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Abstract
To gain performance, developers often build scientific applications in procedural languages, such as
C or Fortran, which unfortunately reduces flexibility. To address this imbalance, the authors present
CompuCell3D, a multitiered, flexible, and scalable problem-solving environment for morphogenesis
simulations that’s written in C++ using object-oriented design patterns.

How the 3D development, or morphogenesis, of multicellular organisms arises from a single-
celled fertilized zygote with a 1D genome is still a challenge in postgenomic biology. But by
treating cells with a phenomenological approach that ignores much of the detail of intracellular
biochemistry, we can reduce multiple complex biochemical interactions to a small set of
behaviors such as movement, division, death, differentiation, shape changes, and cell–cell
communication. To tackle these sorts of problems, researchers often use problem-solving
environments (PSEs) because they let users focus on particular domains of expertise without
requiring knowledge of low-level modules. A molecular modeling PSE, for example, lets
chemists transparently set up simulations of various systems at different temperatures,
pressures, and so on, whereas an ecosystem PSE lets ecologists set up environments and add
entities, organisms, and evolutionary models.
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Until recently, most developers wrote scientific software programs in C or Fortran to enhance
performance, but the procedural code structure in such languages prevents straightforward
grouping of related functionalities, thus complicating extension and maintenance. Procedural
structures are also inconvenient when software goals change because new requirements might
call for making the same change to multiple related procedures. Object-oriented programming
addresses these problems with characteristic collections of objects, each of which is an
independent unit encapsulating a specific behavior. Design patterns1 also provide reusable
solutions to commonly occurring object-oriented problems in software design by making the
overall implementation more flexible, modular, and ultimately easier to maintain. This modular
design and maintainability is what allows PSEs to “keep up” as scientific models evolve by
making modifications and extensions easier and by increasing code reusability.

Roeland Merks and his colleagues2 recently listed a set of requirements for morphogenesis
PSEs—namely, that they should implement the biological and physical behavior of single
entities (such as cells and organs), provide the infrastructure for them to interact, and offer the
tools necessary to transparently set up simulations, execute and visualize them, and analyze
the resulting structures. Accordingly, we developed CompuCell3D, a 3D multiscale PSE for
modeling morphogenesis that combines discrete cellular automata and continuum methods for
flexibility and scalability. It implements James Glazier and François Graner’s Cellular Potts
Model (CPM) as a cellular automaton to govern cell interactions, along with reaction-diffusion
partial differential equation (PDE) solvers to establish external chemical gradients.
CompuCell3D takes a cell-centered3 approach to morphogenesis modeling by simulating cells
whose behavioral rules and biophysical properties the user can easily define as PSE features,
either by coding those features in C++ or by writing programs in Biologo, a high-level domain-
specific language (DSL). To facilitate experiments with these models, we also developed an
interactive GUI called CompuCellPlayer.

CompuCell3D’s Architecture
Figure 1 shows CompuCell3D’s modular three-tiered architecture. Tier 1 comprises the core
of CompuCell3D’s simulation engine, which includes mathematical models of morphogenesis
as well as a simulation lattice. Developers typically operate at this level to enhance the PSE’s
functional capabilities. Biologo appears in Tier 2; the language lets users model problems at
an abstract level, with a compiler converting the syntax into simulation-engine source code.
Tier 3 is the presentation layer, which includes a visualization toolkit for cell imaging along
with a GUI that lets users configure and run simulations. Each tier is self-contained and interacts
with the other tiers through an API.

Tier 1: CompuCell3D’s Core
The CPM is the core of CompuCell3D’s framework, and it’s designed to accurately simulate
cell interactions and movement. Specifically, it uses a lattice to describe cells and then
associates an integer index with each lattice site (voxel) to identify each cell’s spatial extent
and location at any given instant. The index value at a lattice site is σ if the site lies in cell σ.
Domains in the lattice—that is, collections of lattice sites with the same index—represent cells,
so a cell is thus a set of discrete components that can rearrange to produce cell-shape changes
and motion.

Instead of representing the forces that cause cells to rearrange directly, the CPM aggregates
them into an effective energy E, the gradient of which is the force acting at any point. Because
of these forces and the cellular environment’s effectively infinite viscosity (no inertia), the
cells gradually rearrange to reduce the pattern’s generalized energy. The effective energy
contains terms describing cell interactions, motion under cytoskeletal fluctuations, and
response to external chemical stimuli; its parameters change during cell growth, death, division,
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and differentiation. We use the term effective energy because it contains terms that mimic
energies (for example, a cell’s response to a chemotactic gradient). Equation 1 shows a typical
energy E:

(1)

A modified Metropolis algorithm for Monte Carlo Boltzmann dynamics implements cell
membrane fluctuations (each term describes a different biological mechanism). The contact
energy describes the net adhesion and repulsion between two cell membranes and is the product
of the binding energy per unit area and the total area. Volume and surface energy terms
implement constraints on cellular volume and surface area, respectively—they’re quadratically
proportional to a cell’s current volume (surface area) and a target value, which can vary between
cell types. Chemical energy can result from cellular chemotaxis, or oriented movement, toward
an external chemical gradient, or haptotaxis, which restricts reactions to a selected set of cell
types.

We used the Facade design pattern1 to implement the CPM. A Facade pattern defines a
common interface for unrelated objects, enabling them to interact without prior knowledge of
their internals. Potts3D—our reference implementation of the generic CPM—uses the Facade
pattern and consists of collections of objects or modules that work together to implement
specific functionality. Using a standardized interface for our modules ensures that we can
upgrade them without a complete redesign of Potts3D.

Cell structure and differentiation—In both mathematical and computational modeling,
the biological cell provides a useful level of abstraction that hides subcellular details.3 We use
a standard object model to represent cells, treating each cell as an object with certain attributes.

During morphogenesis, cells differentiate from initial multipotent stem cells into specialized
cell types; this qualitative change in cell behavior is generally abrupt and irreversible. We use
a variation of the State design pattern,1 which lets an object alter its behavior when its internal
state changes, to implement cell differentiation via the Automaton module. Instead of defining
abstractness for states, we define abstract transitions—specifically, abstracting functionality
for transitioning to a particular state. In the presence of irreversible type changes, this design
saves PSE size because the number of required classes grows linearly with the number of states
that have incoming transitions as opposed to the number of states in general. During the
simulation, we evaluate a list of possible transitions whenever a cell changes position or site
to determine if the cell’s state has changed. If so, we change the cell’s type; otherwise, its state
remains unchanged.

Lattice representation—CompuCell3D simulations run on a lattice, as in Figure 2.4
Consider a relatively small 2003-pixel lattice, with each pixel consuming a very conservative
32 bits; in three dimensions, a naive implementation of the lattice requires approximately 128
Mbytes of memory. Because cells in CompuCell3D are collections of pixels, we associate with
every pixel a pointer to a cell object (instead of storing an instance of a cell object in every
pixel). Assuming an average cell to be a collection of 25 pixels, our lattice implementation
uses approximately 30 percent of the memory required in the naive implementation. Memory
savings increase with increasing average cell size.

In our implementation, we abstract the Field3D module such that the lattice implementation
can use its own data structure to represent the lattice itself (as hexagonal or square, for example),
which lets the Field3D module support different types of lattices without modifying the basic
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interface. In addition, Field3D can enforce user-defined boundary conditions (using the
Boundary module) along each individual lattice axis. We use the Factory Method design
pattern1 to promote loose coupling between the CPM lattice and the boundary strategy because
it models an interface for creating an object, which at the time of instantiation lets its subclasses
decide which object to create. The user subsequently inputs each axis’s boundary strategy,
which is instantiated accordingly at runtime.

Supporting multiple features—CompuCell3D also lets users add or remove functionality
from a simulation. A biologist might want to observe cell behavior with and without cell
division, for example, and an appropriate plug-in can implement that option. Plug-ins provide
a clear structure for extending the simulation framework—fortunately, adding features through
plug-ins doesn’t affect the framework’s core functionality. Table 1 lists the features available
in CompuCell3D; it shows plug-ins that operate at the field level of modeling (such as PDE
solvers), and those that operate at the cell level, controlling individual cells’ properties.

Tier 2: Biologo
Biologo extends XML to model multiple morphogenesis subprocesses, including cell
differentiation, volume constraints, intercellular adhesion, chemotaxis, haptotaxis, and
reaction-diffusion. It inherits XML syntax and semantics using extended XML parsing libraries
from Xerces (http://xml.apache.org/xerces-c/), which also gives it XML’s inherent
extensibility. Biologo’s extensions for CompuCell3D are implemented as XML modules that
convert transparently into dynamically loaded C++ plug-ins.

Translation of a Biologo program into the source code for a CompuCell3D plug-in is a two-
stage process. The compiler front end parses and lexically analyzes the Biologo program,
executes several error-checking routines, and generates an intermediate file containing simpler
syntax, which then passes through the code generator that processes and translates the
intermediate file into C++. The intermediate syntax opens the door for future implementation
of a compiler that can implement machine-independent optimizations during generation of the
intermediate representation, which is uniform across architectures (unlike C++ code, which
can be nonuniform). Intermediate code saves the overhead of having to change the code
generator front-end modules to suit each platform on which we deploy CompuCell3D.

Tier 3: The CompuCellPlayer
One major task of PSEs is to supply intuitive GUIs and visualization tools, but scientific
developers often neglect this area of software development or treat it as a back-burner task.
Early versions of CompuCell3D lacked a GUI and outsourced visualization to third-party
external tools, but by definition a PSE requires an easy and understandable interface for user
interaction.

To address these issues, we developed a tool called CompuCellPlayer to provide visualization
services and a front end to CompuCell3D. It displays the current simulation state in real time
on the user’s screen and saves the state in the form of a graphical .png file on the hard drive
for further postprocessing. CompuCellPlayer also lets users render objects in 2D and 3D,
display chemical concentrations, pressures, and cell velocity fields, zoom in or out, and toggle
cell border display.

CompuCellPlayer is fully customizable and lets users configure cell colors and borders as well
as concentration and vector-field plots. Based on the XML simulation description, the
CompuCellPlayer chooses and enables plots appropriate for the simulation. Another useful
feature is its ability to save multiple simulation views during a single run—including the cell,
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chemical, and velocity fields, in the form of screenshots—without having to repeat the
simulation. Overhead for this operation is negligible.

The CompuCellPlayer can also run in noninteractive or silent mode, which is important when
users run CompuCell3D on clusters accessed through queuing systems that don’t run
interactive jobs. In this case, users must prepare a screenshot description text file to tell the
CompuCellPlayer which views to save so it can prepare the screenshot description file. The
user simply switches views and presses the Camera button on the views that should be saved.
At the end of this step, CompuCellPlayer stores a screenshot description file that can control
the CompuCellPlayer in noninteractive mode.

Finally, users can serialize the entire simulation to restart at a later time, possibly with different
parameters. This particular feature makes it possible to equilibrate cellular patterns before
running a simulation, from a more physically relevant initial state.

Applications
A flexible morphogenesis PSE should be able to represent multiple types of simulations,
organisms, chemical fields, reaction-diffusion PDEs, cell types, and so on. We can demonstrate
CompuCell3D’s flexibility by illustrating three biologically relevant test simulations. We
provide XML for each example at www.nd.edu/~lcls/compucell/examples.htm.

Cell-Sorting Simulation
Embryonic cells of two different types, when dissociated, randomly mixed, and reaggregated,
can spontaneously sort to reestablish coherent homogeneous tissues. Both complete and partial
cell sorting (in which large clusters of one cell type are engulfed or surrounded by a continuous
layer of cells of the other cell type) occur during in vitro experiments via embryonic cells. Cell
sorting is a key step in regenerating a normal animal from aggregates of dissociated cells of
adult hydra5 and in establishing spatial relationships among cells during embryogenesis in all
species. Biologically, cell sorting is thought to result from adhesivity differences.6
CompuCell3D lets researchers study how differential cell adhesion drives cells to produce
different patterns. Even cell sorting between two different initially randomly distributed cell
types (as in Figure 3a), for example, results from having one cell type stick strongly to itself
(as in Figure 3b). If cells stick most strongly to cells of the opposite type, a checkerboard pattern
forms (see Figure 3c).

The XML code in Figure 4 shows a CompuCell3D configuration file for cell sorting. Changing
the adhesivity values in the Contact plug-in produces different patterns.

Chondrogenic Condensation Simulation
Following other research,4,7 we can model the spatiotemporal patterning of cells during
cartilage formation (called chondrogenesis) in a growing embryonic chicken limb. We use an
initially uniform distribution of cubic cells and superimpose a chemoattractant, which we
identify with transforming growth factor-beta (TGF-β), a molecule that acts as an activator in
pattern formation.

We implement cell differentiation as a cell type map (CTM), an automaton consisting of a set
of cell types and rules for type transitions. As an example, we can illustrate the CTM other
researchers4 used in their avian limb-bud growth model in Biologo, employing two different
types of cells: noncondensing and condensing, with the latter much more adhesive than the
former. A high concentration of an activator chemical (above a threshold) stimulates a type
change from noncondensing to condensing, and a low concentration stimulates the reverse
transition, as in Figure 5. All CTMs define a medium cell type to represent the ECM; Figure
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6a (p. 56) defines this CTM using Biologo. The useplugin tag includes the
LimbChemical effective energy, enabling access to its inputs and fields using the “.” operator.
In this case, we reference the LimbChemical.activator field and the
LimbChemical.Threshold. The CTM specifies each cell type and includes an
updatecelltypes module to specify the conditions for cell differentiation to this type. Figure
6b instantiates this CTM in the CompuCell3D configuration file.

Building on this approach, we can also use Biologo to add a CPM effective energy term or
Hamiltonian to simulate haptotaxis, which depends on two superimposed chemical fields in
other research.4 The first represents TGF-β, which induces an inhibitor that acts laterally to
the condensations, thus generating the stripe-like patterns observed in avian limb
chondrogenesis. We populate the TGF-β with a reaction-diffusion equation solver.8 TGF-β
then stimulates cells to secrete an adhesive glycoprotein—called fibronectin (the second field)
—which locally traps cells in clusters by haptotaxis in a process known as mesenchymal
condensation. The haptotaxis effective energy plug-in implements Equation 2 for the
fibronectin concentration C:

(2)

Biologically, only the active zone cells exposed to a high activator concentration can produce
fibronectin. We add this functionality through the Biologo Hamiltonian in Figure 7a (p. 57).
The user specifies the value of an activator threshold that, if exceeded, stimulates fibronectin
secretion, the scaling factor μ from Equation 2, and the rate of secretion. The
ConcentrationFile is a binary file of floating-point values populating the activator
chemical field, with x as the innermost loop. Figure 7b is a CompuCell3D configuration file
snippet that adds the customized haptotaxis extension to a simulation, thereby specifying all
input values. The Hamiltonian step module specifies the rates of chemical secretion and
resorption, modifying its associated field. In this case, we secrete a quantity FibroRate into
fibronectin if the corresponding activator concentration is above or equal to Threshold. The
effective energy equation sums over all lattice locations pt (predefined), but only condensing
cells contribute.

The effective energy includes cell–cell adhesion, volume and surface area constraints, and
haptotaxis from Biologo. CompuCell3D can also simulate chicken limb formation on an
irregular domain or on a growing regular domain. Figure 8 shows the results of this latter
simulation.

Simulating in vitro Capillary Development
Merks and his colleagues9 developed an in silico model of the widely used human umbilical
vascular endothelial cells (HUVEC) in vitro for blood vessel growth (called angiogenesis).
During the first steps of embryonic vascular development, endothelial cells (ECs, the cells that
line the inner walls of blood vessels) organize into polygonal patterns of cell cords. Existing
vessels subsequently sprout and split, forming new blood vessels and remodeling the initial
vascular network. Merks and his colleagues assumed that ECs secrete a morphogen that the
ECM inactivates, extend filopodia up the morphogen gradients, and elongate in response to
angiogenic growth factors.

Biologo uses PDEs to model the reaction and diffusion of secreted, diffusible, and nondiffusible
molecules.8 Such cellular models typically represent cells’ production of and responses to
diffusing molecules as sets of PDEs. Nian Li and his colleagues10 demonstrated convergence
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and stability of the finite difference method for solving reaction-diffusion equations. A user
can write a set of PDEs in Biologo to generate a 2D finite difference solver plug-in that a
CompuCell3D configuration file can subsequently dynamically load, to populate an associated
chemical field for use by other CompuCell3D plug-ins. For our experiments, we modeled in
vitro capillary development, duplicating the results of another model9 and, by analogy to the
Gamba-Serini PDE model,11 simulating the chemoattractant c’s reaction-diffusion in Equation
3:

(3)

where α is the rate at which cells secrete the chemoattractant, ε is the rate of chemoattractant
resorption in ECM, D is the diffusion constant of the chemoattractant in both cells and ECM,
and δσx,0 is 1 for cells and 0 for the medium. Hence, c diffuses and decays in the extracellular
matrix.

This equation models a chemoattractant’s diffusion and breakdown and thus doesn’t
autonomously drive cell patterning. Patterns form due to the close interplay between cell
migration and chemoattractant secretion and decay. Figure 9a (p. 58) shows this vasculogenesis
model in Biologo. DiffEq tags represent each PDE, and each tag evolves one field with time.
An equation specifies each unique term separately. Kronecker is equivalent to δ(σ(x, y, z),
0), which is 1 if point (x, y, z) corresponds to a medium point and 0 if (x, y, z) lies in a biological
cell; Laplacian computes the Laplacian of the passed field. Each solver predefines user inputs
for the time step and number of steps in the finite difference algorithm. These parameters, along
with α, ε, and D, are instantiated in the CompuCell3D configuration file as shown in Figure
9b, which also shows the instantiation of a chemotaxis plug-in using the field c from the
Gamba-Serini PDE solver. Numbers of PDE steps per CPM step, the time step, and the space
step for the finite difference method are also specified.

For more complete 3D PDE solving ability, an alternative is to embed Python code and use
FiPy (www.ctcms.nist.gov/fipy/) calls within Biologo between Python tags. We use source
and transient diffusion terms from the FiPy libraries to set up the equivalent version of Gamba-
Serini PDEs in Figure 10. This also provides the ability to discretize multiple fields differently
in time by passing different dt values to solve(). Once again, we reference Kronecker.
Embedded FiPy offers a trade-off in representative power for performance, yielding roughly
a six-fold performance slowdown versus Biologo’s generated C++.

Figure 11 (p. 59) shows a CompuCell3D version of the in vitro capillary development model.
A surface tension γ = JCell,Medium − JCell,Cell/2 determines whether cells cohere (γ > 0) or
dissociate (γ < 0). Figure 11a includes a cell-length constraint that causes cells to elongate,
which is represented with an extra term in the CPM Hamiltonian that’s quadratically
proportional to the deviation between a cell’s current and target length L. In this figure, L =
30, which results in a connected network with thinner chords. We also implemented a
constraint9 to preserve local cell connectivity and removed cell adhesion by setting JCell,Cell
= 60 and JCell,Medium = 30, yielding γ = 0. As long as elongation is present, the HUVEC forms
networks even in the absence of adhesion. Figure 11b shows the chemical field from Equation
3 added through Figure 9a, now recognized and visualized through the CompuCellPlayer, along
with superimposed cell boundaries. Finally, Figure 11c enforces rounded cells (L = 10) and
shows that a network doesn’t form due to the lack of cell stretching, in accordance with other
results.9
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Performance
Let’s now examine how CompuCell3D performance scales with cell density and lattice size
(in voxels) for a cell-sorting simulation run for 500 Monte Carlo steps (MCSs). Figure 12a
uses a constant 50 × 50 × 50 lattice size, whereas Figure 12b uses a constant cell density of 27
percent. We conducted our tests on an HP workstation with an Intel Pentium IV 3.2-GHz
processor and 1 Gbyte of memory that ran Red Hat Linux 9.0, kernel 2.4.21. The C++ compiler
was g++ version 3.2.3. As we would expect, execution time scales linearly with lattice size at
constant density. In the future, we hope to improve scaling with cell density in two ways: by
recognizing sparse areas of the lattice with the help of sophisticated data structures (to keep
track of cellular positions and avoid neutral or ineffective flip attempts) or by implementing
the random-walk algorithm,12 which restricts flip attempts to boundary lattice locations.

In our next release and upgrade of CompuCell3D, we will add a layer to the PSE that will
implement Python scripting as another option for user interaction. This layer will balance
interactive power with the abstraction level—the interface will be more complex than Biologo,
but a larger set of behaviors will be modifiable. We’ll also wrap C++ libraries from
CompuCell3D with SWIG, a useful tool for converting C++ functionality into importable
Python modules, and group importable modules into packages that the user can subsequently
import as high-level functions to invoke backend functionality. A prototype version is currently
available at www.nd.edu/~lcls/compucell/downloads.htm. Finally, we plan to incorporate a
parallel CPM implementation into the PSE using domain decomposition to accommodate
larger simulations and to make a Windows-compatible binary available.

Although we focused on biological applications in this text, the benefits of PSEs have been
proven to extend to other domains as well, such as multiway data modeling13 and workflow
setup for grid environments.14 Another classic example is Interactive ELLPACK,15 which
extended the ELLPACK language to provide a graphical interactive environment for PDE
solving. Despite their wide range of applications, these PSEs succeed in a similar fashion by
removing the burden of low-level modular architectural concerns off the users, freeing them
up to operate at a level of abstraction suitable for their expertise.
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Figure 1.
CompuCell3D’s architecture. We can modify, extend, or replace any tier without affecting the
other tiers.
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Figure 2.
Example lattice in CompuCell3D. This lattice contains three cells, consuming lattice locations
labeled 1, 2, and 3. Different cells (such as 1 and 3, shaded the same color for clarity) might
have the same type. All other lattice locations are labeled 0 to designate the Extracellular Matrix
(ECM).
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Figure 3.
Cell sorting. Starting from (a) a randomly mixed two-cell-type aggregate, we arrive at different
final state patterns for different cell–cell adhesivity settings. (b) Cells adhere to other cells of
the same type, with the more adhesive cell type (red) clustering at the center. (c) A checkerboard
pattern forms due to preferential adhesion between cells of different types.
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Figure 4.
CompuCell3D configuration file for cell sorting. Different adhesivity settings are shown in the
Contact plug-in; other plug-ins for center of mass, volume, and surface area calculations are
also displayed along with Cellular Potts Model (CPM) parameters at the top.
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Figure 5.
Cell type map for an avian limb simulation. A noncondensing cell becomes condensing when
exposed to an activator concentration C(x, y, z) above a threshold, and a condensing cell
becomes noncondensing when exposed to an activator concentration below a threshold.
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Figure 6.
Adding a cell type map (CTM) to CompuCell3D with Biologo. (a) CTM for a chondrogenic
condensation simulation with two cell types, condensing and noncondensing. (b) Instantiation
of the avian limb CTM in the CompuCell3D configuration file.
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Figure 7.
Adding an effective energy term to CompuCell3D with Biologo. (a) LimbChemical effective
energy or Hamiltonian for the avian limb-bud growth simulation. The effective energy is
associated with two chemical fields: activator (populated through a ConcentrationFile)
and fibronectin (populated by cell secretion and resorption) superimposed on the Cellular Potts
Model (CPM) lattice. (b) Sample instantiation of the Biologo-generated LimbChemical plug-
in for a CompuCell3D configuration file.
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Figure 8.
Avian limb development, visualizing only condensing cells for clarity. The limb forms at the
center of a 3D box of cells and is surrounded by mostly noncondensing cells. Formation begins
with the humerus after 2,300 Monte Carlo steps (MCSs), followed by the radius and ulna after
3,250 MCSs, and finally digits after 4,250 MCSs.

Cickovski et al. Page 18

Comput Sci Eng. Author manuscript; available in PMC 2009 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Adding a partial differential equation (PDE) solver to CompuCell3D with Biologo. (a) A hybrid
model of angiogenesis,9 derived from the Gamba-Serini PDEs,11 implemented in Biologo as
an evolver of chemical fields. (b) Instantiation of this solver in the CompuCell3D configuration
file. The CompuCell3D chemotaxis plug-in also accepts ChemotaxisByType tags with
attributes for cell type and associated Lambda values.
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Figure 10.
Python. This Biologo representation of the PDE model in Figure 9a uses embedded FiPy.
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Figure 11.
Output of in vitro capillary development simulations. (a) Elongated cells (L = 30) in the absence
of cell adhesion, showing the capillary networks found in other research.9 (b) Chemical
concentration from the same simulation, visualizing the field added through Biologo. (c)
Vascular islands forming due to the enforcement of rounded cells (L = 10).

Cickovski et al. Page 21

Comput Sci Eng. Author manuscript; available in PMC 2009 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
Comparisons of wall-clock execution time versus cell density (constant lattice size of 50 × 50
× 50 voxels) and lattice size (constant cell density of 27 percent). We ran five simulations for
each test, and show the mean execution time along with error bars for mean deviation.
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Table 1
Selected CompuCell3D plug-ins.

Name Function

AdvectionDiffusionSolver Solves an advection-diffusion equation on a cell field.

FlexibleDiffusionSolver A customizable solver of diffusion equations that also allows secretion, absorption, and diffusion restriction
by cell type. Also allows variable space step, time step, diffusion constants, secretion rates, and number
of fields.

BoundaryPenalty Enforces an energy penalty if a cell is close to a boundary, to prevent cells spreading on domain boundaries.

CellBoundaryTracker Provides locations of cell-boundary voxels.

CellVelocity Tracks cell speeds.

CenterOfMass Tracks cell centers of mass.

Chemotaxis Implements cell chemotaxis to an external chemical field, with forces proportional to chemical gradients.

ExternalPotential Imposes a directed potential, or force, on cells.

Growth Implements a cell density-dependent algorithm for domain growth. The lattice maintains its current
dimensions until cell density reaches a user-specified threshold, then it grows in positive z by a user-
specified amount.

LengthConstraint Implements anisotropic cells.

Mitosis Implements cell division.

SimpleClock Implements an internal timer for cells. Provides the ability to start a timer and decrement until it hits zero.

Viscosity Implements cell viscosity (useful in fluid flow simulations).
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