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Viral internal ribosomal entry sites (IRESs) mediate end-independent
translation initiation. There are 4 major structurally-distinct IRES
groups: type 1 (e.g., poliovirus) and type 2 (e.g., encephalomyocarditis
virus), which are dissimilar except for a Yn-Xm-AUG motif at their 3�

borders, type 3 (e.g., hepatitis C virus), and type 4 (dicistroviruses).
Type 2–4 IRESs mediate initiation by distinct mechanisms that are
nevertheless all based on specific noncanonical interactions with
canonical components of the translation apparatus, such as eukary-
otic initiation factor (eIF) 4G (type 2), 40S ribosomal subunits (types 3
and 4), and eIF3 (type 3). The mechanism of initiation on type 1 IRESs
is unknown. We now report that domain V of type 1 IRESs, which is
adjacent to the Yn-Xm-AUG motif, specifically interacts with the
central domain of eIF4G. The position and orientation of eIF4G
relative to the Yn-Xm-AUG motif is analogous in type 1 and 2 IRESs.
eIF4G promotes recruitment of eIF4A to type 1 IRESs, and together,
eIF4G and eIF4A induce conformational changes at their 3� borders.
The ability of mutant type 1 IRESs to bind eIF4G/eIF4A correlated with
their translational activity. These characteristics parallel the mecha-
nism of initiation on type 2 IRESs, in which the key event is binding
of eIF4G to the J–K domain adjacent to the Yn-Xm-AUG motif, which is
enhanced by eIF4A. These data suggest that fundamental aspects of the
mechanisms of initiation on these unrelated classes of IRESs are similar.
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Translation initiation on most eukaryotic mRNAs occurs by
the scanning mechanism. First, a 43S preinitiation complex

comprising a 40S ribosomal subunit, eukaryotic initiation factor
2 (eIF2)�GTP/Met-tRNAMet

I , eIF3, eIF1, and eIF1A is loaded
onto mRNA by eIF4A, eIF4B, and eIF4F (1). eIF4F consists of
eIF4A (DEAD-box RNA helicase), eIF4E (cap-binding pro-
tein), and eIF4G (which binds eIF4E, eIF4A, and eIF3). eIFs
4A/4B/4F unwind the cap-proximal region of mRNA, allowing
43S complexes to attach. After that, 43S complexes scan the 5�
UTR to the start codon, where they form 48S initiation com-
plexes with established codon–anticodon base-pairing.

The genomes of several families of RNA viruses contain internal
ribosomal entry sites (IRESs), which can mediate end-independent
initiation. Viral IRESs are classified into 4 major groups, based on
their sequence and structure: type 1 [e.g., poliovirus (PV)], type 2
[e.g., encephalomyocarditis virus (EMCV)], type 3 (e.g., hepatitis C
virus), and type 4 (e.g., cricket paralysis virus). The mechanisms of
initiation on type 2, 3, and 4 IRESs are distinct, but are all based
on specific interactions of IRESs with components of the transla-
tion apparatus. Type 3 IRESs interact specifically with 40S subunits
and eIF3, which allows direct attachment of 43S complexes to the
initiation codon (2). Initiation on type 4 IRESs also involves direct
binding to 40S subunits, but does not require eIFs or Met-tRNAMet

I

(3). The �450-nt-long type 2 IRESs have 4 major domains (H, I,
J-K, and L) and a Yn-Xm-AUG motif at their 3� border, in which
a pyrimidine-rich tract is separated by a �20-nt spacer (Xm) from the
AUG codon (see Fig. 2I), which can serve as an initiation codon.
Initiation on type 2 IRESs depends on binding of eIF4G to the J-K
domain adjacent to the Yn-Xm-AUG motif, which is enhanced by
eIF4A (4–6). eIF4G/eIF4A restructure the region of ribosomal attach-
ment (7) and promote binding of 43S complexes to the IRES.

Type 1 IRESs occur in PV, coxsackievirus type B3 (CVB3),
enterovirus 71 (EV71), and other members of the Enterovirus
genus of Picornaviridae (e.g., refs. 8–10). They are �450 nt long
and have 4 major domains (II, IV, V, and VI) (Fig. 1A), but share
little homology with type 2 IRESs except for a Yn-Xm-AUG
motif at their 3� border, in which the AUG triplet is naturally
silent (10, 11). Instead, depending on the virus, initiation occurs
30–150 nt downstream of this motif.

The mechanism of initiation on type 1 IRESs has not been
solved, and little is known about its requirements for canonical
factors or their roles in this process. Inhibition of PV translation by
dominant-negative mutant eIF4A, which sequesters eIF4G into
inactive complexes, and the fact that eIF4F rescues translation more
effectively than WT eIF4A (12) suggest a direct but as-yet unde-
fined role for eIF4A and eIF4G in PV translation. eIF4E is not
required (13), and consistently, PV translation is not impaired by
the cleavage of eIF4G into an N-terminal domain (NTD) that binds
eIF4E and a C-terminal domain (CTD) that binds eIF3 and eIF4A
that occurs in infected cells (14). Cross-linking of domain V of the
PV IRES to eIF4G in rabbit reticulocyte lysate (RRL) has been
reported (15). In the same study, domain V additionally cross-
linked to eIF3 and eIF4B.

Because initiation on type 2–4 IRESs occurs by distinct mech-
anisms that all are based on primary interactions of IRESs with
eIFs or 40S subunits, we looked for similar interactions that could
promote recruitment of 43S complexes to type 1 IRESs. We report
that, like type 2 IRESs, type 1 IRESs bind specifically to eIF4G, and
its orientation and position on type 1 and 2 IRESs relative to the
Yn-Xm-AUG motif are analogous. eIF4G recruits eIF4A to type
1 IRESs, and together they induce changes at the IRES 3� borders
analogous to those reported for type 2 IRESs (7). This finding
suggests that fundamental aspects of the mechanisms of initiation
on these unrelated classes of IRESs are similar.

Results
Mapping the eIF4G/Type 1 IRES Interaction by Directed Hydroxyl
Radical Cleavage. Directed hydroxyl radical cleavage allows local-
ization of RNA-bound proteins. Fe(II) is conjugated to unique
cysteines on their surface via the linker 1-(p-bromoacetamidoben-
zyl)-EDTA (BABE) (16). Fenton chemistry generates hydroxyl
radicals near the tethered iron that cleave adjacent RNA. Cleavage
sites are identified by primer extension.

We used this technique to determine the orientation of eIF4G’s
central domain on a type 2 IRES (7). The central domain of eIF4G
consists of 5 pairs of �-helices (ref. 17 and Fig. 1B). Six eIF4G737–1116
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mutants with unique surface-exposed cysteines (Fig. 1B) were fully
active in 48S complex formation on the EMCV IRES in an in
vitro-reconstituted system and induced specific cleavage in its J–K
domain in eIF4G/IRES complexes (7).

We used these mutants to study potential eIF4G/type 1 IRES
interactions. Fe(II)-conjugated eIF4G737–1116 Cys mutants were
incubated with CVB3, EV71, and PV IRESs (prepared as described
in SI Text). Hydroxyl radicals generated from 2 positions in
eIF4G737–1116 induced cleavage in domain V in all 3 IRESs (Figs.
1 C–E and 2 A–C and (Figs. S1 and S2). Cys-830, located between
helices 2b and 3a, cleaved strongly at the base of domain V (PV,
nucleotides 455–456, 467–470, and 536–543; CVB3, nucleotides
471–475 and 541–548; and EV71, nucleotides 462–464, 472–475,
and 542–546), whereas Cys-929, located after helix 4b, induced
weak cleavage in domain V’s central loop (PV, nucleotides 517–519
and 525–528; CVB3, nucleotides 520–522 and 529–532; and EV71,
nucleotides 521–523 and 530–532) (Fig. 1 C–E). These data indicate
that eIF4G737–1116 interacts specifically with domain V of type 1
IRESs with its C terminus directed toward the apex and the N
terminus toward the base of this domain. Cleavage from Cys-929
also occurred at nucleotides 367–371 in the apex of EV71 IRES

domain IV (Fig. 1F and Fig. 2C). There was no evidence from
footprinting experiments that eIF4G binds to this region of type 1
IRESs (see below), and these cleavages may instead reflect the
proximity of the apices of domain IV and eIF4G-bound domain V
of the EV71 IRES, indicating that it adopts a more compact
conformation than PV and CVB3 IRESs.

Cleavage in PV IRES domain V from eIF4G-Cys-830 was
slightly enhanced by eIF4A with/without ATP or eIF4B (Fig.
1G), which may have been caused by enhancement of eIF4G’s
interaction with type 1 IRESs [as has been shown for type 2
IRESs (5)], but could also reflect eIF4A-induced conforma-
tional changes in the IRES.

Enzymatic Footprinting Analysis of the Interaction of eIF4G with Type
1 IRESs. Enzymatic footprinting was used to confirm eIF4G’s
interaction with type 1 IRESs. eIF4G737–1116 protected nucleotides
462 and 538–539 in PV domain V from RNase V1 cleavage (Fig.
1H, lane 3). Protection by eIF4G737–1116/eIF4A or eIF4F was
slightly stronger than by eIF4G alone (Fig. 1H, lanes 4 and 5), which
again suggests that eIF4A might enhance the eIF4G/IRES inter-
action. In CVB3 domain V, eIF4G737–1116, eIF4G737–1116/eIF4A,
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Fig. 1. Specific binding of eIF4G to type 1 IRESs identified by directed hydroxyl radical cleavage and enzymatic footprinting. (A) Model of the PV1M 5� UTR,
showing its type 1 IRES (boxed), the Yn-Xm-AUG motif, the initiation codon AUG743, and domains I–VI. (B) Model of eIF4G’s central domain (Protein Data Bank
ID code 1HU3), with spheres labeled to show the positions of cysteines used to tether Fe(II)-BABE. (C–G) Primer extension analysis of directed hydroxyl radical
cleavage of PV (C and G), CVB3 (D), and EV71 (E and F) IRESs from Fe(II)-tethered eIF4G in IRES/eIF4G complexes in the absence (C–E) and presence of eIF4A/eIF4B
(G), as indicated. (H and I) Primer extension analysis of residues in PV (H) and CVB3 (I) IRESs protected from RNase V1 cleavage by eIF4G, eIF4G/eIF4A, and eIF4F,
as indicated. Sites of hydroxyl radical cleavage and residues with altered sensitivity to RNase V1 cleavage are indicated to the right. Lanes A, T, G, and C depict
sequences generated from the same primers.
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and eIF4F all protected nucleotides 466 and 542–543 (Fig. 1I). No
protection was apparent elsewhere in the PV and CVB3 IRESs
(e.g., Fig. S3). These sites of protection mapped to opposite strands
of a short helix in domain V (Fig. 2 D and E) and correlated with
a site of directed hydroxyl radical cleavage (Fig. 2 A–C). eIF4G/
eIF4A, and to a greater extent eIF4F, enhanced RNase V1 cleavage
at the apex of PV domain V (nucleotides 489–493 and 501–504)
(Fig. 1H), suggesting that their binding might also induce confor-
mational changes in this region. The eIF4G binding-site maps to the
highly-conserved basal region of domain V of type 1 IRESs (ref. 10
and Fig. 2F), so that all type 1 IRESs likely interact specifically with
the central domain of eIF4G.

eIF4G-Mediated Recruitment of eIF4A to Type 1 IRESs. Directed
hydroxyl radical cleavage and enzymatic footprinting data sug-
gested that eIF4G recruits eIF4A to type 1 IRESs. We therefore
investigated eIF4A’s position in IRES/eIF4G/eIF4A complexes
by directed hydroxyl radical cleavage, using a panel of 9 eIF4A
cysteine mutants (Fig. 3A). eIF4A consists of 2 domains joined

by a flexible linker (Fig. 3A). The eIF4A-NTD binds to the
C-terminal helix of the central domain of eIF4G, whereas the
eIF4A-CTD binds to the N-terminal 2 HEAT-repeats and a
flexible N-terminal region (18).

Hydroxyl radicals generated from 2 positions in the eIF4A-
NTD induced cleavage of PV and CVB3 IRESs in domain V’s
central loop and an adjacent helix (Figs. 2 G and H and 3 B and
C). Cys-42 induced cleavage at PV nucleotides 517–520 and
CVB3 nucleotides 519–523, whereas Cys-33 induced weaker
cleavage at PV nucleotides 518–519 and 526–528 and at CVB3
nucleotides 529–531 (Fig. 3 B, lanes 2 and 3 and C, lanes 3 and
4). No cleavage occurred in the absence of eIF4G (Fig. S4). The
overlap between the sites of cleavage induced by eIF4A-Cys-33
and eIF4A-Cys-42 (Fig. 2 G and H) and those induced by
eIF4G-Cys-929 (Fig. 2 A–C) is consistent with the proximity of
these residues in eIF4G/eIF4A complexes (18).

eIF4G/eIF4A Induce Conformational Changes at the 3� Border of Type
1 IRESs. Although no cleavage was observed around the Yn-Xm-
AUG motif at the 3� border of type 1 IRESs from eIF4G or
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eIF4A (Figs. S1, S2, and S5), in toe-printing experiments,
incubation of the PV IRES with eIF4F or with eIF4A and either
eIF4G737–1116 or eIF4G737–1600 (which contain 1 or both binding

sites for eIF4A, respectively) together led to the appearance of
stops in domain VI and immediately downstream of it (nucleo-
tides 583–584, 593, and 621) (Fig. 4 A, B, and D). In analogous
experiments, incubation of the CVB3 IRES with eIF4G737–1600/
eIF4A also led to the appearance of toe prints in domain VI and
its vicinity (nucleotides 582, 588–591, 598, 601, 609, 626, and
633–634) (Fig. 4 C and E). Taking into account the lack of
directed hydroxyl radical cleavage in domain VI from eIF4G
(Figs. S1, S2, and S5) or eIF4A, and the lack of protection from
RNase V1 cleavage in regions downstream of domain V by
eIF4G/eIF4A (Fig. S3), such toe prints in domain VI and its
vicinity are more consistent with induction by eIF4G/eIF4A of
conformational changes at the 3� border of type 1 IRESs than
with direct interaction of eIF4G/eIF4A with these regions.

Binding of eIF4G/eIF4A to Domain V Is Required for PV IRES Function.
The functional importance of the interactions of eIF4G and eIF4A
with the PV IRES was addressed by analyzing the effects on these
interactions of mutations in domain V (Fig. 5A) that impaired
IRES-mediated translation (Fig. 5B). The defect in translation of
the �CG463–464 mutant was consistent with previous reports (e.g.,
ref. 19). The GGG548–550 3 AAA mutation strongly reduced
cleavage of the IRES from eIF4G-Cys-830 and from eIF4A-Cys-33
and eIF4A-Cys-42 (Fig. 5C, lanes 2–4 and 6–8), indicating that it
significantly impaired binding of eIF4G, and consequently, eIF4A.
This defect was restored in the CCC453–456/GGG548–550 3 UUU/
AAA double mutant (Fig. 5C, lanes 17 and 18). A deletion
(�CG463–464) in a helix that is directly protected by eIF4G from
RNase V1 cleavage also abrogated cleavage from eIF4G-Cys-830,
and eIF4A-Cys-33 and eIF4A-Cys-42, and thus by implication,
prevented their binding to the IRES (Fig. 5C, lanes 9–12). These
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observations are consistent with the results of directed hydroxyl
radical probing and enzymatic footprinting, which mapped eIF4G’s
site of interaction to the basal region of domain V. Importantly, an
8-nt insertion (A468 � 8 nt) abrogated only cleavage from eIF4A-
Cys-33 and eIF4A-Cys-42 without significantly affecting cleavage
from eIF4G-Cys-830 (Fig. 5C, lanes 13–16), indicating that this
insertion impairs recruitment of eIF4A to the eIF4G/IRES com-
plex. Consistently, all mutations that affected binding of eIF4G or
recruitment of eIF4A to the IRES also strongly reduced the
appearance in toe-printing experiments of stops at nucleotides
583–584, 593, and 621 (Fig. 5D). Thus, the ability of IRES variants
to interact with the eIF4G/eIF4A complex correlated with their
translational activity.

Discussion
We report that eIF4G specifically recognizes domain V of
CVB3, EV71, and PV IRESs, binds to them with the same
orientation, and, importantly, does so independently of other
factors. These data extend the observation that eIF4G cross-
links to PV IRES domain V in RRL (15). eIF4G’s binding site
is limited to the near-universally-conserved base of domain V
(Fig. 2F and ref. 10). Mutations in this region severely impair
translation and consequently impair or even abrogate virus
growth (Fig. 5; refs. 9 and 19–21). Importantly, the introduction
of the attenuating Sabin 3 mutation into domain V of the WT PV
IRES at nucleotide 469 reduced cross-linking of eIF4G and
eIF4B to this domain in RRL (15). These data and the fact that
compensatory mutations that restored base-pairing in the base
of PV domain V restored IRES-mediated translation and the
IRES’s ability to interact with eIF4G (Fig. 5) strongly support
the importance of this interaction for type 1 IRES function.

Type 1 and 2 IRESs are unrelated, and the only similarity
between them is the Yn-Xm-AUG motif at their 3� borders. It is
therefore significant that the position and orientation with which
the central domain of eIF4G binds type 1 and 2 IRESs relative to
the Yn-Xm-AUG motif are analogous. Thus, in both cases, eIF4G

interacts with domains (V in type 1 IRESs and J–K in type 2 IRESs)
that are adjacent to this motif (Fig. 2 I and J), and in both instances
its C terminus is oriented toward the apex and the N terminus is
oriented toward the base of these domains (this paper and ref. 7).
As with type 2 IRESs (5), eIF4G recruits eIF4A to type 1 IRESs,
and eIF4A may in turn enhance the eIF4G-type 1 IRES interaction
(e.g., Fig. 1 G and H). eIF4A is critical for IRES function, and the
failure to recruit it by the PV (A468 � 8 nt) IRES mutant correlated
with its severe loss of activity, even though it retained the ability to
bind eIF4G. The correlation between the ability of the PV IRES to
recruit eIF4A and its ability to mediate internal initiation is
consistent with the dependence of type 1 IRESs on eIF4A (12).

eIF4G and eIF4A together induced strong toe prints at the 3�
border of type 1 IRESs (in domain VI and its immediate vicinity)
that likely indicate conformational changes in the IRES, because no
direct interaction of eIF4G or eIF4A with this region of the IRES
was detected in hydroxyl radical cleavage or footprinting experi-
ments. The finding that recruitment of eIF4G/eIF4A to domain V
led to these changes in domain VI is consistent with observations
suggesting that domains V and VI are functionally linked and might
interact structurally, such as their synergy in promoting UV cross-
linking to the IRES of a 36-kDa protein in cellular extracts (22) and
determining PV neurovirulence (23). Importantly, binding of
eIF4G/eIF4A to the type 2 EMCV IRES induced analogous toe
prints at its 3� border (7). These conformational changes induced at
the 3� borders of type 1 and 2 IRESs could be essential for
subsequent attachment of 43S complexes to these regions.

The observations reported here are therefore consistent with
a model for initiation in which eIF4G binds to the IRES adjacent
to the site of ribosomal entry and recruits eIF4A, which can then
remodel the IRES so that it adopts a conformation to which a
43S complex can attach productively. This model is directly
analogous to the proposed mechanism of initiation on type 2
IRESs, which is similarly based on binding of eIF4G to a domain
of the IRES adjacent to the site of ribosomal attachment,
recruitment of eIF4A, enhancement of eIF4G’s binding to the
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IRES by eIF4A, and eIF4A/eIF4G-induced conformational
changes at the 3� border of the IRES (4–7). Thus, despite the
lack of sequence and structural similarity between type 1 and 2
IRESs, several fundamental aspects of the mechanisms of
initiation on them are nevertheless similar.

Although our data strongly suggest that binding of eIF4G/eIF4A
is a key step in initiation on type 1 and 2 IRESs, it is important to
note that it is not sufficient for recruitment of 43S complexes on
type 2 IRESs (and likely also not for type 1 IRESs). Thus, even
though the individual J–K domain of the type 2 EMCV IRES can
bind eIF4G/eIF4A, it is unable to recruit the 40S subunit in the
absence of the other IRES domains (see ref. 7 for a discussion).
Moreover, although the eIF3–eIF4G interaction may contribute to
recruitment of 43S complexes to both classes of IRESs, our
determination that eIF4G deletion mutants that are unable to bind
eIF3 can nevertheless support initiation on the EMCV IRES (5)
suggests that additional (and as-yet unidentified) interactions of
type 2 IRESs with the translational apparatus are required for
productive recruitment of 43S complexes. The actual mechanism of
recruitment of the 40S subunit to eIF4G/eIF4A-bound type 1 and
2 IRESs therefore remains unresolved.

Analyses of type 2, 3, and 4 IRESs have established 3 funda-
mentally different modes of IRES-mediated initiation, each involv-
ing distinct primary interactions with components of the translation
apparatus. By contrast, we report here that there are fundamental
underlying similarities between the mechanisms of initiation on the
unrelated type 1 and 2 IRESs. These observations suggest that there
are likely only a limited number of possible mechanisms of IRES-
mediated initiation and IRES/factor interactions that drive them,
and thus that other IRESs with structural properties that are
distinct from those of the 4 major IRES groups may nevertheless
use similar mechanisms to mediate initiation.

Methods
In Vitro Translation Assays. PV mRNAs were translated for 1 h at 30 °C in
cell-free HeLa extracts (11). Translation products were analyzed by SDS/PAGE
and quantified with a PhosphoImager.

Purification of Initiation Factors. eIF4F was purified from RRL (Green Hectares),
and recombinant eIF4A, eIF4B, eIF4G737–1116, and eIF4G737–1600 were expressed
and purified from Escherichia coli DE3 (4, 7, 24).

Footprinting Analysis of eIF4G on PV or CVB IRES Complexes. PV/CVB3 IRES (1
pmol) was incubated alone or with 2 pmol of eIF4G (with/without 3 pmol of
eIF4A) or 2 pmol of eIF4F in 40 �L of buffer [20 mM Tris (pH 7.5), 100 mM KAc,
1 mM DTT, 2.5 mM MgCl2, and 0.25 mM spermidine] for 10 min at 37 °C, and
then digested with RNase V1 (0.28 � 10�3 units/mL) for 10 min at 37 °C.
Cleavage sites were mapped by using avian myeloblastosis virus reverse
transcriptase (AMV-RT) and appropriate primers (Table S1).

Fe(II)-BABE Modification of eIF4GI737–1116 and eIF4A Mutants. Derivatization of
single-cysteine eIF4G737–1116 and eIF4A mutants and mock-derivatization of cys-
teineless eIF4G737–1116 and eIF4A with Fe(II)-BABE was done as described (7).

Directed Hydroxyl Radical Probing. Complexes were formed by incubating 4
pmol of [Fe(II)-BABE]-eIF4G737–1116 or 8 pmol of [Fe(II)-BABE]-eIF4A and 4 pmol of
eIF4G737–1600 with 2 pmol of CVB3, EV71 or PV IRESs in 40 �L of buffer [20 mM
Tris�HCl (pH 7.5), 80 mM KCl, 2.5 mM MgAc] at 37 °C for 10 min. When indicated,
8 pmol of eIF4A, 8 pmol of eIF4B, and 1 mM ATP were added to reactions
containing [Fe(II)-BABE]-eIF4G737–1116. Togeneratehydroxyl radicals, thereaction
mixture was supplemented with 0.05% H2O2 and 5 mM ascorbic acid and incu-
bated on ice for 10 min. Reactions were quenched by adding 20 mM thiourea and
110 �L of stop solution (300 mM �-mercaptoethanol, 0.2% SDS, 10 mM EDTA).
Cleavage sites were analyzed by primer extension using AMV-RT.

Toe-Printing Assay. Complexes were assembled by incubating 2 pmol of PV or
CVB3 RNA for 10 min at 37 °C in 40 �L of buffer [1 mM DTT, 80 mM KCl, 20 mM
Tris (pH 7.5), 2.5 mM MgOAc, 40 units RNase OUT, 0.25 mM spermidine, 1 mM
ATP] with combinations of eIF4F (4 pmol), eIF4G737–1116 (8 pmol), or eIF4G737–

1600 (8 pmol), and eIF4A (20 pmol) as indicated. CVB3 (nucleotides 701–682) or
PV1 (nucleotides 706–687) 32P-labeled primer was added to the mixture for 5
min and chilled on ice. Primer extension analysis was done by adding 1 �L of
MgOAc (360 mM), 4 �L of dNTPs (5 mM), and 5 units AMV-RT to reaction
mixtures, followed by incubation for 2 h at 20 °C. cDNAs were analyzed by
electrophoresis through 6% polyacrylamide sequencing gels.

Sequence Alignment. A total of 241 enterovirus IRES domain V sequences were
identified, aligned in BLAST searches (www.ncbi.nlm.nih.gov/BLAST) of viral
sequences in the GenBank nonredundant database, and used to determine
nucleotide identities.
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