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Mitochondrial Haplogroup U5b3:
A Distant Echo of the Epipaleolithic in Italy
and the Legacy of the Early Sardinians

Maria Pala,1 Alessandro Achilli,1,2 Anna Olivieri,1 Baharak Hooshiar Kashani,1 Ugo A. Perego,1,3

Daria Sanna,4 Ene Metspalu,5 Kristiina Tambets,5 Erika Tamm,5 Matteo Accetturo,1 Valeria Carossa,1

Hovirag Lancioni,2 Fausto Panara,2 Bettina Zimmermann,6 Gabriela Huber,6 Nadia Al-Zahery,1,7

Francesca Brisighelli,8 Scott R. Woodward,3 Paolo Francalacci,4 Walther Parson,6 Antonio Salas,8

Doron M. Behar,9 Richard Villems,5 Ornella Semino,1 Hans-Jürgen Bandelt,10 and Antonio Torroni1,*

There are extensive data indicating that some glacial refuge zones of southern Europe (Franco-Cantabria, Balkans, and Ukraine) were

major genetic sources for the human recolonization of the continent at the beginning of the Holocene. Intriguingly, there is no genetic

evidence that the refuge area located in the Italian Peninsula contributed to this process. Here we show, through phylogeographic

analyses of mitochondrial DNA (mtDNA) variation performed at the highest level of molecular resolution (52 entire mitochondrial

genomes), that the most likely homeland for U5b3—a haplogroup present at a very low frequency across Europe—was the Italian Penin-

sula. In contrast to mtDNA haplogroups that expanded from other refugia, the Holocene expansion of haplogroup U5b3 toward the

North was restricted by the Alps and occurred only along the Mediterranean coasts, mainly toward nearby Provence (southern France).

From there, ~7,000–9,000 years ago, a subclade of this haplogroup moved to Sardinia, possibly as a result of the obsidian trade that linked

the two regions, leaving a distinctive signature in the modern people of the island. This scenario strikingly matches the age, distribution,

and postulated geographic source of a Sardinian Y chromosome haplogroup (I2a2-M26), a paradigmatic case in the European context of

a founder event marking both female and male lineages.
According to the archaeological evidence, modern humans

first entered Southwest Asia ~45–50 thousand years ago

(kya), and Europe soon afterwards. The first modern Euro-

peans came from the Levant,1 but an almost concomitant

arrival of related groups in European Russia from interior

western Asia via the Caucasus or along the eastern coast

of the Caspian Sea might have also occurred.2,3 These find-

ings are consistent with the proposal that modern Euro-

peans might have developed from related groups living

in several regional enclaves in the same broad geographic

area of Southwest Asia4 and the observation that mito-

chondrial DNA (mtDNA) variation in all modern European

populations is completely embedded in the western

Eurasian portion of the mtDNA phylogeny.5

Approximately 20 ky after the arrival of their ancestors

from Southwest Asia, Europeans faced dramatic and rapid

climatic changes, which peaked with the Last Glacial

Maximum (LGM), centered at ~21 kya. Major gaps in the

archaeological record reveal an abandonment of North

and Central Europe6 and a contraction of the human range

to southern European regions that served as refugia.7,8 The

deglaciation sequence began with the Bølling warming

about 15 kya but stabilized only at the end of the Younger

Dryas cold snap 11.6 kya.9–12 In the refugia, human
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genetic variation was affected by drift and founder events,

but the effects were probably strongest for mtDNA and Y

chromosome because of their uniparental transmission

and reduced effective population size. Thus, pre-LGM

mtDNA and Y chromosome haplotypes were differently

preserved (or lost) in the various refugia, but at the same

time new haplotypes arose as a result of the occurrence

of novel mutations. When the climate improved and

Paleolithic populations from European refugia repopu-

lated the continent, some of these novel (or differently

preserved) haplotypes also spread. They subsequently

gave rise to new star-like haplogroups in the phylogeny,

marking the expansion range from each refugium.

In the last 10 years, numerous studies have evaluated the

distribution and extent of variation of haplogroups in

European populations, and evidence of the overwhelming

importance of the Franco-Cantabrian refugium for the

repeopling of much of Western and Northern Europe at

the beginning of the Holocene has been obtained by the

age estimates and geographic distributions of mtDNA

haplogroups H1, H3, V, and U5b1b.5,13–21 Y chromosome

haplogroups R1b1b2-M269, I1-M253, and I2b1-M223 sup-

port the important role of the Franco-Cantabrian refuge

zone,22–24 whereas other Y haplogroups (I2a1-M423 and
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R1a1-M17) reveal that the Balkan and Ukrainian refuge

zones were also major genetic sources25–30 for the human

recolonization of Europe.

In addition to the refugia mentioned above, another

glacial refugium in Europe was the Italian Peninsula.8

However, neither mtDNA nor Y chromosome studies

have yet been able to identify haplogroups marking expan-

sions from this area, thus suggesting a marginal role, if any,

of this southern European area in the postglacial repeo-

pling of Europe.

Haplogroup U5 is one of the most ancient mtDNA hap-

logroups found in Europe. It evolved mainly within Europe

where it spread after being involved in the first settlement

of the continent by modern humans.4,31 Its phylogeny is

characterized by two branches—U5a and U5b—which are

common in most European populations,19,32,33 with U5b

further split into U5b1 and U5b2.19 In 2006, a third

uncommon branch, named U5b3, harboring the control-

region motif 16169A-16192-16235-16270-16519-150 was

detected only in Sardinia,34 an island that remained

unconnected with the mainland even when the sea level

was lowest during the LGM35 and that was probably the

last of the large Mediterranean islands to be colonized by

modern humans.36

To shed some light on the origin of haplogroup U5b3,

we surveyed a wide range of European (and neighboring)

populations for the presence of U5 mtDNAs lacking the

diagnostic markers of haplogroups U5b1 and U5b2. For

all subjects involved, an appropriate informed consent

was obtained and institutional review boards at the

Universities of Pavia, Tartu, Santiago de Compostela, at

the Rambam Health Care Campus, and at the Sorenson

Molecular Genealogy Foundation approved all procedures.

Several mtDNAs with this feature were identified in Sardi-

nia, in agreement with the presence of U5b3 in the island,

but others were detected, at a very low frequency, also in

other regions. With the exception of most mtDNAs from

Sardinia, which harbored the previously described U5b3

control-region motif, almost all other U5 mtDNAs were

characterized by a different but related control-region

motif (16192-16270-16304-150).

To define the phylogenetic relationships between the

U5b3 mtDNAs from Sardinia and the U5 mtDNAs with

the related control-region motif, we completely sequenced

a total of 43 mtDNAs and, together with nine previously

published sequences (Table S1 available online), incorpo-

rated them in a phylogeny of haplogroup U5 (Figure 1).

All sequences clustered in a U5 clade that is defined by

a transition at np 7226 in the coding region—a mutation

whose presence can be easily tested at the population level

by a survey with the restriction enzyme DdeI. This clade

splits into different minor subsets with a clear star-like

pattern, including one branch that corresponds to the

previously defined U5b3. This finding prompted us to revise

the nomenclature and name the entire clade as U5b3, six of

its main subsets as U5b3a-f, and the branch encompassing

the Sardinian mtDNAs as U5b3a1a (Figure 1).
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When all coding-region base substitutions are consid-

ered,37 the average sequence divergence (5SE computed

as in Saillard et al.38) of the 52 coding region sequences

from the root of U5b3 is 2.19 5 0.44 substitutions

(Table 1)—a value virtually identical to those reported for

haplogroups H1 (2.11 5 0.23) and H3 (2.14 5 0.28).15

This finding indicates that U5b3 expanded at about the

same time as H1 and H3. Table 1 reports also the average

sequence divergences calculated by using only synony-

mous transitions.39 Because the mutation rate of Mishmar

et al.37 is probably an overestimate, mainly caused by

partial saturation of some synonymous mutations,40 and

that of Kivisild et al.39 represents an underestimate,41 we

used the intermediate global coalescence time of modern

human mtDNA recently proposed by Perego et al.42 as

a reference point for the internal calibration of both

approaches. Accordingly, we converted the haplogroup

sequence divergences into time estimates by using aver-

aged time calibrations corresponding to 4610 years per

coding-region substitution and 7650 years per synony-

mous transition (Table 1). With this approach, the coales-

cence time estimates for the entire U5b3 are between

10.1 ky and 8.1 ky.

To evaluate the distribution of haplogroup U5b3 in

modern European (and neighboring) populations, we per-

formed a survey of all U5 control-region motifs reported in

almost 35,000 subjects from 81 population samples. For

published and unpublished data sets for which only hyper-

variable segment I (HVS-I) data were available, U5 mtDNAs

were affiliated within U5b3 when lacking 16189 or 16256

and harboring 16304. The presence or absence of the

mutations 16169A, 16192, and 16235 was also considered.

The results of this survey are reported in Table S2 and illus-

trated in the spatial distribution of Figure 2. Haplogroup

U5b3 is virtually absent in the Near East (the single U5b3

mtDNA found in Iraq was completely sequenced) and

North Africa and is rare in Europe where, with the excep-

tion of the frequency peak in Sardinians (3.8%), its

frequency barely reaches 1% only in some Mediterranean

populations.

Out of the 55 U5b3 mtDNAs detected in Sardinians, all

but one (sequence n. 39 in Figure 1) are characterized by

the diagnostic control-region motif of sub-haplogroup

U5b3a1a, whose coalescence time estimate is between

4.6 ky and 6.3 ky (Figure 1 and Table 1). The phylogeny

of Figure 1 includes 17 complete sequences belonging to

this sub-haplogroup and, with the possible exception of

sequence n. 22 that is classified as a generic ‘‘Italian’’

without regional details,43 all are from Sardinia. A search

for the U5b3a1a control-region motif in published data

sets revealed only two matches (both 16169A-16192-

16235-16270) outside Sardinia, one in Sicily44 and one in

Rome.45 Details concerning the ancestry of the two

subjects are not available, but the geographic proximity

of Sardinia to the areas where they were detected makes

it likely that they represent recent events of gene flow

from the island. This would mean that U5b3a1a has arisen
erican Journal of Human Genetics 84, 814–821, June 12, 2009 815



Figure 1. Detailed Tree of U5b3 in the Context of Haplogroup U5
The tree includes 52 complete mtDNA sequences and illustrates sub-haplogroup affiliations. The position of the revised Cambridge refer-
ence sequence (rCRS)51 is indicated for reading off sequence motifs. MtDNAs were selected through a preliminary sequence analysis of the
control region and an RFLP survey in order to include the widest possible range of internal variation of haplogroup U5b3. The sequencing
procedure and phylogeny construction were performed as described elsewhere.4,14,15 Sequences 1–9, 13–14, 18–19, 21, 24–52 are new
while the others have been previously reported (Table S1). Mutations are shown on the branches; they are transitions unless a base is
explicitly indicated. The prefix ‘‘@’’ designates reversions, whereas suffixes indicate: transversions (to A, G, C, or T), indels (þ, d),
gene locus (~t, tRNA; ~r, rRNA; ~nc, noncoding region outside of the control region), synonymous or nonsynonymous changes (s or
ns), and heteroplasmies (R, Y). Recurrent mutations are underlined. The variation in number of Cs at np 309 was not included in the
phylogeny: sequences 2, 4–5, 24, 30, 34–38, 47–49, 51–52 harbored 309þC, whereas sequence 50 harbored 309þCC. Additional infor-
mation regarding each mtDNA is available on Table S1. Time estimates shown for clades are averaged distance (r) of each haplotype with
respect to the respective root. The first value has been obtained by considering one coding-region substitution every 4610 years, whereas
the second one assumes 7650 years per synonymous transition.
in situ in Sardinia after the arrival of an U5b3a1 founder

mtDNA from somewhere else in Europe and that

U5b3a1a affiliation is a marker of maternal Sardinian

ancestry. The phylogeny of Figure 1 provides additional

information concerning the entry time of the founder

mtDNA; the upper limit is 9.2–7.2 ky (the age of U5b3a1

node), whereas the lower limit is 4.6–6.3 ky (the age of

the U5b3a1a node), when the sub-haplogroup began to

expand in Sardinia.

The phylogeny of Figure 1 also indicates a possible

ancestral source for the founder(s) of the Sardinian

U5b3a1a. The Sardinian-specific branch harbors a sister

clade (U5b3a1b) formed by two sequences (n. 24 and

25): one from Languedoc, a region of southern France,

and the other from a U.S. subject of undefined European

ancestry. A search for the U5b3a1b control-region motif

(16169A-16192-16235-16270-16304) was able to detect

only one additional mtDNA from the southwestern

(French-speaking) part of Switzerland,46 matching such

a motif. This preliminary observation suggests a stronger

link between Sardinia and southern France than with other

European regions, including continental Italy. Archaeolog-
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ical data from the period 5–10 kya show that the Monte

Arci region of western Sardinia (Oristano province) was

one of the four Mediterranean sources (together with the

small islands of Palmarola, Lipari, and Pantelleria) of

obsidian, the ‘‘black gold’’ of the Neolithic. In particular,

a blooming trade of obsidian has been documented from

Sardinia to other Mediterranean regions, including

southern France. Moreover, it has been calculated that

the obsidian employed in the Neolithic sites of the

southern France was almost exclusively from a ‘‘single’’

Monte Arci subsource, suggesting not only a preferential

link between French sites and Sardinia but also preferential

transport mechanisms, different from those connecting

Sardinia with other Mediterranean regions (Corsica and

northern Italy) where this selection of specific subsources

has not been detected.47

What about the ancestral homeland of the entire hap-

logroup U5b3? Its divergence is virtually identical to that

reported for H1 and H3, thus indicating a population

expansion at about the same time. Haplogroups H1 and

H3 diffused from the Franco-Cantabrian refuge zone

when climatic conditions improved;15,18 therefore, it is
, 2009



Table 1. Averaged Divergence of Relevant Nodes in the U5b3 Phylogeny of Figure 1

Clade No. of MtDNAs

All Coding-Region Base Substitutions Only Synonymous Transitions

ra sb Tc(ya) DT(ya) ra sb Tc(ya) DT(ya)

U5b3 52 2.192 0.439 10,107 2,026 1.058 0.217 8,091 1,658

>U5b3a 26 1.923 0.744 8,865 3,429 1.077 0.357 8,238 2,729

> > U5b3a1 19 2.000 0.942 9,220 4,340 0.947 0.279 7,247 2,131

> > > U5b3a1a 17 1.000 0.294 4,610 1,356 0.824 0.276 6,300 2,111

a The average number of base substitutions in the mtDNA coding region (between positions 577 and 16023) from the root sequence type.
b Standard error calculated from an estimate of the genealogy.38

c Taking into account the limits of previous estimates reported by Mishmar et al.37 for all coding-region base substitutions and by Kivisild et al.39 for only

synonymous transitions, we here employed a rate recently proposed by Perego et al.42 With three decimal digits throughout, their rounded values were

5140 years per coding-region substitution and 6760 years per synonymous transition, respectively. The rho-estimated (average distance of the haplotypes

of a clade from the respective root) human coalescence times are then 202 ky according to Mishmar et al.37 and 160 ky according to Kivisild et al.39

The postulated time obtained as the arithmetic mean of both estimates is ~181 5 21 ky. Thus, ages estimated considering all the coding-region substi-

tution have to be decreased by a factor of 181/202 z0.90, whereas the estimates based only on synonymous transitions have to be increased by a factor of

181/160 z1.13. Given that 5140 3 181/202 z4610 and 6760 3 181/160 z7650, we obtained the averaged calibrations.
possible that also the founder U5b3 sequence expanded

from the same area and the three haplogroups were

involved in the same demographic processes. However,

there is also an alternative scenario: the expansion of

U5b3 could have still occurred at the same time as H1

and H3 when climatic conditions in Europe changed, but

from a distinct geographical source. With consideration

to the modern range distribution of U5b3 (Figure 2), the

only other potential candidate for the latter scenario is

the glacial refuge in the Italian Peninsula.

To discriminate between the two possibilities, we

measured the extent of U5b3 variation in different

geographical areas by employing all available HVS-I (nps

16024–16365) data. A total of 152 U5b3 mtDNAs were
The Am
detected, encompassing 40 HVS-I haplotypes, and their

relationships are illustrated in the network of Figure 3. As

expected, despite the frequency peak, Sardinians showed

a very low haplotype diversity (H ¼ 0.570), whereas

much higher H values were observed in Italy (0.877) and

Iberia (0.904) (Table 2), thus confirming that the relatively

high frequency of U5b3 in Sardinia is the result of

a founder event after the arrival on the island. Other

indices such as nucleotide diversity and average number

of nucleotide differences (Table 2), which are more infor-

mative than haplotype diversity because they take into

account also the extent of diversity between haplotypes,

not only confirm that Italy (0.717 and 2.45, respectively)

and Iberia (0.645 and 2.21, respectively) are the European
Figure 2. Spatial Frequency Distribu-
tion of Haplogroup U5b3 and Geograph-
ical Locations of Populations Surveyed
Populations and corresponding frequency
values are listed in Table S2.
erican Journal of Human Genetics 84, 814–821, June 12, 2009 817



Figure 3. Median-Joining Network of
HVS-I Haplotypes Observed in 152
U5b3 mtDNAs
Eighty-three mtDNAs are from the litera-
ture and a subset of these (N ¼ 32) were
not included in the population frequency
table (Table S2) because population sample
sizes were undefined. We constructed the
tree by using the Network 4.510 software
program (http://www.fluxus-engineering.
com). The numbers (plus 16000) on the
connecting branches refer to the revised
reference sequence51 and indicate muta-
tions. These are transitions unless the
base change is explicitly indicated; the
prefix ‘‘@’’ designates reversions. Muta-
tions in italics are most likely erroneous
and were disregarded in the calculation of
diversity measures. The size of each circle
is proportional to the haplotype frequency
and geographical origins are indicated by
different colors. Fifty-five mtDNAs are

from Sardinia; 23 are from Italy [continental Italy (N ¼ 20) and Sicily (N ¼ 3)]; 17 are from Iberia [Spain (N ¼ 11), Portugal
(N ¼ 2) and Balearic Islands (N ¼ 4)]; 33 are from Western Europe (excluding Iberia) [Belgium (N ¼ 1), Denmark (N ¼ 1), England
(N ¼ 6), France (N ¼ 4), Germany (N ¼ 3), Iceland (N ¼ 3), Ireland (N ¼ 3), Netherlands (N ¼ 2), Norway (N ¼ 1), Scotland (N ¼
6), Switzerland (N ¼ 2), and Wales (N ¼ 1)]; 19 are from Eastern Europe [Croatia (N ¼ 4), Bosnia (N ¼ 2), Bulgaria (N ¼ 1), Crete
(N ¼ 1), Czech Republic (N ¼ 4), Estonia (N ¼ 1), Hungary (N ¼ 2), Montenegro (N ¼ 1), Poland (N ¼ 1), and Slovakia (N ¼ 2)];
and five are ‘‘Others’’ [Armenia (N ¼ 1), Iraq (N ¼ 1), Algeria (N ¼ 1), and Morocco (N ¼ 2)].
regions with the highest levels of U5b3 diversity but also

reveal a peak in Italy, thus indicating continental Italy as

the most likely focus of the U5b3 expansion.

Overall, the coalescence time of U5b3 (and those of the

more common haplogroups H1 and H3) appears to indi-

cate that the major post-LGM re-expansion phase in

Europe was at the beginning of the Holocene (~11 kya)

and not earlier. Whereas populations expanded geograph-

ically earlier during the warm phases of the Bølling-Allerød

oscillations, the intermediate shorter-term cold phases and

the Younger Dryas, in particular, led to retractions into the

refugia again; it thus seems that in the Bølling-Allerød only

some minor additional secondary refugia were created,

which were too short-lived to leave discernible mutational

marks in the mtDNA pools.

In contrast to the more common mtDNA haplogroups

H1 and H3, however, the U5b3 diversity in modern Europe

suggests that the glacial refuge located in the Italian Penin-
818 The American Journal of Human Genetics 84, 814–821, June 12,
sula8,48 rather than the Franco-Cantabrian refuge was the

ancestral expansion source for haplogroup U5b3. Postgla-

cial expansions of refugial populations from this area

toward the North were restricted not only by cold phases

but also by a geographical barrier—the Alps.49 Thus, the

ancestral U5b3 haplotype could have expanded (at a low

frequency) outside the Italian Peninsula only along the

coasts of the Tyrrhenian and Adriatic Seas, mainly toward

the nearby Provence (southern France), and from there

further west. The root of U5b3a1 originated probably in

the Mediterranean coast of southern France and the same

haplotype then went into Sardinia some 7–9 kya, possibly

as a result of the obsidian trade that linked the two regions.

There it expanded at the middle of the Neolithic, giving

rise to an mtDNA clade (U5b3a1a) that distinctively marks

the people of the island. Remarkably, the events leading to

the arrival and expansion of this maternal lineage in Sardi-

nia are not only supported but also magnified by data from
Table 2. Diversity of Haplogroup U5b3 MtDNAs in Different European Geographic Areas

Geographic Areas No. of MtDNAs No. of Haplotypesa Hb pc Md

Sardinia 55 13 0.570 5 0.080 0.288 5 0.062 0.986

Italy (continental Italy and Sicily) 23 9 0.877 5 0.040 0.717 5 0.093 2.451

Iberia (Spain, Portugal, and Balearic Islands) 17 10 0.904 5 0.055 0.645 5 0.117 2.206

Western Europe (w/o Iberia) 33 13 0.729 5 0.081 0.409 5 0.079 1.398

Eastern Europe 19 6 0.655 5 0.111 0.315 5 0.074 1.076

a HVS-I haplotypes (from np 16024 to np 16365).
b Haplotype diversity.
c Nucleotide diversity %.
d Average number of nucleotide differences.
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male-specific lineages. Indeed ~37% of Sardinian Y chro-

mosomes belong to haplogroup I2a2-M26,50 a lineage

rare outside Sardinia, whose age, distribution, and postu-

lated geographic source (southern France)28 strikingly

match those of mtDNA haplogroup U5b3a1—a paradig-

matic case of parallel founder events for both maternal

and paternal lineages in the European context.

Supplemental Data

Supplemental Data include two tables and can be found with this

article online at http://www.ajhg.org/.
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táns, B., Zarrabeitia, M.T., Cuscó, I., Lareu, M.V., Garcı́a, O.,
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