
Ca2+-dependent processes in cells may then result in
production of free radicals, altered mitochondrial function,
and ultimately cell death. Apparently, Purkinje cells and
cerebellar granule cells are quite vulnerable to such cell stress
conditions, but it is believed that excitotoxicity may also
contribute to other neurodegenerative illnesses like Alz-
heimer’s, Parkinson’s, and Huntington’s disease [70].

Concluding remarks

The picture emerges that aberrancies in cellular phos-
phorylation-dependent processes can deregulate, at the
transcriptional and/or the posttranslational level, the
calcium-ion-dependent communication circuitry of cerebellar
neurons, thereby ultimately causing ataxias. In Fig. 3, we
provide a simplified model in which the various lines of
evidence are integrated. Activated growth factor receptors
recruit distinct adaptor proteins and start up various signaling
cascades, such as the PI3K, PLCγ, and MAPK pathways.
Transient ERK activation via Ras will affect cytosolic targets
that may well include transmembrane proteins regulating
cellular Ca2+ concentration (e.g., glutamate-gated ion

Fig. 3. Schematic overview of growth factor-induced and Ca2+-
releasing signaling pathways in neuronal cells. Growth factor (GF)
binding to receptors (RTK) may activate PI3K, PLCγ, and MAPK
signaling cascades. Transient ERK activation via Ras will affect
cytosolic targets that may extend to transmembrane proteins involved
in Ca2+ or glutamate signaling. RTK endocytosis may lead to Rap1-
mediated sustained activation of ERK and altered transcription.

PTPRR targets are depicted in blue. Proteins mutated in SCA6,
SCA12, and SCA14 patients are in reddish purple. Proteins that are
down-regulated in SCA1 mouse models and connect to IP3 receptor-
regulated Ca2+ stores are in orange. Ca2+-modulating proteins
(CaBPs) and PTPRR, for which deficiency in mice led to ataxic
behavior but not neurodegeneration, are in green
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channels and VDCCs) and membrane potential (e.g., Kv4.2).
Following receptor endocytosis, Rap1-mediated sustained
activation of ERK will lead to alterations in gene expression.
PTPRR may indirectly influence such transcriptional events
by inactivating ERK, but could also, much like the proteins
mutated in SCA12 and SCA14 patients, directly dephosphor-
ylate and thus regulate relevant cytosolic proteins or even ion
channels and receptors. The net effect on Ca2+ levels thus
may resemble that caused by EA2 mutations in VDCCs.

Many dominant ataxias (i.e., SCA1) are caused by an
expanding polyglutamine sequence in the responsible
protein [63, 64]. In a mouse model for SCA1, the
metabotropic glutamate receptor and its auxiliary proteins
that connect to IP3 receptor-regulated intracellular Ca2+

stores were all found to be down-regulated [71], providing
yet another link to aberrant calcium handling in ataxias.
Further support comes from the mouse models that are
deficient in Ca2+ binding or Ca2+ modulatory proteins
[58–61], which all display ataxic behavior without neuro-
degeneration. Since PTPRR-deficient mice combine a lack
of apparent brain morphological abnormalities with mild
ataxic symptoms and hyperactivity of ERK1/2 MAP
kinases, further studies towards the underlying mechanism
will have bearing for the field of human cerebellar ataxia-
type locomotive disorders. This may yield novel candidate
SCA genes for the many hereditary cerebellar ataxias that
still await disease gene identification and may provide clues
to symptomatic or neuroprotective strategies that can be
applied in early stages of degenerative ataxias.
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