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SUMMARY
Spatial data with covariate measurement errors have been commonly observed in public health
studies. Existing work mainly concentrates on parameter estimation using Gibbs sampling, and no
work has been conducted to understand and quantify the theoretical impact of ignoring measurement
error on spatial data analysis in the form of the asymptotic biases in regression coefficients and
variance components when measurement error is ignored. Plausible implementations, from
frequentist perspectives, of maximum likelihood estimation in spatial covariate measurement error
models are also elusive. In this paper, we propose a new class of linear mixed models for spatial data
in the presence of covariate measurement errors. We show that the naive estimators of the regression
coefficients are attenuated while the naive estimators of the variance components are inflated, if
measurement error is ignored. We further develop a structural modeling approach to obtaining the
maximum likelihood estimator by accounting for the measurement error. We study the large sample
properties of the proposed maximum likelihood estimator, and propose an EM algorithm to draw
inference. All the asymptotic properties are shown under the increasing-domain asymptotic
framework. We illustrate the method by analyzing the Scottish lip cancer data, and evaluate its
performance through a simulation study, all of which elucidate the importance of adjusting for
covariate measurement errors.
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1 Introduction
Spatial data are common in ecology, environmental health and epidemiology, where sampling
units are geographical areas or spatially located individuals (Cressie (1993)). Analysis of
spatial data is challenged by the spatial correlation among the observations. Mixed effects
models provide a convenient framework to model the spatial correlation using random effects
that are assumed to follow some spatial correlation structure, such as the conditional
autoregressive (CAR) structure (Yasui and Lele (1997); Waller, et al. (1997)) or the Matèrn
correlation structure (Stein (1999)). Asymptotic theory for spatial linear mixed models was
established by Mardia and Marshall (1984).

Spatial data are susceptible to measurement errors in covariates. For example in ecological
studies, covariates are often collected from a small survey sample in each area and sample
averages are used as surrogates for the true population aggregated values, such as the
percentage of smokers in a county (Xia and Carlin, 1998). Measurement errors can be
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substantial when the areas are small, especially in nutritional ecological studies (Prentice and
Sheppard (1995)), where additional measurement errors arise due to inaccuracy in measuring
nutrition intakes, such as fat intake, using conventional instruments and using 24 hour food
recall. In environmental health studies, the air pollution level, e.g., PM10 or ozone, in an area
is difficult to measure and is often approximated by using the distance from a polluted site or
by using the measures at a few monitoring sites (Carroll, et al., 1997).

There is a vast literature on modeling measurement error for independent data. For an overview,
see Carroll, Stefanski and Ruppert (1995). Several authors have considered measurement error
in covariate in generalized linear mixed models for clustered data, such as longitudinal data
(Wang and Davidian (1996); Wang, et al. (1998)). However, only limited work has been done
in modeling measurement error in covariates for spatial data. Bernardinelli, et al. (1997) and
Xia and Carlin (1998) accounted for measurement error in covariate using hierarchical models
in disease mapping. These authors mainly concentrated on parameter estimation using Gibbs
sampling. Little is understood about the theoretical effect of measurement error on the
asymptotic biases in regression coefficients and variance components when measurement error
is ignored. To our knowledge, our work is the first attempt to understand the theoretical
properties of maximum likelihood estimation in spatial measurement error mixed effects
models.

We first study the asymptotic bias in the naive estimator when measurement error is ignored.
Our results show that ignoring measurement error results in attenuated regression coefficients
and inflated variance components. We then proceed by applying the structural modeling
approach to make valid maximum likelihood inference by accounting for measurement error.
An EM algorithm is proposed to compute the maximum likelihood estimator. The proposed
methods are illustrated through an application to the Scottish lip cancer data and their
performance is evaluated through a simulation study.

2 The Spatial Linear Mixed Measurement Error Model
Suppose that the data are obtained from n geographical areas with continuous outcome variable
Yi, unobserved true covariate Xi (assumed to be a scalar), observed Xi-related covariate Wi, and
other accurately observed covariates Zi at the ith area (i = 1,…, n). Conditional on the site-
specific random effects bi that model the spatial correlation, the spatial linear mixed model of
Y given X and Z can be written as

(1)

where the random effect vector (b1,…, bn) is N{0, V(θ)} and θ is a vector of variance
components, the residuals εi are N(0, ), and bi and εi are independent to each other and are
independent of the covariates X and Z.

The covariance matrix V(θ) models the spatial correlation and admits many choices. For
instance, we might parameterize the (i, j)th component of V(θ) as Vij(θ) = θρ(||si − sj||), where
correlation function ρ(.) is an isotropic correlation function that decays as the Euclidean
distance dij = ||si − sj|| between two individuals increases. A widely adopted choice for this

correlation function is the Matèrn function , where η measures the
correlation decay with the distance and ν is a smoothness parameter, Γ(·) is the conventional
Gamma function and Kν(·) is the modified Bessel function of the second kind of order ν (see,
e.g. Abramowitz and Stegun (1965)). This spatial correlation model is rather general, special
cases including the exponential model
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(2)

when the smoothness parameter ν = 0.5 and the ‘decay parameter’ η = 1, and the Gaussian
correlation model

(3)

corresponding to ν → ∞ and η = 1 (see, e.g., Waller and Gotway (2004), p. 279). Our theoretical
development in the ensuing sections focuses on these two widely used cases of the Matèrn
family.

The conditional auto-regressive (CAR) structure is also a popular choice. It has appealing
theoretical properties, computational advantages and attractive interpretation (Cressie
(1993)). A common CAR structure takes the form (Yasui and Lele (1997))

(4)

where Q = {qij} is an n × n symmetric matrix; M is an n × n diagonal matrix with diagonal
elements 1/qi+, with qi+ = Σj qij, −1 < γ < 1 is the spatial dependence parameter that controls
the amount of information in an area provided by its neighbors, and θ is a scale parameter. The
quantity qij controls the strength of connection between areas i and j, and often takes value 0
when areas i, j are not neighbors. When area i and area j are neighbors, a common choice is
qij = 1 to reflect equal weights from neighbor areas. Note the flexibility of the CAR structure
that allows a more general neighborhood concept than geographical proximity.

In the presence of measurement error we cannot observe X directly, but see instead its error-
contaminated version W. The spatial linear mixed measurement error model is completed by
assuming an additive measurement error model to relate W and X as

(5)

where Ui is the measurement error and is N(0, ), independent of the unobserved covariate
Xi. Note that the measurement error variance  often needs to be estimated using replicates
or a validation data set.

Since the covariate X is unobserved, we use the structural modeling approach in the
measurement error literature (Carroll, Ruppert and Stefanski (1995)) by assuming a parametric
model for X and proceed with maximum likelihood estimation. The classical measurement
error model often assumes X to be an independent and identically distributed Gaussian random
variable. However since we are dealing with spatial data, it is likely that spatial correlation
exists not only in the outcome variable Y, but also in the covariate X. Hence we assume a spatial
linear mixed model for the unobserved covariate X,

(6)
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where the random effect vector (a1,…, an) ~ N{0,Σ(ζ)}, Σ(ζ) models the spatial correlation
among the Xi, and the residuals ei are independent N(0, ). We assume the ai and the ei are
independent of the Zi. Let W = (W1, W2, …, Wn)T, with X, Y, Z, a, b defined similarly. Note
that we allow the spatial correlation structure Σ(ζ) among the Xi to be different from the spatial
correlation structure V(θ) among the Yi. In practice, since X and Y both come from the same
area, it is often reasonable to assume that they share the same spatial correlation structure with
possibly different parameter θ and ζ.

It follows that the likelihood of the observed data Y, W conditional on Z is

Since all the conditional distributions inside the integral are Gaussian, the joint distribution of
(Y, W|Z) has the closed form,

(7)

where μy = (β0 + βxα0)1 + Z(βxαz + βz), μw = α01 + Zαz and

with I an n-dimensional identity matrix.

3 The Asymptotic Bias Analysis
It is of substantial interest to investigate the effect of measurement error by investigating the
bias caused by ignoring measurement error, i.e., simply replacing X in model (1) by its error-
prone version W. This problem, albeit common in spatial data and cautioned by many authors,
is never formally addressed. Specifically, the direction and magnitude of biases in naive
estimators obtained by ignoring measurement error are not well understood. The goal of this
section is to study their asymptotic biases. Our asymptotic bias analysis shows that ignoring
measurement error results in an attenuated regression coefficient estimator and an inflated
variance component estimator.

We assume the spatial linear mixed measurement error model (1) only contains a single
covariate X (no Z) with

(8)

where the distributions of bi, εi, ai, ei are the same as those in (1) and (6). The naive estimators
of (β0, βx, θ, ) are obtained by simply replacing Xi with the error-prone observation Wi and
fitting
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(9)

where bi ~ N{0, V(θnaive)} and . Let  = (1, W), βnaive = (β0,naive,

βx,naive)T, , and . The naive
estimates would be obtained by maximizing the likelihood that ignores measurement error,

(10)

Specifically, they solve

(11)

We seek the probability limits of the naive estimates as functions of the true values as n → ∞;
with a slight abuse of notation, these are βnaive and ϑnaive.

We resort to the increasing domain asymptotics framework when studying bias, as opposed to
infill asymptotics. Zhang and Zimmerman (2005) compared these two frameworks and found
that, for certain consistently estimable parameters of exponential covariograms,
approximations corresponding to the two frameworks perform about equally well, but for those
parameters that cannot be estimated consistently or are highly correlated, infill asymptotic
approximation may be preferable. It is usually difficult to derive infill asymptotic properties,
so the increasing domain asymptotic framework is used in this work.

Consider Λ in (10), which depends on . Let Λi = ∂/∂ϑiΛ(ϑ) and Λij = ∂2/
∂ϑi∂ϑjΛ(ϑ), where the differentiation is element-wise for i, j = 1,2. Now let λ1 ≤ … ≤ λn be

the eigenvalues of Λ, and let those of Λi and Λij be  and  for k = 1,…,n, respectively, with

 and  for i, j = 1, 2. We consider the following modified regularity
conditions of Mardia and Marshall (1984).

(c.1) lim sup λn < ∞, , for all i, j = 1, 2.

(c.2)  for some δ > 0 for i = 1, 2, .

(c.3) A = (aij)2×2 is invertible, where for all i, j = 1,2, aij = {tij/(tiitjj)1/2} exists and tij = tr
(Λ−1ΛiΛ−1Λj).

(c.4) lim(  T  )−1 = 0.

These conditions ensure the growth and convergence of the information matrix from (10),
which allows the usage of the general results of Sweeting (1980) to guarantee the convergence
of the naive estimates. In practice, (c.1) and (c.2) are difficult to verify. However, using some
basic matrix norm properties, we show in Appendix A.0 that the common geostatistical models,
for example the exponential, Gaussian, and CAR models, satisfy (c.1) and (c.2). Condition (c.
3) is an identifiability condition, ensuring that the variance components (ϑ1, ϑ2) are not linear
dependent, which is satisfied in our settings. Condition (c.4) ensures that the observed
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covariates are not trivial and is satisfied for the measurement error models (5) and (6). Then if
(c.1)–(c.4) hold, required limits exist (Sweeting (1980)) and satisfy the asymptotic equations
(Harville (1977)),

(12)

where the expectations are taken under the true law of (Y, W) in (1) (omitting Z). In particular,
we can calculate the asymptotic biases in the naive regression coefficients βnaive. The result is
summarized in Theorem 1 and the proof is given in Appendix A.1 (on-line supplement), which
can be found on-line at http://www.stat.sinica.edu.tw/statistica.

Theorem 1
(Asymptotic Biases in the Regression Coefficients) Under (c.1)–(c.4), the following hold, (i)
The probability limit of the naive estimator βnaive is

(13)

where

(14)

and hence 0 ≤ λ* ≤ 1.

(ii) If Y and X have the same spatial covariance structure with different scale parameters,

(15)

where R is a known matrix, then λ* in (14) is

(16)

where {δl} are the eigenvalues of R−1.

(iii) For regular (square) grid data and the conditional auto-regressive spatial correlation
structure (4) defined using the adjacent neighborhood spatial correlation structure of Breslow
and Clayton (1993),
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(17)

for regular grid data and an exponential or Gaussian spatial correlation structure,

(18)

The results in Theorem 1 show that ignoring the measurement error causes the regression
coefficient estimates to be attenuated. Calculations of the attenuation factor λ* can be quite
complicated in general. Therefore the results in (ii) are particularly useful for numerically
computing λ*, since it avoids the inversion of large matrices. Note that the eigenvalues therein
do not depend on data if the spatial dependence parameter γ is known. For grid data, exponential
and Gaussian correlation structures are often used. In these cases, (iii) provides a bound of the
attenuation factor that can be easily computed.

We state in Theorem 2 the asymptotic bias in the naive variance component ϑnaive; the proof
is given in Appendix A.2 (on-line supplement).

Theorem 2
(Asymptotic Biases in Variance Components) Suppose Y and X have the same spatial
covariance structure with different scale parameters as at (15). Under (c.1)–(c.4), the
asymptotic limits of the naive estimators of the spatial variance component and the residual
variance satisfy,

(19)

where λ* is defined in (16).

Theorem 2 shows that when Y and X possess the same spatial covariance structure, a reasonable
assumption in practice since they come from the same spatial area, the naive estimators of the
spatial variance component and the residual variance both overestimate the corresponding true
values. For more general cases when the spatial covariance structure of Y and X differ, the
asymptotic limits of the naive estimators are difficult to calculate, and no analytic expressions
are available.

The asymptotic relative biases in the naive estimators of the regression coefficients and the
variance components, assuming the adjacent neighborhood spatial correlation structure is
illustrated in Figure 1. Since the computation of λ* involves n → ∞, we approximate λ* with
n = 1024 on a 32 × 32 lattice. The spatial dependence parameter γ in (4) are taken as γ = 0.2
and γ = 0.95. The regression coefficient is βx = .5, variance components are θ = 1 and .

The parameters in the X models are α0 = 1.4, , and . We iteratively calculate λ*
using (16) and (19). In our experience, convergence is often achieved within 5 iterations. Then
we obtain the expected naive estimates from (13) and (19). The bias curves for the naive
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estimates of βx and θ are plotted as a function of the measurement error variance . It should
be noted that the bias curves in fact correspond to the finite sample exact bias.

Figure 1 shows that the naive estimate of the regression coefficient βx is attenuated, while the
naive estimate of the variance component θ is inflated. The biases increase with the
measurement error variance , but decrease with the spatial dependence parameter γ. The
reason for the latter phenomenon is explained by the fact that stronger dependence implies that
neighbor areas can provide more information, and hence the estimates are more resistant to the
effect of measurement error.

4 Maximum Likelihood Estimation
We consider the large sample results for the maximum likelihood estimator for the spatial linear
mixed measurement error models (1), (5) and (6). In particular, we show for some commonly
used spatial models, the MLEs are consistent and asymptotically normal. To proceed, we
assume mild regularity conditions on the parameter space and the observed covariate Z.

(d.1) The unknown parameters Ω in (1), (5) and (6) lie in a compact set of an Euclidean
space.

(d.2) Let Z̃ = (1, Z), where 1 is an n × 1 vector of 1’s. Assume lim n−1Z̃TZ̃ = Z0 in
probability, where Z0 is a positive definite matrix.

It follows that, for the common geostatistical models, such as the exponential, Gaussian and
CAR models, the maximum likelihood estimator is consistent and asymptotically normal, as
summarized in the following theorem. The proof is deferred to Appendix A.3 (on-line
supplement).

Theorem 3
(Consistency and Asymptotic Normality of MLEs) Let Ω0 be the true unknown parameters in
(1), (5) and (6) and Ω̂ be its maximum likelihood estimator. Suppose that Y and X have the
exponential, Gaussian or CAR [eq. (4)] spatial covariance structure on regular grid. Then, under
(d.1) and (d.2), Ω̂ is consistent and Γ1/2(Ω̂ − Ω0) → N(0, Ip) in distribution, where Γ1/2 is the

Cholesky decomposition of , Ω0 is the truth, ℓ is as defined in (7), and
Ip is the identity matrix of dimension of p, the dimension of Ω0

Theorem 3 does not require X and Y to have the same correlation structure, but, since X and
Y both come from the same area, it may be reasonable to assume that they do. In such a situation
we propose an EM algorithm to compute the MLEs; in particular, we assume the spatial
covariance structures of the random effects b and a take the same form (15) with different scale
parameters. The EM algorithm for a general spatial covariance structure is similar. The
complete data are (Y, W, X, Z, b, a), where (Y, W, Z) are observed data and X, b, and a are
missing data. The complete data loglikelihood is

where || · || denotes the square norm.
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Let X ̃ = (1, X, Z), Z̃ = (1, Z), , and . At the (t + l)th step, let the
estimator of β be β ̂(t+1) and the estimator of α be α(t+1), and define the variance component
estimates similarly. In the M step, we update the regression coefficients

where E(·|Y, W, Z,ξ ̂(t)) is the expectation conditional on the observed data (Y, W) with all
parameters taking the values of the current estimates ξ ̂(t) We update the variance components
by

In the E step, we compute the conditional expectations that appeared in the above equations.
The closed-form expressions of these conditional expressions are derived and can be found in
Appendix A.4 (on-line supplement). These steps can be easily implemented since all the
quantities involved have closed form and no numerical integration is needed. Finally, the
standard errors of the maximum likelihood estimates can be obtained by inverting the Fisher
information matrix.

5 Simulation Study
Our simulation study aims at evaluating the finite sample performance of the naive estimates
obtained by ignoring the measurement error and the maximum likelihood estimates obtained
by accounting for the measurement error. We took the data to be on a regular grid. We
considered the Y model (1) with a single covariate X. We assumed the adjacent neighborhood
CAR spatial correlation structure (4) for both the random effects {bi} and {ai} in the Y and
X models, neighbors being defined as the four adjacent areas for each location except for those
on the edge. The weight qij was set to be 1 if areas i and j are neighbors and 0 otherwise. The
spatial dependence parameter was γ = 0.95, mimicking what was obtained in the data example
in the next section. The unobserved covariate X was generated under model (6) with mean 1.4
and variance components 1.2 and 0.3, respectively for the spatial covariance and residual error
term. The observed error-contaminated version W was generated by adding Gaussian noise
with variance  to X. To generate the outcome variable Y, the regression coefficients
were taken as (β0, βx)T = (0.0,2.0)T, and the variance components for the spatial covariance
and residual error term were taken as 1.0 and 0.5. For each generated data set, we computed
the naive estimates that ignored the measurement error and the maximum likelihood estimates
that accounted for the measurement error using the EM algorithm. We varied the grid size to
be 7(n = 7 × 7), 10(n = 10 × 10) and 20(n = 20 × 20). The averages and variances of the estimates
from 500 replications are given in Table 1.

We next examined the performance of the MLE when the spatial correlation structure was
specified to be the exponential model as well as the Gaussian model. The locations of subjects
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were sampled uniformly over region [0, ]2, where n is the number of subjects. We set n =
49,100,400 in our simulations. The results are documented in Tables 2 and 3.

All the results (Tables 1–3) show that the naive estimate of βx is attenuated while the naive
estimates for θ and  are inflated, agreeing with our asymptotic bias analysis. The maximum
likelihood estimates computed using the EM algorithm, on the other hand, performed very
well. The mean of the estimates of the regression coefficients and the variance components
were very close to the corresponding true values. As expected, there was a bias-variance
tradeoff. The MLEs effectively eliminated the biases in the naive estimators but had larger
variances. As an overall measure of performance using the MSE, the MLEs had smaller MSEs
than the naive estimators. The MSE gain was more apparent as n increased.

Finally, to compare the empirical results with our theoretical asymptotic bias analysis results,
we computed the theoretical values of the naive estimate using the results in Theorems 1 and
2. For example, under the CAR model with γ = 0.95, these values were 0.254, 0.318, 1.039,
0.367 for β0, βx, θ and , compared with 0.247, 0.318, 1.027, 0.376 of the average naive
estimates based on 500 simulations for grid size 20 (n=400) (see Table 1). Hence, our
theoretical values do match with our simulation results.

6 Analysis of Scottish Lip Cancer Incidence Data
The Scottish lip cancer incidence data were collected in each of the 56 counties of Scotland
(Breslow and Clayton (1993)). For each county, the number of lip cancer cases among males
from 1975–1980 and the percentage of AFF employment in all employed population were
reported. Earlier analysis found that the rates were higher in counties with higher proportion
of the population employed in agriculture, forestry, and fishing (AFF) – the professions that
require working outdoors. This observation reflects the biological plausible causal relationship
between ultraviolet rays and lip cancer. Breslow and Clayton (1993) applied spatial mixed
models to study the association between the percentage of the AFF employment and the lip
cancer incidence. However the exposure of main interest is the exposure to sunlight, a known
risk factor for lip cancer. The AFF employment variable serves as a surrogate for the degree
of exposure to sunlight. Since we mainly focused on the association between lip cancer and
the exposure to sunlight, we need to account for the measurement error in using the AFF
employment variable to measure the degree of exposure to sunlight.

Breslow and Clayton (1993) modeled the standardized morbidity ratios calculated by dividing
the observed number of cancer cases by the age-adjusted expected cancer cases using a Poisson
regression model. To apply our methodology, we first took a square root transformation of the
observed SMR; the transformed SMR approximated a normal distribution well, which was
verified using the Shapiro-Wilks test. We applied the spatial linear mixed measurement error
model to account for the measurement error.

Following Breslow and Clayton (1993), we assumed the adjacent neighborhood spatial
correlation structure for the square-root transformed SMR. These authors also noted that the
covariate, the percentage of the AFF employment, exhibited the same spatial aggregation as
the SMR. We hence assumed the same spatial correlation structure with a different scale
parameter for the AFF variable.

The analysis results are given in Table 4. The naive analysis showed a strong effect of the AFF
employment on the SMR (βx = 0.139 and SE=0.091), and the spatial correlation seemed to
dominate in the total variation (θ ̂ = 0.310, ). We next considered the spatial linear
mixed measurement error model to account for the measurement error in the AFF employment.

Li et al. Page 10

Stat Sin. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since no validation data set was available, the measurement error variance  could not be
estimated directly from the data. We fit a linear random intercept CAR model on W. This
allowed us to estimate the sum of  and  as 0.041. We then did sensitivity analysis by
varying  from 0.0, naive analysis, to moderate measurement error, , to severe
measurement error, . The estimates of the dependence parameter γ were 0.922 when

, 0.928 when  and 0.932 when , all of which were close to the estimate
of 0.93 obtained by Yasui and LeLe (1997), and indicated a strong spatial dependence. Second,
all the analyses indicated that working outdoors was associated with the risk of lip cancer.
Third, ignoring measurement error did attenuate the regression coefficient estimates. As 
increased, the estimates of the regression coefficients became larger. For example, the estimate
of the coefficient of ‘AFT’, with estimated standard error in brackets, increased from 0.132
(0.093) when , to 0.153 (0.099) when , and to 0.172 (0.104) when ,
while the variance component for the spatial correlation part was estimated as 0.434 (0.245)
when , 0.414(0.234) when , and 0.394 (0.228) when . These results
indicated that that accounting for measurement error increased the magnitude of the estimated
effects of ‘AFT’ while it decreased the overestimation of the spatial variance component.

7 Discussion
In this paper we have proposed spatial linear mixed measurement error models to account for
covariate measurement error and spatial correlation in spatial data. Our asymptotic bias
analysis shows that, by ignoring the measurement error, the naive estimators of the regression
coefficients are attenuated and the naive estimators of the variance components are inflated.
We give formulae for calculating these biases for a general case, and provide simplified forms
or bounds for some commonly-used spatial correlation structures. Our numerical calculation
also shows that the biases are related to the spatial dependence parameter γ for an adjacent
neighborhood structure.

We have developed a structural modeling approach to accounting for the covariate
measurement error in spatial data, where spatial linear mixed models are assumed for both the
outcome and the unobserved covariate, and an additive model is assumed for the observed
error-prone covariate. An EM algorithm is developed to compute the maximum likelihood
estimate. Our simulation study shows that the maximum likelihood estimator works well in
finite samples and appropriately corrects for the bias in the naive estimator. We find that the
maximum likelihood estimators correct the biases in naive estimators, but are associated with
larger variances.

On the computational side, our algorithm requires operations of matrices of large size,
including inversion of large matrices. We alleviate the computational burden by diagonalizing
the matrices simultaneously. Since the sizes of the matrices involved increase rapidly with the
grid size of the spatial areas, many operations on these matrices are needed in each EM iteration.
These cause problems in handling large data sets with the EM algorithm. Here it might be more
convenient to adopt an MCMC algorithm, especially if one uses the conditional autoregressive
spatial covariance structure.

Ou structural modeling approach, where a parametric model is assumed for the unobserved
covariate X, might be sensitive to misspecification of the distribution of X. An alternative
estimation in the measurement error literature is functional modeling, such as SIMEX (Carroll,
et al. (1995)), which makes no distributional assumption on X. However it can be less efficient
than the MLE when the distribution of X is correctly specified. It is of interest in future research
to compare these two approaches in terms of their robustness and efficiency.
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We have concentrated in this paper on Gaussian spatial outcomes. Work is underway to extend
the results to non-Gaussian spatial outcomes, with measurement error in the covariate, within
the framework of spatial generalized linear mixed models (e.g. Diggle et al. (1998)).
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Figure 1.
Asymptotic relative biases in the naive estimates of βx and θ. The CAR spatial covariance
structure with spatial dependence parameter γ = 0.2 and 0.95 was used. The true parameter

values were βx =.5, θ = 1, . Variance of measurement error  varied
between 0 and 1.0. The two curves in each plot correspond to the spatial dependence parameter
γ: ——— γ = 0.2; - - - γ = 0.95.
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Table 4

Sensitivity analysis of Scottish Lip Cancer Incidence Data: Outcome variable is the square root of SMR; the
covariate is AFF/10. The measurement error variance varied between 0 (naive), 0.02 (moderate) and 0.035
(severe)

Estimate ± standard error

Parameter naive moderate severe

σu
2 = 0.0 σu

2 = 0.02 σu
2 = 0.035

γ 0.922 ± 0.072 0.928 ± 0.044 0.932 ± 0.043

β0 0.939 ± 0.164 0.923 ± 0.168 0.908 ± 0.171

βx 0.132 ± 0.093 0.153 ± 0.099 0.172 ± 0.104

θ 0.434 ± 0.245 0.414 ± 0.234 0.394 ± 0.228

σε
2

0.017 ± 0.045 0.021 ± 0.044 0.024 ± 0.044

σ∑
2

1.258 ± 0.258 1.183 ± 0.256

σe
2

0.0001 ± 0.0005 0.0001 ± 0.0003

α0 0.8033 ± 0.258 0.8030 ± 0.258
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