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Abstract
The formation of a polygonal configuration of proto-blood-vessels from initially dispersed cells is
the first step in the development of the circulatory system in vertebrates. This initial vascular network
later expands to form new blood vessels, primarily via a sprouting mechanism. We review a range
of recent results obtained with a Monte Carlo model of chemotactically migrating cells which can
explain both de novo blood vessel growth and aspects of blood vessel sprouting. We propose that
the initial network forms via a percolation-like instability depending on cell shape, or through an
alternative contact-inhibition of motility mechanism which also reproduces aspects of sprouting
blood vessel growth.

1. Introduction
The phenomena of biological development often seem much too complex to treat from the
perspective of applied mathematics. The simulation results of the Hogeweg group at Utrecht
University on the development of the cellular slime mould, Dictyostelium discoideum, have
nevertheless shown that even apparently intentional behaviours (like phototaxis [1]) can arise
from the uncoordinated interactions of a few cell types interacting via a few simple biophysical
mechanisms. While the mechanisms (adhesion, chemotaxis, diffusion, light capture, stimulated
secretion and stochastic differentiation) individually are incapable of producing complex
behaviours and while single cells exhibiting combinations of these mechanisms are also very
limited in their behaviours, the combination of multiple mechanisms and many cells can
produce genuinely emergent complex behaviours. In the case of Dictyostelium discoideum
(often abbreviated as Dicty.), the same cell types, obeying the same rules, can produce spiral
waves, stream aggregates, a crawling slug and a stalk and fruiting body, all depending on initial
conditions. The lesson of Dicty. is that even apparently hopelessly complex biological
phenomena can (though they need not) result from instabilities which we can understand
theoretically. The Dicty. model has shown a hidden unity underlying the apparently disparate
behavioural phases of the Dicty. life-cycle.

This paper presents an example of underlying unity in a different context, the growth of blood
vessels, which appears to occur via two completely different mechanisms. Blood vessels form
de novo during embryonic development, when dispersed endothelial cells (ECs: the cells lining
the inner walls of fully-formed blood vessels) organize into a vascular network
(vasculogenesis), or later during development and in adult life by sprouting or splitting of
existing blood vessels (angiogenesis). Many computer models exist to explain and describe
either, but not both, de novo [2-7] or sprouting blood vessel growth [8-10]. However, the same
genetic machinery regulates both mechanisms, which are closely related at the molecular and
cellular levels [11], so a plausible mechanism must explain both. We suggest a set of cell
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behaviours and a fundamental instability mechanism that reproduces phenomenology of both
cases and show a second, cell-shape dependent instability mechanism for de novo blood vessel
growth. We aim to encourage the reader to attempt to develop more abstract models of these
phenomena to explain in a rigorous way the origin of the instabilities we observe.

A popular experimental model of blood vessel development is human umbilical-vein
endothelial-cell (HUVEC) culture, which cultures blood vessel wall cells obtained from
umbilical cords in a protein gel obtained from Matrigel, a commercial product which mimics
the environment in which blood vessels normally grow. Initially the cells are randomly but
isotropically distributed over the gel. The growth factors in the Matrigel stimulate the cells to
elongate and interconnect to form an initially fine network, which progressively coarsens. Both
the patterns and their kinetics resemble embryonic, de novo blood vessel growth. The cells do
not penetrate into the Matrigel, forming instead a quasi-two-dimensional vascular-like pattern.
HUVEC culture closely resembles quasi-two-dimensional blood vessel growth in the yolk sacs
of avian and mammalian embryos. Sprouting blood vessel growth roughly involves the
following steps. First the basement membrane—a tough wall of connective tissue surrounding
most blood vessels—degrades enzymatically. Then ECs migrate through it, proliferate and
assemble, forming an initial sprout. Finally, a new basement membrane forms as the vessels
mature. We have focused our initial models on quasi-two-dimensional cases, to facilitate
comparison of simulations to experiments and to keep the simulations computationally
tractable.

1.1. Cell-centred modelling
Previous models of blood vessel formation focused on tissue-level phenomena, describing
densities of ECs rather than the behaviours of individual cells [2-7] or describing growing
blood vessels as branching networks of pipes whose elements were tubular lengths of vessel
[8-10]. Here, we explicitly model the behaviour of individual ECs.

Individual cells of a given type are almost indistinguishable between organisms of the same
kingdom. Instead, differences between multicellular organisms arise primarily from how their
cells recombine to form new patterns. Genome evolution studies suggest that after gene and
genome duplication events, duplicates of intercellular communication pathways stay in the
genome (and diverge from their original copies), while intracellular house-keeping genes decay
quickly after duplication (see e.g. [12,13]). This difference in the frequency of duplication and
the rate of evolutionary diffusion suggests that the regulation of cell interactions diversifies
much faster than the behaviours of individual cells. Genetic information controls blood vessel
growth (and development more generally) only indirectly; so modelling cell interactions
accurately is more important than modelling genetic and metabolic regulation within cells. We
therefore employ a simplified, phenomenological model of the relationship between genome
and cell behaviour and a much more detailed model of how cell interactions lead to the
development of tissues. This choice vastly simplifies our models, since the interactions of
roughly 104–105 gene products reduce to ten or so cell behaviours. In our case, we consider
only a subset of these behaviours: our cells can move, stick to each other, change shape, exert
forces and secrete and absorb chemicals.

We have described in detail elsewhere [14] how to build such a cell-centred model. We must
first infer individual cell behaviour from biological experiments, e.g. cell cycle times, cell death
rates, mean cell velocities, adhesion strengths and hierarchies, shapes, rates and triggers of cell
differentiation. We can sometimes obtain cell-behaviour data from the scientific literature, or
we may need to perform additional experiments. In some cases we must make plausible guesses
by analogy with other cell types or organisms. Qualitative data are fairly abundant, quantitative
data rare. Because of the relative sparseness and poor quality of quantitative data, our models
must be quite robust to substantial changes in parameter values in order to be credible. Once
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we have identified how individual cells behave, we can describe the essentials of that behaviour
in a conceptual biological model.

Philosophically, because of the paucity of experimental data and our desire to identify
fundamental mechanisms, and also because a biological model can only ever prove sufficiency
rather than correctness, we always attempt to build the simplest possible model consistent with
the biological observations. To minimize the number of model parameters, we always start
with a minimal model and then gradually add mechanisms as needed, rather than attempting
to simulate all known behaviours from the beginning. We then pick a scale (or range of scales)
of description (subcellular, cellular, tissue-level) and translate the biological model into a
mathematical and algorithmic model, which might take the form of a set of coupled partial
differential equations (PDEs) and a set of rules describing cell division and differentiation.
Such mathematical models, usually at the tissue scale (i.e. neglecting the behaviour of
individual cells) are the type most familiar to applied mathematicians.

Often, the PDE approach suffices. However, when we have structures or behaviours which
occur at the scale of single cells, continuum approaches can give qualitatively incorrect results.
For example, ECs are highly anisotropic and form vascular plexi only a few cell-widths thick,
both of which are difficult to include in continuum PDE models. In this case, we then must
implement the mathematical model computationally using an approach that preserves the
identity and behaviour of individual cells (we use Glazier and Graner’s CPM approach, but
many other approaches are equally valid). This computational description must
phenomenologically reproduce the individual cells’ behaviour. Our phenomenological single-
cell model is purely descriptive and has no explanatory value per se. It becomes useful when
we simulate many single-cell models simultaneously to determine whether the behaviours we
included in the single-cell model suffice to explain the tissue-level patterns and physiological
functions we find in experiments. If the model results match experimental observation, we can
further test our model by making experimental predictions. What happens to the cell ensemble
if we eliminate one of the single-cell behaviours? Can we remove the same element in an
experiment, e.g. with a genetic knock-out, and find similar tissue-level ensemble behaviour?
Also, we might ask which networks of genes steer this set of single-cell behaviours and how
they do it. In this way, we can describe and understand the role of gene networks in multicellular
phenomena, instead of merely observing that knocking a gene out disrupts a multicellular
function.

The cell-centred model we develop will reproduce aspects of our target phenomenon (here de
novo and sprouting blood vessel growth) but will not reproduce all details of experiments. By
identifying which phenomenology our model reproduces and which it fails to reproduce, we
can identify essential cell behaviours.

Following our general outline for the modelling of developmental phenomena, we first identify
a small set of experimentally confirmed EC behaviours and try one by one whether these could
explain the formation of vascular networks. EC (a) secrete a morphogen [15] which slowly
degrades, (b) preferentially extend protrusions (filopodia) up morphogen gradients, causing
cell movement up those gradients [16], (c) rapidly elongate after contact with the extracellular
matrix (ECM) [17] (internal remodelling of the actin cytoskeleton drives this shape change
[20]) and (d) stick to each other through the adhesion receptor vascular-endothelial–cadherin
(VE–cadherin) [18] (this receptor also allows the cells to sense when they are in contact with
each other and to change both their global behaviour and their local membrane activity [19]).

A PDE model [4,5] explains vasculogenesis from the chemotactic aggregation of ECs. This
model derives from the astrophysical Burgers equations and assumes that ECs secrete a
chemoattractant, which diffuses and decays in the ECM:
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(1)

where n is the density of ECs, υ⃗ the velocity field and c the chemoattractant concentration.
According to this model, ECs accelerate in chemoattractant gradients. In the highly viscous
environment which the cells experience, however, ECs have no inertia. Instead, they move as
long as they exert or experience a force and stop when it is removed. Thus, cell inertia seems
biologically implausible, although the authors argue that it can represent EC’s persistence of
motility [7]. Studies in other organisms show that cells, while they do exhibit persistence, do
not accelerate in response to gradients, primarily because their maximum velocity is limited
[21]. While persistent motion due to the time a cell takes to assemble and disassemble its
motility apparatus (flilopodia or lamellipodia) can significantly affect the kinetics of pattern
evolution in highly frustrated environments where cell diffusion or superdiffusion sets
timescales (e.g. cell sorting), we neglect it here for three reasons. (1) The typical persistence
time for cells is a minute, while the vascular pattern forms over the course of hours. (2) The
cells primarily interact with each other via a chemoattractant which diffuses rapidly relative
to the timescales of cell diffusion (thus chemical rather than cell diffusion sets the timescale
for cells to sense each other’s presence). (3) All cells are equivalent and interact in an
environment with no mechanical barriers which require low-probability ‘thermally activated’
processes (thus the pattern timescale depends on the mean cell speed rather than the frequency
of rare large-amplitude events; equivalently the energy is a smooth function of configuration
with a single global minimum attracting nearly all initial conditions and few if any local
minima). We therefore modify the Gamba and Serini equations to set the cell velocity rather
than the cell acceleration to be proportional to the chemoattractant gradient. Further, we assume
that (as is observed biologically) the response of the cell to the gradient is local along the
membrane rather than occurring at the cell centre.

Because we are attempting to reproduce experiments on quasi-two-dimensional vascular
patterns, which form in yolk sacs and in in vitro experiments, we employ a two-dimensional
model of our cells. Working in two dimensions greatly simplifies our modelling because the
cells move on top of the ECM rather than through it and extracellular signals diffuse through
the underlying ECM rather than through the complex and moving volume around cells in three
dimensions. Releasing hundreds of such virtual ECs into an ‘in silico petri dish,’ we then study
how cell-level phenomenology drives morphology and dynamics at the tissue scale.

2. Methods
We model EC behaviour at a mesoscopic level using Glazier and Graner’s cellular Potts model
[22] (CPM), a flexible, lattice-based, Monte Carlo approach, which includes cell–cell adhesion,
cell migration and chemotaxis (cell movement up or down chemical gradients which occur
when we bias membrane fluctuations and extensions of filopodia according to the concentration
of a diffusible chemoattractant). We describe chemoattractant diffusion macroscopically, using
a continuum approximation. An energy-minimization philosophy, a set of constraints and
auxiliary conditions determine how the cells move. Intercellular junctions determine an
adhesive (or binding) energy between cells. Cells move to promote stronger rather than weaker
bonds and shorter rather than longer cell boundaries. An energy constraint regulates cell
volume, which is a surface area in two dimensions. Additional constraints or auxiliary
conditions easily extend the CPM [23].
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The CPM represents biological cells as patches of identical lattice spins σ(x ⃗) on a square lattice,
where each spin identifies or ‘labels’ a single biological cell. Connections between
neighbouring lattice sites of unlike spin σ(x⃗) ≠ σ(x⃗′) represent membrane bonds, where the
bond energy is Jσx⃗,σx⃗′, assuming that the types and number of VE–cadherin and other adhesive
cell-surface proteins determine J. An energy penalty increasing with the cell’s deviation from
a designated target area Aσ imposes a volume constraint on the biological cells. We define the
pattern Hamiltonian:

(2)

where λ represents a cell’s resistance to compression and the Kronecker delta is δx,y = {1, x =
y; 0, x ≠ y}. Each lattice site represents an area of 2 μm×2 μm. We assume that cells do not
divide or grow during patterning, with Aσ = 50 lattice sites and λ = 25 for all cells. The cells
reside in an extracellular fluid medium which is a generalized CPM cell without a volume
constraint and with σ = 0. We define a special, high cell-border energy JcB = 100 to prevent
cells from adhering to the lattice boundaries (we could equally conveniently use non-physical
periodic boundary conditions).

To mimic cytoskeletally-driven membrane fluctuations, we randomly choose a lattice site, x⃗,
and attempt to copy its spin σx⃗ into a randomly chosen neighbouring lattice site x⃗′. For better
isotropy we use the twenty first to fourth nearest neighbours [24]. During a Monte Carlo
step (MCS) we carry out n copy attempts, where n is the number of sites in the lattice. We
calculate how much the Hamiltonian would change if we performed the copy and accept the
attempt with probability:

(3)

All our simulations use a Boltzmann temperature T = 50.

To mimic cell elongation due to cytoskeletal remodelling we add a cell-length constraint to the
free energy:

(4)

where lσ is the length of cell along its longest axis, Lσ its target length and λL is the strength of
the length constraint. Assuming that cells are ellipses, we can derive their length from the
largest eigenvalue of their inertia tensor I [25,26]. The length constraint could cause cells to
split into disconnected patches. We prevent this artefact by introducing a connectivity
constraint, which reflects the physical continuity and cohesion of the actual cell [26].

3. Results
3.1. Chemotactic cell aggregation

Our initial cell-centred model of vasculogenesis implements the basic assumption of the Gamba
and Serini model [4,5]: ECs migrate towards the chemoattract they themselves secrete. We use
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the basic CPM and add a PDE layer which describes the diffusion and secretion of the
chemoattractant in the uniform substrate underlying the cells:

(5)

where δσx⃗,0 = 1 inside the cells. α = 10−3 is the rate at which the cells release chemoattractant,
∈ = α is the decay rate of the chemoattractant and D = 10−13. Every site within the CPM cells
secretes the chemoattractant, which only decays in the substrate. We solve this PDE
numerically using a finite-difference scheme on a lattice that matches the CPM lattice, using
15 diffusion steps per MCS with Δt = 2 s. In this way we assume one MCS takes about 30 s.
At this value the cells move at approximately natural velocities and the pattern develops at a
rate corresponding to experiments [26]. For these parameters, the chemoattractant diffuses
more rapidly than the cells, enabling us to ignore advection as the cells push the substrate.

We implement a preferential extension of filopodia in the direction of chemoattractant
gradients [16]—which drives chemotaxis—by allowing for an extra energy drop at the time of
copying [27]:

(6)

where x⃗′ is the neighbour into which site x⃗ copies its spin and μ = 500 and μ = 0 at cell–substrate
and cell–cell interfaces, respectively. We use a value of μ = 500 to obtain sufficient chemotactic
migration. In our initial simulations the cells do not adhere without chemotaxis (Jcc = 2JcM).

Figure 1(a) shows that chemotactic aggregation alone, without cell adhesion, cannot account
for growth of vascular networks. Starting from a random configuration, the ECs organize into
a number of round cellular clusters instead. Intuitively we can understand this patterning as
follows: initially higher cell densities will create local ‘bumps’ of chemoattractant which
isotropically attract the surrounding cells. For reasons we explain below, in this simulation we
use the length constraint (equation (4)) to keep the cell shapes round, but the results hold for
unconstrained cells.

Indeed, our result resembles the famous Keller–Segel equations of chemotactic aggregation
[28]. The classic Keller–Segel equations, however, ignore the cells’ finite volume and lead to
‘blow-ups,’ single points at which all cell mass concentrates. A recent paper [29] derives a
Keller–Segel-type model from the Gamba–Serini PDE model of vasculogenesis [4,5] which
includes a pressure term to mimic cell-volume effects, and gives the conditions under which
such a pressure term prevents a blow-up. This paper provides a mathematical framework that
might allow a rigorous analysis of the morphogenetic instabilities we discuss here.

Thus, our basic model apparently misses an essential biological mechanism needed for
vasculogenesis. In the rest of this paper, we discuss four additional mechanisms which could
result in vascular patterning. The mechanisms fall into two broad categories: those which the
cell shape change drives and those which the contact-inhibition of chemotaxis drives. The two
categories seem to produce different patterning instability mechanisms.
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3.2. Cell shape changes
ECs dramatically change shape during angiogenesis and vasculogenesis. Are these shape
changes coincidental, or are they important to the ECs’ self-organization into vascular
networks?

To explore this question, we used a length constraint (equation (4)) to mimic cell elongation
due to internal, cytoskeleton remodelling. Figure 1(b) shows the virtual ECs’ aggregation for
cells of length about 50 lattice sites (100 μm). Elongated ECs rapidly organize into an initially
fine-grained network with vascular cords enclosing lacunae. With time the pattern remodels:
small lacunae collapse and large lacunae grow larger.

Alternative mechanisms can also explain the organization of ECs into network patterns. Figure
1(c) shows a simulation where the chemoattractant diffuses much more slowly than in the
previous simulation, resulting in short, steep gradients. The gradients ‘trap’ the virtual ECs,
which elongate as a result. These passively elongated cells also organize into networks. Strong
intercellular adhesion can also result in cell elongation necessary for vascular network
formation, as in figure 1(d) [23]. These two mechanisms depend on the cells’ elongated shape:
when we kept the cells round (using the length constraint to keep the longest axis equal to the
mean diameter) the cells organized into round, disconnected clusters similar to those in figure
1.

Elongated cells do not randomly walk like round cells. Instead they move more easily along
their long axis than along their short axis (not shown). Consequently, elongated cells migrating
along a curved chemotactic gradient must reorient before moving again at full speed. This
orientational variation in motility gives elongated cells’ motion a longer persistence length
than for rounded cells, and might explain why previous work [4,5] needed cell inertia for
vascular patterning. Persistence of motion and alignment of ECs results in elongated cell
clusters which may interconnect and form a percolating vascular network.

3.3. Contact-inhibition of motility
In addition to the mechanism described above, we identified a second class of mechanisms
which does not depend on cell shape [30]. Blood vessel growth requires the cell-adhesion
molecule, VE–cadherin [18], which clusters at EC interfaces and modulates vascular-
endothelial growth-factor-A’s (VEGF-A) effect on ECs; VEGF-A is a potent growth-factor,
which stimulates blood vessel sprouting. In the presence of VE–cadherin binding, VEGF-A
inhibits EC motility and proliferation. In the absence of VE–cadherin binding, VEGF-A
activates pathways related to actin polymerization and the cell cycle, triggering cell motility
and proliferation in sub-confluent monolayers [19,31]. Thus, we hypothesize that VE–cadherin
binding at cell–cell interfaces represses the formation of chemotactic surface projections
(filopodia), while filopodia normally form at unbound parts of the cell surface.

We introduce such contact-inhibition of motility in our models by setting μ = 0 (equation (6))
at cell–cell interfaces and μ = 500 at cell–substrate interfaces. This mechanism drives vascular
patterning even if we use the length constraint to keep the cell shape round (figure 1(e)).

3.4. Angiogenesis
Interestingly, unlike the cell-shape-driven mechanisms we described above, contact-inhibition
can also drive a mechanism reminiscent of sprouting angiogenesis, the biological mechanism
by which new blood vessels sprout from existing vessels. In figure 2 we initiate our simulation
with a mass of ECs, keeping all other parameters the same. After an initial ‘roughening,’ the
blob’s surface digitates into a structure reminiscent of a vascular network (figure 2 and cover
page), the first structure to develop both in de novo and in sprouting blood vessel growth
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[32]. Thus in our simulation sprouting and de novo blood vessel growth seem to be two
manifestations of a single process at the level of ECs.

These results suggest a mechanism by which contact-inhibited directed migration can drive
blood vessel sprouting, which we currently understand intuitively. Near the surface of the
cluster, the chemoattractant has an exponential profile: the gradient is shallow outside the
cluster and becomes steeper in the interior, while it levels off at the centre. Thus, surface cells
closer to the centre push inwards more strongly than other peripheral surface cells, which thus
move outwards. The balance between the inward, chemotactic force and the outward force
determines the direction in which surface cells move. Without contact-inhibition the interior
cells also attempt to migrate inwards, thus resisting displacement by the surface cells,
essentially behaving as a solid body.

4. Conclusion
In this paper we have described two classes of instability mechanisms which may be
responsible for aspects of de novo and sprouting blood vessel growth. The first instability
mechanism depends on cell shape: elongated cells align and form elongated blobs which
interconnect to form a vascular pattern. The second mechanism needs contact-inhibition and
is independent of cell-shape. Although we can verbally explain these instability mechanisms,
many open questions remain. How can cell shape drive the formation of network-like patterns?
Is it due to the elongated cells’ anisotropic cell diffusion and the resulting directional
persistence, or is cell alignment and percolation more important? Another open problem is the
correspondence between our cell-centred models and the Gamba–Serini PDE model [4,5]. Our
basic cell-centred model generates disconnected blobs (figure 1(a)), while network patterns
require extra (biologically plausible) assumptions that the Gamba–Serini model seemingly
does not need. What is the essential difference between the two models? Does network
formation indeed depend on directional persistence [7] (as possibly dictated by cell shape
[26]) or is our contact-inhibition mechanism—which suppresses chemotaxis at cell–cell
interfaces but otherwise allows cells to move freely—equivalent to the pressure terms the
Gamba–Serini model needs to prevent blow-up? Abstract mathematical models should help to
more rigorously explain these open questions and the instability mechanisms described in this
paper.
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Figure 1.
Hypothetical mechanisms of de novo vascular development. (a) Rounded cells aggregate into
isolate vascular islands. (b) Autonomously elongating virtual cells organize into a vascular
network with coarsening dynamics corresponding to in vitro observations. (c) Short, steep
gradients cause the cells—whose shape we do not constrain—to elongate and organize into
vascular networks. (d) Strong adhesivity also causes the cells to elongate. (e) Contact-inhibition
of motility drives a cell-shape-independent mechanism of vasculogenesis.
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Figure 2.
Sprouting instability in a simulation initiated with a clump of virtual ECs experiencing contact-
inhibition.

Merks and Glazier Page 11

Nonlinearity. Author manuscript; available in PMC 2009 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


